1
|
Maier SR, Brooke S, De Clippele LH, de Froe E, van der Kaaden AS, Kutti T, Mienis F, van Oevelen D. On the paradox of thriving cold-water coral reefs in the food-limited deep sea. Biol Rev Camb Philos Soc 2023; 98:1768-1795. [PMID: 37236916 DOI: 10.1111/brv.12976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
The deep sea is amongst the most food-limited habitats on Earth, as only a small fraction (<4%) of the surface primary production is exported below 200 m water depth. Here, cold-water coral (CWC) reefs form oases of life: their biodiversity compares with tropical coral reefs, their biomass and metabolic activity exceed other deep-sea ecosystems by far. We critically assess the paradox of thriving CWC reefs in the food-limited deep sea, by reviewing the literature and open-access data on CWC habitats. This review shows firstly that CWCs typically occur in areas where the food supply is not constantly low, but undergoes pronounced temporal variation. High currents, downwelling and/or vertically migrating zooplankton temporally boost the export of surface organic matter to the seabed, creating 'feast' conditions, interspersed with 'famine' periods during the non-productive season. Secondly, CWCs, particularly the most common reef-builder Desmophyllum pertusum (formerly known as Lophelia pertusa), are well adapted to these fluctuations in food availability. Laboratory and in situ measurements revealed their dietary flexibility, tissue reserves, and temporal variation in growth and energy allocation. Thirdly, the high structural and functional diversity of CWC reefs increases resource retention: acting as giant filters and sustaining complex food webs with diverse recycling pathways, the reefs optimise resource gains over losses. Anthropogenic pressures, including climate change and ocean acidification, threaten this fragile equilibrium through decreased resource supply, increased energy costs, and dissolution of the calcium-carbonate reef framework. Based on this review, we suggest additional criteria to judge the health of CWC reefs and their chance to persist in the future.
Collapse
Affiliation(s)
- Sandra R Maier
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, Nuuk, 3900, Greenland
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| | - Sandra Brooke
- Coastal & Marine Laboratory, Florida State University, 3618 Coastal Highway 98, St. Teresa, FL, 32327, USA
| | - Laurence H De Clippele
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Grant Institute, King's Buildings, Edinburgh, EH9 3FE, UK
| | - Evert de Froe
- Centre for Fisheries Ecosystem Research, Fisheries and Marine Institute at Memorial University of Newfoundland, 155 Ridge Rd, St. John's, NL A1C 5R3, Newfoundland and Labrador, Canada
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, Den Burg (Texel), 1790 AB, The Netherlands
| | - Anna-Selma van der Kaaden
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| | - Tina Kutti
- Institute of Marine Research (IMR), PO box 1870 Nordnes, Bergen, NO-5817, Norway
| | - Furu Mienis
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, Den Burg (Texel), 1790 AB, The Netherlands
| | - Dick van Oevelen
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| |
Collapse
|
2
|
Vinha B, Rossi S, Gori A, Hanz U, Pennetta A, De Benedetto GE, Mienis F, Huvenne VAI, Hebbeln D, Wienberg C, Titschack J, Freiwald A, Piraino S, Orejas C. Trophic ecology of Angolan cold-water coral reefs (SE Atlantic) based on stable isotope analyses. Sci Rep 2023; 13:9933. [PMID: 37336945 DOI: 10.1038/s41598-023-37035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
Cold-water coral (CWC) reefs of the Angolan margin (SE Atlantic) are dominated by Desmophyllum pertusum and support a diverse community of associated fauna, despite hypoxic conditions. In this study, we use carbon and nitrogen stable isotope analyses (δ13C and δ15N) to decipher the trophic network of this relatively unknown CWC province. Although fresh phytodetritus is available to the reef, δ15N signatures indicate that CWCs (12.90 ± 1.00 ‰) sit two trophic levels above Suspended Particulate Organic Matter (SPOM) (4.23 ± 1.64 ‰) suggesting that CWCs are highly reliant on an intermediate food source, which may be zooplankton. Echinoderms and the polychaete Eunice norvegica occupy the same trophic guild, with high δ13C signatures (-14.00 ± 1.08 ‰) pointing to a predatory feeding behavior on CWCs and sponges, although detrital feeding on 13C enriched particles might also be important for this group. Sponges presented the highest δ15N values (20.20 ± 1.87 ‰), which could be due to the role of the sponge holobiont and bacterial food in driving intense nitrogen cycling processes in sponges' tissue, helping to cope with the hypoxic conditions of the reef. Our study provides first insights to understand trophic interactions of CWC reefs under low-oxygen conditions.
Collapse
Affiliation(s)
- Beatriz Vinha
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, 73100, Lecce, Italy.
