1
|
Yao Z, Huang K, Qi Y, Fu J. Does brain size of Asiatic toads (Bufo gargarizans) trade-off with other energetically expensive organs along altitudinal gradients? Evolution 2024; 79:28-37. [PMID: 39303020 DOI: 10.1093/evolut/qpae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Brain size variation is often attributed to energetic trade-offs with other metabolically expensive tissues and organs, which is a prediction of the expensive brain hypothesis (EBH). Here we examine Asiatic toads (Bufo gargarizans) along altitudinal gradients and test size trade-offs between the brain and four visceral organs (heart, liver, alimentary tract, and kidney) with altitude. Body size and scaled mass index (a proxy for total energy intake) decline with altitude, implying stronger energetic constraints at high altitudes. Relative brain size decreases along altitudinal gradients, while visceral organs mostly increase in relative sizes. Using structural equation modeling, a significant negative relationship between brain size and a latent variable "budget," which represents the energy allocation to the four visceral organs, is detected among high-altitudinal toads. Heart appears to have the largest and most consistent response to changes in energy allocation. No such relationships are observed among toads at middle- and low-altitudes, where high energy intake may allow individuals to forego energetic trade-offs. When applying EBH to poikilotherms, a great emphasis should be placed on total energy intake in addition to energy allocation. Future research on EBH will benefit from more intra-specific comparisons and the evaluation of fitness consequences beyond energy limitation.
Collapse
Affiliation(s)
- Zhongyi Yao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Kun Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yin Qi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Haines E, Bailey E, Nelson J, Fenlon LR, Suárez R. Clade-specific forebrain cytoarchitectures of the extinct Tasmanian tiger. Proc Natl Acad Sci U S A 2023; 120:e2306516120. [PMID: 37523567 PMCID: PMC10410726 DOI: 10.1073/pnas.2306516120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 08/02/2023] Open
Abstract
The thylacine, or Tasmanian tiger, is the largest of modern-day carnivorous marsupials and was hunted to extinction by European settlers in Australia. Its physical resemblance to eutherian wolves is a striking example of evolutionary convergence to similar ecological niches. However, whether the neuroanatomical organization of the thylacine brain resembles that of canids and how it compares with other mammals remain unknown due to the scarcity of available samples. Here, we gained access to a century-old hematoxylin-stained histological series of a thylacine brain, digitalized it at high resolution, and compared its forebrain cellular architecture with 34 extant species of monotremes, marsupials, and eutherians. Phylogenetically informed comparisons of cortical folding, regional volumes, and cell sizes and densities across cortical areas and layers provide evidence against brain convergences with canids, instead demonstrating features typical of marsupials, and more specifically Dasyuridae, along with traits that scale similarly with brain size across mammals. Enlarged olfactory, limbic, and neocortical areas suggest a small-prey predator and/or scavenging lifestyle, similar to extant quolls and Tasmanian devils. These findings are consistent with a nonuniformity of trait convergences, with brain traits clustering more with phylogeny and head/body traits with lifestyle. By making this resource publicly available as rapid web-accessible, hierarchically organized, multiresolution images for perpetuity, we anticipate that additional comparative insights might arise from detailed studies of the thylacine brain and encourage researchers and curators to share, annotate, and preserve understudied material of outstanding biological relevance.
Collapse
Affiliation(s)
- Elizabeth Haines
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, QLD4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, QLD4072, Australia
| | - Evan Bailey
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, QLD4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, QLD4072, Australia
| | - John Nelson
- School of Biological Sciences, Monash University, Melbourne, Victoria, VIC3800, Australia
| | - Laura R. Fenlon
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, QLD4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, QLD4072, Australia
| | - Rodrigo Suárez
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, QLD4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, QLD4072, Australia
| |
Collapse
|
3
|
de Sousa AA, Beaudet A, Calvey T, Bardo A, Benoit J, Charvet CJ, Dehay C, Gómez-Robles A, Gunz P, Heuer K, van den Heuvel MP, Hurst S, Lauters P, Reed D, Salagnon M, Sherwood CC, Ströckens F, Tawane M, Todorov OS, Toro R, Wei Y. From fossils to mind. Commun Biol 2023; 6:636. [PMID: 37311857 PMCID: PMC10262152 DOI: 10.1038/s42003-023-04803-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 06/15/2023] Open
Abstract
Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.
Collapse
Affiliation(s)
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & Université de Poitiers, Poitiers, France.
