1
|
Bosc C, Recoura-Massaquant R, Piffady J, Geffard O, Chaumot A. Linking new national active biomonitoring data with stream macroinvertebrate communities suggests large-scale effects of toxic contamination on freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178328. [PMID: 39754957 DOI: 10.1016/j.scitotenv.2024.178328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Since recent years, an increasingly large number of toxic chemicals enters watercourses threatening freshwater biodiversity. But ecological studies still poorly document the quantitative patterns linking exposure to complex mixture of toxic chemicals and species communities' integrity in the field. In this context, French monitoring authorities have recently deployed at a national scale in situ biotests using the feeding inhibition of the crustacean Gammarus as toxicity indicator. In this paper, we conjointly exploit this new type of biomonitoring dataset and ecological data for macroinvertebrates to gain information about the structuring influence of toxicity on aquatic communities. Especially, we used multivariate analyses with variation partitioning for testing the hypothesis that toxicity (feeding inhibition index) can explain variations in the taxonomical composition between 76 stations on French streams while, for different spatial scales, estimating the confounding influences of other environmental and spatial factors. Our results showed that changes in the toxicity indicator were significantly associated with specific changes in the taxonomic composition of stream macroinvertebrate communities. That association was weakly confounded with the effects of environmental and spatial factors, especially at the largest spatial scale considered. That taxon turnover linked to toxicity was associated with reduced richness at the community scale, and the replacement of native taxa by alien taxa. Overall, our study thus supports the hypothesis that toxic contamination modifies the structure of stream communities and ergo threatens aquatic biodiversity.
Collapse
|
2
|
Bertram MG, Ågerstrand M, Thoré ESJ, Allen J, Balshine S, Brand JA, Brooks BW, Dang Z, Duquesne S, Ford AT, Hoffmann F, Hollert H, Jacob S, Kloas W, Klüver N, Lazorchak J, Ledesma M, Maack G, Macartney EL, Martin JM, Melvin SD, Michelangeli M, Mohr S, Padilla S, Pyle G, Saaristo M, Sahm R, Smit E, Steevens JA, van den Berg S, Vossen LE, Wlodkowic D, Wong BBM, Ziegler M, Brodin T. EthoCRED: a framework to guide reporting and evaluation of the relevance and reliability of behavioural ecotoxicity studies. Biol Rev Camb Philos Soc 2024. [PMID: 39394884 DOI: 10.1111/brv.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Behavioural analysis has been attracting significant attention as a broad indicator of sub-lethal toxicity and has secured a place as an important subdiscipline in ecotoxicology. Among the most notable characteristics of behavioural research, compared to other established approaches in sub-lethal ecotoxicology (e.g. reproductive and developmental bioassays), are the wide range of study designs being used and the diversity of endpoints considered. At the same time, environmental hazard and risk assessment, which underpins regulatory decisions to protect the environment from potentially harmful chemicals, often recommends that ecotoxicological data be produced following accepted and validated test guidelines. These guidelines typically do not address behavioural changes, meaning that these, often sensitive, effects are not represented in hazard and risk assessments. Here, we propose a new tool, the EthoCRED evaluation method, for assessing the relevance and reliability of behavioural ecotoxicity data, which considers the unique requirements and challenges encountered in this field. This method and accompanying reporting recommendations are designed to serve as an extension of the "Criteria for Reporting and Evaluating Ecotoxicity Data (CRED)" project. As such, EthoCRED can both accommodate the wide array of experimental design approaches seen in behavioural ecotoxicology, and could be readily implemented into regulatory frameworks as deemed appropriate by policy makers of different jurisdictions to allow better integration of knowledge gained from behavioural testing into environmental protection. Furthermore, through our reporting recommendations, we aim to improve the reporting of behavioural studies in the peer-reviewed literature, and thereby increase their usefulness to inform chemical regulation.
