1
|
van den Berg P, Vu T, Molleman L. Unpredictable benefits of social information can lead to the evolution of individual differences in social learning. Nat Commun 2024; 15:5138. [PMID: 38879619 PMCID: PMC11180142 DOI: 10.1038/s41467-024-49530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Human ecological success is often attributed to our capacity for social learning, which facilitates the spread of adaptive behaviours through populations. All humans rely on social learning to acquire culture, but there is substantial variation across societies, between individuals and over developmental time. However, it is unclear why these differences exist. Here, we present an evolutionary model showing that individual variation in social learning can emerge if the benefits of social learning are unpredictable. Unpredictability selects for flexible developmental programmes that allow individuals to update their reliance on social learning based on previous experiences. This developmental flexibility, in turn, causes some individuals in a population to end up consistently relying more heavily on social learning than others. We demonstrate this core evolutionary mechanism across three scenarios of increasing complexity, investigating the impact of different sources of uncertainty about the usefulness of social learning. Our results show how evolution can shape how individuals learn to learn from others, with potentially profound effects on cultural diversity.
Collapse
Affiliation(s)
- Pieter van den Berg
- KU Leuven, Department of Biology, Leuven, Belgium.
- KU Leuven, Department of Microbial and Molecular Systems, Leuven, Belgium.
| | - TuongVan Vu
- Department of Clinical, Neuro-, & Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lucas Molleman
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Giron AP, Ciranka S, Schulz E, van den Bos W, Ruggeri A, Meder B, Wu CM. Developmental changes in exploration resemble stochastic optimization. Nat Hum Behav 2023; 7:1955-1967. [PMID: 37591981 PMCID: PMC10663152 DOI: 10.1038/s41562-023-01662-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/21/2023] [Indexed: 08/19/2023]
Abstract
Human development is often described as a 'cooling off' process, analogous to stochastic optimization algorithms that implement a gradual reduction in randomness over time. Yet there is ambiguity in how to interpret this analogy, due to a lack of concrete empirical comparisons. Using data from n = 281 participants ages 5 to 55, we show that cooling off does not only apply to the single dimension of randomness. Rather, human development resembles an optimization process of multiple learning parameters, for example, reward generalization, uncertainty-directed exploration and random temperature. Rapid changes in parameters occur during childhood, but these changes plateau and converge to efficient values in adulthood. We show that while the developmental trajectory of human parameters is strikingly similar to several stochastic optimization algorithms, there are important differences in convergence. None of the optimization algorithms tested were able to discover reliably better regions of the strategy space than adult participants on this task.
Collapse
Affiliation(s)
- Anna P Giron
- Human and Machine Cognition Lab, University of Tübingen, Tübingen, Germany
- Attention and Affect Lab, University of Tübingen, Tübingen, Germany
| | - Simon Ciranka
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Eric Schulz
- MPRG Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Wouter van den Bos
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Azzurra Ruggeri
- MPRG iSearch, Max Planck Institute for Human Development, Berlin, Germany
- School of Social Sciences and Technology, Technical University Munich, Munich, Germany
- Central European University, Vienna, Austria
| | - Björn Meder
- MPRG iSearch, Max Planck Institute for Human Development, Berlin, Germany
- Institute for Mind, Brain and Behavior, Health and Medical University, Potsdam, Germany
| | - Charley M Wu
- Human and Machine Cognition Lab, University of Tübingen, Tübingen, Germany.