- University of Cambridge, Cambridge, UK.
| | - Tanya Calvey
- Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Ameline Bardo
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500, Bron, France
| | | | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | | | - Shawn Hurst
- University of Indianapolis, Indianapolis, IN, USA
| | - Pascaline Lauters
- Institut royal des Sciences naturelles, Direction Opérationnelle Terre et Histoire de la Vie, Brussels, Belgium
| | - Denné Reed
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| | - Mathilde Salagnon
- CNRS, CEA, IMN, GIN, UMR 5293, Université Bordeaux, Bordeaux, France
- PACEA UMR 5199, CNRS, Université Bordeaux, Pessac, France
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Felix Ströckens
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Yongbin Wei
- Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|
4
|
Wallach AD, Ramp D, Benítez-López A, Wooster EIF, Carroll S, Carthey AJR, Rogers EIE, Middleton O, Zawada KJA, Svenning JC, Avidor E, Lundgren E. Savviness of prey to introduced predators. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14012. [PMID: 36178043 DOI: 10.1111/cobi.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The prey naivety hypothesis posits that prey are vulnerable to introduced predators because many generations in slow gradual coevolution are needed for appropriate avoidance responses to develop. It predicts that prey will be more responsive to native than introduced predators and less responsive to introduced predators that differ substantially from native predators and from those newly established. To test these predictions, we conducted a global meta-analysis of studies that measured the wariness responses of small mammals to the scent of sympatric mammalian mesopredators. We identified 26 studies that met our selection criteria. These studies comprised 134 experiments reporting on the responses of 36 small mammal species to the scent of six introduced mesopredators and 12 native mesopredators. For each introduced mesopredator, we measured their phylogenetic and functional distance to local native mesopredators and the number of years sympatric with their prey. We used predator and prey body mass as a measure of predation risk. Globally, small mammals were similarly wary of the scent of native and introduced mesopredators; phylogenetic and functional distance between introduced mesopredators and closest native mesopredators had no effect on wariness; and wariness was unrelated to the number of prey generations, or years, since first contact with introduced mesopredators. Small mammal wariness was associated with predator-prey body mass ratio, regardless of the nativity. The one thing animals do not seem to recognize is whether their predators are native.
Collapse
Affiliation(s)
- Arian D Wallach
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Daniel Ramp
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Ana Benítez-López
- Department of Zoology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eamonn I F Wooster
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Scott Carroll
- Department of Entomology and Nematology, University of California Davis, Berkeley, California, USA
| | - Alexandra J R Carthey
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Erin I E Rogers
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Owen Middleton
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Kyle J A Zawada
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Ella Avidor
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Erick Lundgren
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Qiu J, Olivier CA, Jaeggi AV, Schradin C. The evolution of marsupial social organization. Proc Biol Sci 2022; 289:20221589. [PMID: 36285501 PMCID: PMC9597405 DOI: 10.1098/rspb.2022.1589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/05/2022] [Indexed: 10/28/2023] Open
Abstract
It is generally believed that marsupials are more primitive than placentals mammals and mainly solitary living, representing the ancestral form of social organization of all mammals. However, field studies have observed pair and group-living in marsupial species, but no comparative study about their social evolution was ever done. Here, we describe the results of primary literature research on marsupial social organization which indicates that most species can live in pairs or groups and many show intra-specific variation in social organization. Using Bayesian phylogenetic mixed-effects models with a weak phylogenetic signal of 0.18, we found that solitary living was the most likely ancestral form (35% posterior probability), but had high uncertainty, and the combined probability of a partly sociable marsupial ancestor (65%) should not be overlooked. For Australian marsupials, group-living species were less likely to be found in tropical rainforest, and species with a variable social organization were associated with low and unpredictable precipitation representing deserts. Our results suggest that modern marsupials are more sociable than previously believed and that there is no strong support that their ancestral state was strictly solitary living, such that the assumption of a solitary ancestral state of all mammals may also need reconsideration.
Collapse
Affiliation(s)
- J. Qiu
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
- IPHC, UNISTRA, CNRS, 23 rue du Loess, 67200 Strasbourg, France
| | - C. A. Olivier
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
- IPHC, UNISTRA, CNRS, 23 rue du Loess, 67200 Strasbourg, France
| | - A. V. Jaeggi
- Institute of Evolutionary Medicine, University of Zurich, Wintherthurerstrasse 190, 8057 Zurich, Switzerland
| | - C. Schradin
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
- IPHC, UNISTRA, CNRS, 23 rue du Loess, 67200 Strasbourg, France
| |
Collapse
|
6
|
Down a Rabbit Hole: Burrowing Behaviour and Larger Home Ranges are Related to Larger Brains in Leporids. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractStudies on the evolution of brain size variation usually focus on large clades encompassing broad phylogenetic groups. This risks introducing ‘noise’ in the results, often obscuring effects that might be detected in less inclusive clades. Here, we focus on a sample of endocranial volumes (endocasts) of 18 species of rabbits and hares (Lagomorpha: Leporidae), which are a discrete radiation of mammals with a suitably large range of body sizes. Using 60 individuals, we test five popular hypotheses on brain size and olfactory bulb evolution in mammals. We also address the pervasive issue of missing data, using multiple phylogenetic imputations as to conserve the full sample size for all analyses. Our analyses show that home range and burrowing behaviour are the only predictors of leporid brain size variation. Litter size, which is one of the most widely reported constraints on brain size, was unexpectedly not associated with brain size. However, a constraining effect may be masked by a strong association of litter size with temperature seasonality, warranting further study. Lastly, we show that unreasonable estimations of phylogenetic signal (Pagel’s lamba) warrant additional caution when using small sample sizes, such as ours, in comparative studies.