Collapse
Affiliation(s)
- Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, 3800, Australia
| | - Marlene Ågerstrand
- Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8c, Stockholm, 114 18, Sweden
| | - Eli S J Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Laboratory of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth, and Environment, University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
- TRANSfarm, Science, Engineering, and Technology Group, KU Leuven, Bijzondereweg 12, Bierbeek, 3360, Belgium
| | - Joel Allen
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. EPA, 26 Martin Luther King Drive West, Cincinnati, 45268, Ohio, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience, & Behaviour, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada
| | - Jack A Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Institute of Zoology, Zoological Society of London, Outer Circle, Regent's Park, London, NW1, 4RY, UK
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, 76798-7266, Texas, USA
| | - ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Sabine Duquesne
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK
| | - Frauke Hoffmann
- Department of Chemical and Product Safety, The German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Henner Hollert
- Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main, 60438, Germany
| | - Stefanie Jacob
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Nils Klüver
- Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig, 04318, Germany
| | - Jim Lazorchak
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. EPA, 26 Martin Luther King Drive West, Cincinnati, 45268, Ohio, USA
| | - Mariana Ledesma
- Swedish Chemicals Agency (KemI), Löfströms allé 5, Stockholm, 172 66, Sweden
| | - Gerd Maack
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Erin L Macartney
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Biological Sciences North (D26), Sydney, 2052, Australia
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, John Hopkins Drive, Sydney, 2006, Australia
| | - Jake M Martin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216, Australia
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Edmund Rice Drive, Southport, 4215, Australia
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, 4111, Australia
| | - Silvia Mohr
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, 109 T.W. Alexander Drive, Durham, 27711, North Carolina, USA
| | - Gregory Pyle
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, Alberta, Canada
| | - Minna Saaristo
- Environment Protection Authority Victoria, EPA Science, 2 Terrace Way, Macleod, 3085, Australia
| | - René Sahm
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
- Department of Freshwater Ecology in Landscape Planning, University of Kassel, Gottschalkstraße 24, Kassel, 34127, Germany
| | - Els Smit
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Jeffery A Steevens
- Columbia Environmental Research Center, U.S. Geological Survey (USGS), 4200 New Haven Road, Columbia, 65201, Missouri, USA
| | - Sanne van den Berg
- Wageningen University and Research, P.O. Box 47, Wageningen, 6700 AA, the Netherlands
| | - Laura E Vossen
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Ulls väg 26, Uppsala, 756 51, Sweden
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, 289 McKimmies Road, Melbourne, 3083, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, 3800, Australia
| | - Michael Ziegler
- Eurofins Aquatic Ecotoxicology GmbH, Eutinger Strasse 24, Niefern-Öschelbronn, 75223, Germany
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, Tübingen, 72076, Germany
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
| |
Collapse
|
3
|
Sheng D, Jing S, He X, Klein AM, Köhler HR, Wanger TC. Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security. Nat Commun 2024; 15:8413. [PMID: 39333509 PMCID: PMC11437009 DOI: 10.1038/s41467-024-52734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Ecosystem services such as pollination and biocontrol may be severely affected by emerging nano/micro-plastics (NMP) pollution. Here, we synthesize the little-known effects of NMP on pollinators and biocontrol agents on the organismal, farm and landscape scale. Ingested NMP trigger organismal changes from gene expression, organ damage to behavior modifications. At the farm and landscape level, NMP will likely amplify synergistic effects with other threats such as pathogens, and may alter floral resource distributions in high NMP concentration areas. Understanding exposure pathways of NMP on pollinators and biocontrol agents is critical to evaluate future risks for agricultural ecosystems and food security.
Collapse
Affiliation(s)
- Dong Sheng
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310030, China
| | - Siyuan Jing
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Xueqing He
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Alexandra-Maria Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, 79106, Germany
| | - Heinz-R Köhler
- Animal Physiological Ecology, University of Tübingen, Tübingen, 72076, Germany
| | - Thomas C Wanger
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China.
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China.
- Agroecology, University of Göttingen, Göttingen, 37073, Germany.
| |
Collapse
|
4
|
Dickel L, Arcese P, Keller LF, Nietlisbach P, Goedert D, Jensen H, Reid JM. Multigenerational Fitness Effects of Natural Immigration Indicate Strong Heterosis and Epistatic Breakdown in a Wild Bird Population. Am Nat 2024; 203:411-431. [PMID: 38358807 DOI: 10.1086/728669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractThe fitness of immigrants and their descendants produced within recipient populations fundamentally underpins the genetic and population dynamic consequences of immigration. Immigrants can in principle induce contrasting genetic effects on fitness across generations, reflecting multifaceted additive, dominance, and epistatic effects. Yet full multigenerational and sex-specific fitness effects of regular immigration have not been quantified within naturally structured systems, precluding inference on underlying genetic architectures and population outcomes. We used four decades of song sparrow (Melospiza melodia) life history and pedigree data to quantify fitness of natural immigrants, natives, and their F1, F2, and backcross descendants and test for evidence of nonadditive genetic effects. Values of key fitness components (including adult lifetime reproductive success and zygote survival) of F1 offspring of immigrant-native matings substantially exceeded their parent mean, indicating strong heterosis. Meanwhile, F2 offspring of F1-F1 matings had notably low values, indicating surprisingly strong epistatic breakdown. Furthermore, magnitudes of effects varied among fitness components and differed between female and male descendants. These results demonstrate that strong nonadditive genetic effects on fitness can arise within weakly structured and fragmented populations experiencing frequent natural immigration. Such effects will substantially affect the net degree of effective gene flow and resulting local genetic introgression and adaptation.