- Hanse Wissenschaftskolleg - Institute for Advanced Study, 27753, Delmenhorst, Germany.
| | - Sergio Rossi
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, 73100, Lecce, Italy
- Instituto de Ciências Do Mar, LABOMAR, Universidade Federal do Ceará, Fortaleza, 60165-081, Brazil
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196, Rome, Italy
| | - Andrea Gori
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, 73100, Lecce, Italy
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Recerca de La Biodiversitat (IRBio), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Ulrike Hanz
- Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research, Texel, 1790AB, the Netherlands
- Bentho-Pelagic Processes, Alfred Wegener Institute for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Antonio Pennetta
- Laboratorio di Spettrometria di Massa Analitica e Isotopica, Dipartimento di Beni Culturali, Università del Salento, 73100, Lecce, Italy
| | - Giuseppe E De Benedetto
- Laboratorio di Spettrometria di Massa Analitica e Isotopica, Dipartimento di Beni Culturali, Università del Salento, 73100, Lecce, Italy
| | - Furu Mienis
- Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research, Texel, 1790AB, the Netherlands
| | - Veerle A I Huvenne
- Hanse Wissenschaftskolleg - Institute for Advanced Study, 27753, Delmenhorst, Germany
- Ocean BioGeosciences, National Oceanography Centre, Southampton, S014 3ZH, UK
| | - Dierk Hebbeln
- MARUM - Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | - Claudia Wienberg
- MARUM - Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | - Jürgen Titschack
- MARUM - Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
- Senckenberg Am Meer, Marine Research Department, 26382, Wilhelmshaven, Germany
| | - André Freiwald
- Senckenberg Am Meer, Marine Research Department, 26382, Wilhelmshaven, Germany
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, 73100, Lecce, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196, Rome, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Covadonga Orejas
- Hanse Wissenschaftskolleg - Institute for Advanced Study, 27753, Delmenhorst, Germany
- Instituto Español de Oceanografía, Centro Oceanográfico de Gijón, (IEO-CSIC), 33212, Gijón, Spain
| |
Collapse
|
3
|
Corbera G, Lo Iacono C, Simarro G, Grinyó J, Ambroso S, Huvenne VAI, Mienis F, Carreiro-Silva M, Martins I, Mano B, Orejas C, Larsson A, Hennige S, Gori A. Local-scale feedbacks influencing cold-water coral growth and subsequent reef formation. Sci Rep 2022; 12:20389. [PMID: 36437278 PMCID: PMC9701764 DOI: 10.1038/s41598-022-24711-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Despite cold-water coral (CWC) reefs being considered biodiversity hotspots, very little is known about the main processes driving their morphological development. Indeed, there is a considerable knowledge gap in quantitative experimental studies that help understand the interaction between reef morphology, near-bed hydrodynamics, coral growth, and (food) particle transport processes. In the present study, we performed a 2-month long flume experiment in which living coral nubbins were placed on a reef patch to determine the effect of a unidirectional flow on the growth and physiological condition of Lophelia pertusa. Measurements revealed how the presence of coral framework increased current speed and turbulence above the frontal part of the reef patch, while conditions immediately behind it were characterised by an almost stagnant flow and reduced turbulence. Owing to the higher current speeds that likely promoted a higher food encounter rate and intake of ions involved in the calcification process, the coral nubbins located on the upstream part of the reef presented a significantly enhanced average growth and a lower expression of stress-related enzymes than the downstream ones. Yet, further experiments would be needed to fully quantify how the variations in water hydrodynamics modify particle encounter and ion intake rates by coral nubbins located in different parts of a reef, and how such discrepancies may ultimately affect coral growth. Nonetheless, the results acquired here denote that a reef influenced by a unidirectional water flow would grow into the current: a pattern of reef development that coincides with that of actual coral reefs located in similar water flow settings. Ultimately, the results of this study suggest that at the local scale coral reef morphology has a direct effect on coral growth thus, indicating that the spatial patterns of living CWC colonies in reef patches are the result of spatial self-organisation.
Collapse
Affiliation(s)
- Guillem Corbera
- grid.4711.30000 0001 2183 4846Institut de Ciències del Mar, CSIC, Barcelona, Spain ,grid.5491.90000 0004 1936 9297University of Southampton, Southampton, UK ,grid.418022.d0000 0004 0603 464XNational Oceanography Centre, Southampton, UK
| | - Claudio Lo Iacono
- grid.4711.30000 0001 2183 4846Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Gonzalo Simarro
- grid.4711.30000 0001 2183 4846Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Jordi Grinyó
- grid.4711.30000 0001 2183 4846Institut de Ciències del Mar, CSIC, Barcelona, Spain ,grid.10914.3d0000 0001 2227 4609Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands
| | - Stefano Ambroso
- grid.4711.30000 0001 2183 4846Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Veerle A. I. Huvenne
- grid.418022.d0000 0004 0603 464XNational Oceanography Centre, Southampton, UK ,grid.484198.80000 0001 0659 5066Hanse-Wissenschaftskolleg – Institute for Advanced Study (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany
| | - Furu Mienis
- grid.10914.3d0000 0001 2227 4609Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands
| | - Marina Carreiro-Silva
- grid.7338.f0000 0001 2096 9474Institute of Marine Research-Okeanos, University of Azores, Ponta Delgada, Portugal
| | - Inês Martins