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
3
|
Snell-Rood EC, Ehlman SM. Developing the genotype-to-phenotype relationship in evolutionary theory: A primer of developmental features. Evol Dev 2023; 25:393-409. [PMID: 37026670 DOI: 10.1111/ede.12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
For decades, there have been repeated calls for more integration across evolutionary and developmental biology. However, critiques in the literature and recent funding initiatives suggest this integration remains incomplete. We suggest one way forward is to consider how we elaborate the most basic concept of development, the relationship between genotype and phenotype, in traditional models of evolutionary processes. For some questions, when more complex features of development are accounted for, predictions of evolutionary processes shift. We present a primer on concepts of development to clarify confusion in the literature and fuel new questions and approaches. The basic features of development involve expanding a base model of genotype-to-phenotype to include the genome, space, and time. A layer of complexity is added by incorporating developmental systems, including signal-response systems and networks of interactions. The developmental emergence of function, which captures developmental feedbacks and phenotypic performance, offers further model elaborations that explicitly link fitness with developmental systems. Finally, developmental features such as plasticity and developmental niche construction conceptualize the link between a developing phenotype and the external environment, allowing for a fuller inclusion of ecology in evolutionary models. Incorporating aspects of developmental complexity into evolutionary models also accommodates a more pluralistic focus on the causal importance of developmental systems, individual organisms, or agents in generating evolutionary patterns. Thus, by laying out existing concepts of development, and considering how they are used across different fields, we can gain clarity in existing debates around the extended evolutionary synthesis and pursue new directions in evolutionary developmental biology. Finally, we consider how nesting developmental features in traditional models of evolution can highlight areas of evolutionary biology that need more theoretical attention.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota, USA
| | - Sean M Ehlman
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota, USA
- SCIoI Excellence Cluster, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Humboldt University, Berlin, Germany
| |
Collapse
|
4
|
Wu Y, Li J, Yu L, Wang S, Lv Z, Long H, Zhai J, Lin S, Meng Y, Cao Z, Sun H. Overwintering performance of bamboo leaves, and establishment of mathematical model for the distribution and introduction prediction of bamboos. FRONTIERS IN PLANT SCIENCE 2023; 14:1255033. [PMID: 37746014 PMCID: PMC10515091 DOI: 10.3389/fpls.2023.1255033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Bamboo has great economic values and is used extensively in many industries, and their natural distribution range was divided into 12 zones in China according to the temperature of their geographical distribution in previous works. Different bamboo species had significantly different abilities in low-temperature tolerance, which need to be considered carefully during ex-situ introduction. In this paper, we observed and evaluated the low-temperature damage of 19 bamboo species in winter, and measured the physiological changes of bamboo leaves. A total of 3060 leaf samples were obtained from 102 core collections in 34 bamboo species from the 5 regions of Chinese mainland for anatomical comparison, in order to screen out the key anatomical indicators related to their low-temperature tolerance and to establish a mathematical prediction model for bamboo introduction. The results showed that the low-temperature resistance of clustered bamboos was generally lower than that of the scattered bamboos. The decreased temperature led to the constant decrease of net photosynthetic rate and transpiration rate, but the increase of soluble sugar content in all bamboo species. There was no dormancy for all bamboo species in winter. The temperate bamboos showed lower photosynthesis as compared to tropical bamboos in winter. The leaf shape of bamboos was closely related to their distribution. A total of 13 leaf indicators were screened and more suitable to estimate the low-temperature tolerant abilities of bamboos and to predict their distribution. The MNLR (multiple nonlinear regression) mathematical model showed the highest fitting degree and the optimal prediction ability in the potential northernmost introduction range of bamboos. This study lay a foundation for bamboo introduction, and could also reduce the economic losses caused by the wrong introduction.
Collapse
Affiliation(s)
- Yufang Wu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Jing Li
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Lixia Yu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Shuguang Wang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Zhuo Lv
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Hao Long
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Jingyu Zhai
- Horticulture Team, Beijing Zizhu Park, Beijing, China
| | - Shuyan Lin
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Yong Meng
- Bamboo Research Institute, Hunan Academy of Forestry, Changsha, China
| | - Zhihua Cao
- Bamboo Research Institute, Anhui Academy of Forestry, Hefei, China
| | - Hui Sun
- Bamboo Research Institute, Anhui Academy of Forestry, Hefei, China
| |
Collapse
|
5
|
Frankenhuis WE, Gopnik A. Early adversity and the development of explore-exploit tradeoffs. Trends Cogn Sci 2023:S1364-6613(23)00091-8. [PMID: 37142526 DOI: 10.1016/j.tics.2023.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
Childhood adversity can have wide-ranging and long-lasting effects on later life. But what are the mechanisms that are responsible for these effects? This article brings together the cognitive science literature on explore-exploit tradeoffs, the empirical literature on early adversity, and the literature in evolutionary biology on 'life history' to explain how early experience influences later life. We propose one potential mechanism: early experiences influence 'hyperparameters' that determine the balance between exploration and exploitation. Adversity might accelerate a shift from exploration to exploitation, with broad and enduring effects on the adult brain and mind. These effects may be produced by life-history adaptations that use early experience to tailor development and learning to the likely future states of an organism and its environment.
Collapse
Affiliation(s)
- Willem E Frankenhuis
- Department of Psychology, Utrecht University, Utrecht, The Netherlands; Max Planck Institute for the Study of Crime, Security and Law, Freiburg, Germany.
| | - Alison Gopnik
- Department of Psychology and Berkeley Artificial Intelligence Research, University of California at Berkeley, CA, USA
| |
Collapse
|
6
|
Ehlman SM, Scherer U, Bierbach D, Francisco FA, Laskowski KL, Krause J, Wolf M. Leveraging big data to uncover the eco-evolutionary factors shaping behavioural development. Proc Biol Sci 2023; 290:20222115. [PMID: 36722081 PMCID: PMC9890127 DOI: 10.1098/rspb.2022.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mapping the eco-evolutionary factors shaping the development of animals' behavioural phenotypes remains a great challenge. Recent advances in 'big behavioural data' research-the high-resolution tracking of individuals and the harnessing of that data with powerful analytical tools-have vastly improved our ability to measure and model developing behavioural phenotypes. Applied to the study of behavioural ontogeny, the unfolding of whole behavioural repertoires can be mapped in unprecedented detail with relative ease. This overcomes long-standing experimental bottlenecks and heralds a surge of studies that more finely define and explore behavioural-experiential trajectories across development. In this review, we first provide a brief guide to state-of-the-art approaches that allow the collection and analysis of high-resolution behavioural data across development. We then outline how such approaches can be used to address key issues regarding the ecological and evolutionary factors shaping behavioural development: developmental feedbacks between behaviour and underlying states, early life effects and behavioural transitions, and information integration across development.