Collapse
|
5
|
Jourdan J, El Toum Abdel Fadil S, Oehlmann J, Hupało K. Rapid development of increased neonicotinoid tolerance in non-target freshwater amphipods. ENVIRONMENT INTERNATIONAL 2024; 183:108368. [PMID: 38070438 DOI: 10.1016/j.envint.2023.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024]
Abstract
The comprehensive assessment of the long-term impacts of constant exposure to pollutants on wildlife populations remains a relatively unexplored area of ecological risk assessment. Empirical evidence to suggest that multigenerational exposure affects the susceptibility of organisms is scarce, and the underlying mechanisms in the natural environment have yet to be fully understood. In this study, we first examined the arthropod candidate species, Gammarus roeselii that - unlike closely related species - commonly occurs in many contaminated river systems of Central Europe. This makes it a suitable study organism to investigate the development of tolerances and phenotypic adaptations along pollution gradients. In a 96-h acute toxicity assay with the neonicotinoid thiacloprid, we indeed observed a successive increase in tolerance in populations coming from contaminated regions. This was accompanied by a certain phenotypic change, with increased investment into reproduction. To address the question of whether these changes are plastic or emerged from longer lasting evolutionary processes, we conducted a multigeneration experiment in the second part of our study. Here, we used closely-related Hyalella azteca and pre-exposed them for multiple generations to sublethal concentrations of thiacloprid in a semi-static design (one week renewal of media containing 0.1 or 1.0 µg/L thiacloprid). The pre-exposed individuals were then used in acute toxicity assays to see how quickly such adaptive responses can develop. Over only two generations, the tolerance to the neonicotinoid almost doubled, suggesting developmental plasticity as a plausible mechanism for the rapid adaptive response to strong selection factors such as neonicotinoid insecticides. It remains to be discovered whether the plasticity of rapidly developed tolerance is species-specific and explains why closely related species - which may not have comparable adaptive response capabilities - disappear in polluted habitats. Overall, our findings highlight the neglected role of developmental plasticity during short- and long-term exposure of natural populations to pollution. Moreover, our results show that even pollutant levels seven times lower than concentrations found in the study region have a clear impact on the developmental trajectories of non-target species.
Collapse
Affiliation(s)
- Jonas Jourdan
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13 D-60438, Frankfurt am Main, Germany.
| | - Safia El Toum Abdel Fadil
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Faculty of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20 D-21033, Hamburg, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13 D-60438, Frankfurt am Main, Germany
| | - Kamil Hupało
- Department of Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Almeida RA, Fajgenblat M, Lemmens P, De Meester L. Pesticide exposure enhances dominance patterns in a zooplankton community. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2900. [PMID: 37335538 DOI: 10.1002/eap.2900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Exposure to pesticides can profoundly alter community dynamics. It is expected that dominance patterns will be enhanced or reduced depending on whether the dominant species is less or more sensitive to the pesticide than the subdominant species. Community dynamics are, however, also determined by processes linked to population growth as well as competition at carrying capacity. Here, we used a mesocosm experiment to quantify the effect of chlorpyrifos exposure on the population dynamics of four cladoceran species (Daphnia magna, Daphnia pulicaria, Daphnia galeata and Scapholeberis mucronata) in mixed cultures, testing for direct effects of chlorpyrifos and indirect effects mediated by interactions with other species on the timing of population growth and dominance at carrying capacity. We also quantified whether the pesticide-induced changes in community dynamics affected top-down control of phytoplankton. By adding a treatment in which we used different genotype combinations of each species, we also tested to what extent genetic composition affects community responses to pesticide exposure. Immobilization tests showed that D. magna is the least sensitive to chlorpyrifos of the tested species. Chlorpyrifos exposure first leads to a reduction in the abundance of D. galeata to the benefit of D. pulicaria, and subsequently to a reduction in densities of D. pulicaria to the benefit of D. magna. This resulted in D. magna being more dominant in the pesticide than in the control treatment by the end of the experiment. There was no effect of genotypic differences on community patterns, and top-down control of phytoplankton was high in all treatments. Our results suggest that in this community dominance patterns are enhanced in line with the observed among-species differences in sensitivity to the pesticide. Our results also show that the development of the community in pesticide treatment is a complex interaction between direct and indirect effects of the pesticide.