- grid.7338.f0000 0001 2096 9474Institute of Marine Research-Okeanos, University of Azores, Ponta Delgada, Portugal
| | - Beatriz Mano
- grid.7338.f0000 0001 2096 9474Institute of Marine Research-Okeanos, University of Azores, Ponta Delgada, Portugal
| | - Covadonga Orejas
- grid.410389.70000 0001 0943 6642Centro Oceanográfico de Gijón, Instituto Español de Oceanografía (IEO-CSIC), Avenida Príncipe de Asturias 70 Bis, 33212 Gijón, Spain ,grid.484198.80000 0001 0659 5066Hanse-Wissenschaftskolleg – Institute for Advanced Study (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany
| | - Ann Larsson
- grid.8761.80000 0000 9919 9582University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Hennige
- grid.4305.20000 0004 1936 7988School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Andrea Gori
- grid.4711.30000 0001 2183 4846Institut de Ciències del Mar, CSIC, Barcelona, Spain ,grid.9906.60000 0001 2289 7785Università del Salento, Lecce, Italy ,grid.5841.80000 0004 1937 0247Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Kahramanoğulları O, Giordano B, Perrin J, Vielzeuf D, Bramanti L. Stochastic diffusion characterizes early colony formation in Mediterranean coral Corallium rubrum. J Theor Biol 2022; 553:111247. [PMID: 36041505 DOI: 10.1016/j.jtbi.2022.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
The colony formation in Mediterranean coral Corallium rubrum is initiated by a larva that metamorphoses into the first polyp of the emerging colony approximately two weeks after settlement. The primary polyp then sets up a slow process that eventually, at least after several years, gives rise to a tree-like rigid colony structure on which other polyps flourish. For a mature colony, this axial skeleton provides support for new polyps. However, the first emergence of the characteristic axial skeleton takes two to four years from the larva stage. The early colony morphology, instead, is shaped exclusively by the polyps' abundant deposition of sclerites, a magnesian calcite biomineral that has a different granularity from the distinctive red-coloured skeleton. With the appearance of the first polyp, a growing sclerite heap in a mesoglea layer provides a base for the emerging colony. In this paper, to elucidate the mechanical processes of early skeleton development in C. rubrum colonies, we present a computational model whereby the mesoglea layer provides a diffusion medium for the sclerites that the polyps deposit. We show that our stochastic model with three parameters captures the dynamic variability observed in measurements on living colonies. Our simulation results provide evidence for a diffusion process whereby the interplay between polyp budding and sclerite deposition are the main determinants of structure in early colony formation. Our model demonstrates that the frequency of budding events in an early colony can be described as a function of the available mesoglea surface whereas the number of polyps on the colony plays a secondary role in determining this frequency. We show that these model predictions are confirmed by direct observations on the colonies in our sample. Moreover, our results indicate that diffusion is a prevalent mechanism of colony development also at later stages of a colony's life span.
Collapse
Affiliation(s)
| | - Bruna Giordano
- CNRS-Sorbonne Université, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique de Banyuls sur Mer, Banyuls sur Mer, France; University of Cagliari, Department of Life and Environmental Sciences, Cagliari, Italy
| | - Jonathan Perrin
- Synchrotron SOLEIL, L'Ormes des Merisiers, Gif sur Yvette, France
| | - Daniel Vielzeuf
- Aix Marseille Université, CNRS UMR 7325, Centre Interdisciplinaire de NanoScience de Marseille, Marseille, France
| | - Lorenzo Bramanti
- CNRS-Sorbonne Université, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique de Banyuls sur Mer, Banyuls sur Mer, France
| |
Collapse
|
5
|
Portilho-Ramos RDC, Titschack J, Wienberg C, Siccha Rojas MG, Yokoyama Y, Hebbeln D. Major environmental drivers determining life and death of cold-water corals through time. PLoS Biol 2022; 20:e3001628. [PMID: 35587463 PMCID: PMC9119455 DOI: 10.1371/journal.pbio.3001628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Cold-water corals (CWCs) are the engineers of complex ecosystems forming unique biodiversity hotspots in the deep sea. They are expected to suffer dramatically from future environmental changes in the oceans such as ocean warming, food depletion, deoxygenation, and acidification. However, over the last decades of intense deep-sea research, no extinction event of a CWC ecosystem is documented, leaving quite some uncertainty on their sensitivity to these environmental parameters. Paleoceanographic reconstructions offer the opportunity to align the on- and offsets of CWC proliferation to environmental parameters. Here, we present the synthesis of 6 case studies from the North Atlantic Ocean and the Mediterranean Sea, revealing that food supply controlled by export production and turbulent hydrodynamics at the seabed exerted the strongest impact on coral vitality during the past 20,000 years, whereas locally low oxygen concentrations in the bottom water can act as an additional relevant stressor. The fate of CWCs in a changing ocean will largely depend on how these oceanographic processes will be modulated. Future ocean deoxygenation may be compensated regionally where the food delivery and food quality are optimal.
Collapse
Affiliation(s)
| | - Jürgen Titschack
- MARUM–Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Senckenberg am Meer, Marine Research Department, Wilhelmshaven, Germany
| | - Claudia Wienberg
- MARUM–Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | | - Yusuke Yokoyama
- Analytical Center for Environmental Science–Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan
| | - Dierk Hebbeln
- MARUM–Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|