Collapse
Affiliation(s)
- Sean M. Ehlman
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - David Bierbach
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Fritz A. Francisco
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany
| | - Kate L. Laskowski
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - Jens Krause
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| |
Collapse
|
7
|
Stamps JA, Luttbeg B. Sensitive Period Diversity: Insights From Evolutionary Models. THE QUARTERLY REVIEW OF BIOLOGY 2022. [DOI: 10.1086/722637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 DOI: 10.6084/m9.figshare.c.6315476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
9
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 PMCID: PMC9709565 DOI: 10.1098/rsos.221189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/08/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M. Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
10
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 DOI: 10.5281/zenodo.7299681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
11
|
Laubach ZM, Holekamp KE, Aris IM, Slopen N, Perng W. Applications of conceptual models from lifecourse epidemiology in ecology and evolutionary biology. Biol Lett 2022; 18:20220194. [PMID: 35855609 PMCID: PMC9297019 DOI: 10.1098/rsbl.2022.0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
In ecology and evolutionary biology (EEB), the study of developmental plasticity seeks to understand ontogenetic processes underlying the phenotypes upon which natural selection acts. A central challenge to this inquiry is ascertaining a causal effect of the exposure on the manifestation of later-life phenotype due to the time elapsed between the two events. The exposure is a potential cause of the outcome-i.e. an environmental stimulus or experience. The later phenotype might be a behaviour, physiological condition, morphology or life-history trait. The latency period between the exposure and outcome complicates causal inference due to the inevitable occurrence of additional events that may affect the relationship of interest. Here, we describe six distinct but non-mutually exclusive conceptual models from the field of lifecourse epidemiology and discuss their applications to EEB research. The models include Critical Period with No Later Modifiers, Critical Period with Later Modifiers, Accumulation of Risk with Independent Risk Exposures, Accumulation of Risk with Risk Clustering, Accumulation of Risk with Chains of Risk and Accumulation of Risk with Trigger Effect. These models, which have been widely used to test causal hypotheses regarding the early origins of adult-onset disease in humans, are directly relevant to research on developmental plasticity in EEB.
Collapse
Affiliation(s)
- Zachary M. Laubach
- Department of Ecology and Evolutionary Biology (EEB), University of Colorado Boulder, Boulder, CO, USA
- Mara Hyena Project, Karen, Nairobi, Kenya
| | - Kay E. Holekamp
- Mara Hyena Project, Karen, Nairobi, Kenya
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Izzuddin M. Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Natalie Slopen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado, Aurora, CO, USA
| |
Collapse
|
12
|
Walasek N, Frankenhuis WE, Panchanathan K. Sensitive periods, but not critical periods, evolve in a fluctuating environment: a model of incremental development. Proc Biol Sci 2022; 289:20212623. [PMID: 35168396 PMCID: PMC8848242 DOI: 10.1098/rspb.2021.2623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensitive periods, during which the impact of experience on phenotype is larger than in other periods, exist in all classes of organisms, yet little is known about their evolution. Recent mathematical modelling has explored the conditions in which natural selection favours sensitive periods. These models have assumed that the environment is stable across ontogeny or that organisms can develop phenotypes instantaneously at any age. Neither assumption generally holds. Here, we present a model in which organisms gradually tailor their phenotypes to an environment that fluctuates across ontogeny, while receiving cost-free, imperfect cues to the current environmental state. We vary the rate of environmental change, the reliability of cues and the duration of adulthood relative to ontogeny. We use stochastic dynamic programming to compute optimal policies. From these policies, we simulate levels of plasticity across ontogeny and obtain mature phenotypes. Our results show that sensitive periods can occur at the onset, midway through and even towards the end of ontogeny. In contrast with models assuming stable environments, organisms always retain residual plasticity late in ontogeny. We conclude that critical periods, after which plasticity is zero, are unlikely to be favoured in environments that fluctuate across ontogeny.
Collapse
Affiliation(s)
- Nicole Walasek
- Behavioral Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
| | - Willem E Frankenhuis
- Behavioral Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands.,Department of Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands.,Max Planck Institute for the Study of Crime, Security and Law, 79100 Freiburg, Germany
| | | |
Collapse
|