Collapse
Affiliation(s)
- Rafaela A Almeida
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Maxime Fajgenblat
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
- Data Science Institute (DSI), Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University, Hasselt, Belgium
| | - Pieter Lemmens
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
- Leibniz Institute für Gewasserökologie und Binnenfischerei (IGB), Berlin, Germany
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
- Leibniz Institute für Gewasserökologie und Binnenfischerei (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
7
|
Theys C, Verheyen J, Janssens L, Tüzün N, Stoks R. Effects of heat and pesticide stress on life history, physiology and the gut microbiome of two congeneric damselflies that differ in stressor tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162617. [PMID: 36871721 DOI: 10.1016/j.scitotenv.2023.162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The combined impact of toxicants and warming on organisms is getting increased attention in ecotoxicology, but is still hard to predict, especially with regard to heat waves. Recent studies suggested that the gut microbiome may provide mechanistic insights into the single and combined stressor effects on their host. We therefore investigated effects of sequential exposure to a heat spike and a pesticide on both the phenotype (life history and physiology) and the gut microbiome composition of damselfly larvae. We compared the fast-paced Ischnura pumilio, which is more tolerant to both stressors, with the slow-paced I. elegans, to obtain mechanistic insights into species-specific stressor effects. The two species differed in gut microbiome composition, potentially contributing to their pace-of-life differences. Intriguingly, there was a general resemblance between the stressor response patterns in the phenotype and in the gut microbiome, whereby both species responded broadly similar to the single and combined stressors. The heat spike negatively affected the life history of both species (increased mortality, reduced growth rate), which could be explained not only by shared negative effects on physiology (inhibition of acetylcholinesterase, increase of malondialdehyde), but also by shared effects on gut bacterial species' abundances. The pesticide only had negative effects (reduced growth rate, reduced net energy budget) in I. elegans. The pesticide generated shifts in the bacterial community composition (e.g. increased abundance of Sphaerotilus and Enterobacteriaceae in the gut microbiome of I. pumilio), which potentially contributed to the relatively higher pesticide tolerance of I. pumilio. Moreover, in line with the response patterns in the host phenotype, the effects of the heat spike and the pesticide on the gut microbiome were mainly additive. By contrasting two species differing in stress tolerance, our results suggest that response patterns in the gut microbiome may improve our mechanistic understanding of single and combined stressor effects.
Collapse
Affiliation(s)
- Charlotte Theys
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Nedim Tüzün
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| |
Collapse
|
8
|
Wagner-Deyriès M, Varignier L, Revel M, Delhaye T, Rondeau D, Coutellec MA, McCairns RJS. Variation of Tolerance to Isothiazolinones Among Daphnia pulex Clones. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:805-814. [PMID: 36661281 DOI: 10.1002/etc.5564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Isothiazolinones are a family of broad-spectrum biocides widely used in industry and consumer products. Chloro- and methyl-isothiazolinones (CMIT and MIT) are documented as strong irritants, yet they are still used in a wide variety of applications, including cosmetics, cleansers, hygienic products, and various industrial applications. The subsequent substantial release of these molecules from urban sources into freshwater environments, and their potential impacts on aquatic species, have nevertheless received little attention so far, with few studies reporting on the toxicity of either CMIT or MIT to nontarget organisms. The present study addresses this current knowledge gap by evaluating the acute toxicity to Daphnia pulex (Cladocera) of CMIT/MIT (3:1) and MIT, the two formulations most commonly used by manufacturers. In addition, genetic diversity is known to be a major component of variability in phenotypic responses, although it is largely overlooked in typical toxicity tests. Thus the potential range of responses inherent to genetic diversity is rarely considered. Therefore, to account for intraspecific variations in sensitivity, our design involved eight clonal lines of D. pulex stemming from distinct natural populations or commercial strains. Clones exhibited strong variation in their responses, with median lethal concentration (LC50) values ranging from 0.10 to 1.84 mg/L for the mixture CMIT/MIT, and from 0.68 to 2.84 mg/L for MIT alone. These intraspecific ranges of LC50 values challenge the use of single clones of daphnids in standard ecotoxicological tests and the predictions based on their results. The present study brings new evidence that assessing ecological risk of chemicals while ignoring genotype diversity is neither ecologically relevant, nor a representative evaluation of the diversity of potential adverse outcomes. Environ Toxicol Chem 2023;42:805-814. © 2023 SETAC.