Collapse
|
7
|
Comparative Study of Brain Size Ontogeny: Marsupials and Placental Mammals. BIOLOGY 2022; 11:biology11060900. [PMID: 35741421 PMCID: PMC9219685 DOI: 10.3390/biology11060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
There exists a negative allometry between vertebrate brain size and body size. It has been well studied among placental mammals but less is known regarding marsupials. Consequently, this study explores brain/body ontogenetic growth in marsupials and compares it with placental mammals. Pouch young samples of 43 koalas (Phascolarctos cinereus), 28 possums (Trichosurus vulpecula), and 36 tammar wallabies (Macropus eugenii) preserved in a solution of 10% buffered formalin, as well as fresh juveniles and adults of 43 koalas and 40 possums, were studied. Their brain size/body size allometry was compared to that among humans, rhesus monkeys, dogs, cats, rats, guinea pigs, rabbits, wild pigs, and mice. Two patterns of allometric curves were found: a logarithmic one (marsupials, rabbits, wild pigs, and guinea pigs) and a logistic one (the rest of mammals).
Collapse
|
8
|
Arbuckle K, Harris RJ. Radiating pain: venom has contributed to the diversification of the largest radiations of vertebrate and invertebrate animals. BMC Ecol Evol 2021; 21:150. [PMID: 34344322 PMCID: PMC8336261 DOI: 10.1186/s12862-021-01880-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 07/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Understanding drivers of animal biodiversity has been a longstanding aim in evolutionary biology. Insects and fishes represent the largest lineages of invertebrates and vertebrates respectively, and consequently many ideas have been proposed to explain this diversity. Natural enemy interactions are often important in diversification dynamics, and key traits that mediate such interactions may therefore have an important role in explaining organismal diversity. Venom is one such trait which is intricately bound in antagonistic coevolution and has recently been shown to be associated with increased diversification rates in tetrapods. Despite ~ 10% of fish families and ~ 16% of insect families containing venomous species, the role that venom may play in these two superradiations remains unknown. Results In this paper we take a broad family-level phylogenetic perspective and show that variation in diversification rates are the main cause of variations in species richness in both insects and fishes, and that venomous families have diversification rates twice as high as non-venomous families. Furthermore, we estimate that venom was present in ~ 10% and ~ 14% of the evolutionary history of fishes and insects respectively. Conclusions Consequently, we provide evidence that venom has played a role in generating the remarkable diversity in the largest vertebrate and invertebrate radiations. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01880-z.
Collapse
Affiliation(s)
- Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
9
|
Todorov OS, Blomberg SP, Goswami A, Sears K, Drhlík P, Peters J, Weisbecker V. Testing hypotheses of marsupial brain size variation using phylogenetic multiple imputations and a Bayesian comparative framework. Proc Biol Sci 2021; 288:20210394. [PMID: 33784860 PMCID: PMC8059968 DOI: 10.1098/rspb.2021.0394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Considerable controversy exists about which hypotheses and variables best explain mammalian brain size variation. We use a new, high-coverage dataset of marsupial brain and body sizes, and the first phylogenetically imputed full datasets of 16 predictor variables, to model the prevalent hypotheses explaining brain size evolution using phylogenetically corrected Bayesian generalized linear mixed-effects modelling. Despite this comprehensive analysis, litter size emerges as the only significant predictor. Marsupials differ from the more frequently studied placentals in displaying a much lower diversity of reproductive traits, which are known to interact extensively with many behavioural and ecological predictors of brain size. Our results therefore suggest that studies of relative brain size evolution in placental mammals may require targeted co-analysis or adjustment of reproductive parameters like litter size, weaning age or gestation length. This supports suggestions that significant associations between behavioural or ecological variables with relative brain size may be due to a confounding influence of the extensive reproductive diversity of placental mammals.
Collapse
Affiliation(s)
- Orlin S. Todorov
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Simone P. Blomberg
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anjali Goswami
- Genetics, Evolution, and Environment Department, University College London, UK
- Department of Life Sciences, Natural History Museum, London, UK
| | - Karen Sears
- Department of Ecology and Evolutionary Biology, College of Life Sciences, University of California Los Angeles, CA, USA
| | - Patrik Drhlík
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Czechia
| | - James Peters
- Department of Animal Biology, University of Illinois at Urbana Champaign, USA
| | - Vera Weisbecker
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- College of Science and Engineering, Flinders University, Australia
| |
Collapse
|