Collapse
Affiliation(s)
- Margot Wagner-Deyriès
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - Léa Varignier
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - Marion Revel
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - Thomas Delhaye
- Institut d'Électronique et des Technologies du numéRique, UMR Centre National de la Recherche Scientifique 6164, University of Rennes 1, Rennes, France
| | - David Rondeau
- Institut d'Électronique et des Technologies du numéRique, UMR Centre National de la Recherche Scientifique 6164, University of Rennes 1, Rennes, France
| | - Marie-Agnès Coutellec
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| | - R J Scott McCairns
- DECOD, Institut National de la Recherche Agronomique, Institut Agro, Institut Francais de Recherche pour l'Exploitation de la Mer, Rennes, France
| |
Collapse
|
9
|
Janssens L, Van de Maele M, Delnat V, Theys C, Mukherjee S, De Meester L, Stoks R. Evolution of pesticide tolerance and associated changes in the microbiome in the water flea Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113697. [PMID: 35653979 DOI: 10.1016/j.ecoenv.2022.113697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pesticides can have detrimental effects on aquatic communities of non-target species. Populations can evolve tolerance to pesticides which may rescue them from extinction. However, the evolution of tolerance does not always occur and insights in the underlying mechanisms are scarce. One understudied mechanism to obtain pesticide tolerance in hosts are shifts toward pesticide-degrading bacteria in their microbiome. We carried out experimental evolution trials where replicated experimental populations of the water flea Daphnia magna were exposed to the pesticide chlorpyrifos or a solvent control, after which we performed acute toxicity assays to evaluate the evolution of chlorpyrifos tolerance. Additionally, we quantified changes in the microbiota community composition of whole body and gut samples to assess which sample type best reflected the pesticide tolerance of the Daphnia host. As expected, chlorpyrifos-selected clones became more tolerant to chlorpyrifos as shown by the higher EC5048 h (36% higher) compared with the control clones. This was associated with shifts in the microbiome composition whereby the abundance of known organophosphate-degrading bacterial genera increased on average ~4 times in the chlorpyrifos-selected clones. Moreover, the abundances of several genera, including the organophosphate-degrading bacteria Pseudomonas, Flavobacterium and Bacillus, were positively correlated with the EC5048 h of the host populations. These shifts in bacterial genera were similar in magnitude in whole body and gut samples, yet the total abundance of organophosphate-degrading bacteria was ~6 times higher in the whole body samples, suggesting that the gut is not the only body part where pesticide degradation by the microbiome occurs. Our results indicate that the microbiome is an important mediator of the development of tolerance to pesticides in Daphnia.
Collapse
Affiliation(s)
- Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Marlies Van de Maele
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Vienna Delnat
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Charlotte Theys
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Shinjini Mukherjee
- Laboratory of Reproductive Genomics, University of Leuven, ON I Herestraat 49, 3000 Leuven, Belgium
| | - Luc De Meester
- Freshwater Ecology, Evolution and Biodiversity Conservation, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Diamond SE, Prileson EG, Martin RA. Adaptation to urban environments. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100893. [PMID: 35240334 DOI: 10.1016/j.cois.2022.100893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Despite widespread evidence of urban evolution, the adaptive nature of these changes is often unclear. We review different phenotypic and molecular lines of evidence used for assessing urban adaptation, discussing the benefits and limitations of each approach, and rare examples of their integration. We then provide a synthesis of local adaptation to urban and rural environments. These data were drawn from phenotypic reciprocal transplant studies, the majority of which focus on insects and other arthropods. Broadly, we found support for local adaptation to urban and rural environments. However, there was asymmetry in the evidence for local adaptation depending on population of origin, with urban adaptation being less prevalent than rural adaptation, suggesting many urban populations are still adapting to urban environments. Further, the general patterns were underlain by considerable variation among study systems; we discuss how environmental heterogeneity and costs of adaptation might explain system-specific variation in urban-rural local adaptation. We then look to the future of urban adaptation research, considering the magnitude and direction of adaptation in context of different agents of selection including urban heat islands, chemical pollutants, and biotic interactions.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
| | - Eric G Prileson
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Even organic pesticides spur change in the wildlife next door. Nature 2021. [PMID: 34795430 DOI: 10.1038/d41586-021-03445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|