1
|
Blickhan R, Andrada E, Hirasaki E, Ogihara N. Differential leg and trunk operation during skipping without and with hurdles in bipedal Japanese macaque. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:525-543. [PMID: 38436123 DOI: 10.1002/jez.2803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
When locomoting bipedally at higher speeds, macaques preferred unilateral skipping (galloping). The same skipping pattern was maintained while hurdling across two low obstacles at the distance of a stride within our experimental track. The present study investigated leg and trunk joint rotations and leg joint moments, with the aim of clarifying the differential leg and trunk operation during skipping in bipedal macaques. Especially at the hip, the range of joint rotation and extension at lift off was larger in the leading than in the trailing leg. The flexing knee absorbed energy and the extending ankle generated work during each step. The trunk showed only minor deviations from symmetry. Hurdling amplified the differences and notably resulted in a quasi-elastic use of the leading knee and in an asymmetric operation of the trunk.
Collapse
Affiliation(s)
| | - Emanuel Andrada
- Faculty of Social and Behavioural Sciences, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| | - Eishi Hirasaki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
| | - Naomichi Ogihara
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Schiller L, Seibel A, Schlattmann J. Toward a Gecko-Inspired, Climbing Soft Robot. Front Neurorobot 2019; 13:106. [PMID: 31956304 PMCID: PMC6951426 DOI: 10.3389/fnbot.2019.00106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022] Open
Abstract
In this paper, we present a gecko-inspired soft robot that is able to climb inclined, flat surfaces. By changing the design of the previous version, the energy consumption of the robot could be reduced, and at the same time, its ability to climb and its speed of movement could be increased. As a result, the new prototype consumes only about a third of the energy of the previous version and manages to climb slopes of up to 84°. In the horizontal plane, its velocity could be increased from 2 to 6 cm/s. We also provide a detailed analysis of the robot's straight gait.
Collapse
Affiliation(s)
- Lars Schiller
- Workgroup on System Technologies and Engineering Design Methodology, Hamburg University of Technology, Hamburg, Germany
| | | | | |
Collapse
|
3
|
Hierarchical control of locomotion by distinct types of spinal V2a interneurons in zebrafish. Nat Commun 2019; 10:4197. [PMID: 31519892 PMCID: PMC6744451 DOI: 10.1038/s41467-019-12240-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
In all vertebrates, excitatory spinal interneurons execute dynamic adjustments in the timing and amplitude of locomotor movements. Currently, it is unclear whether interneurons responsible for timing control are distinct from those involved in amplitude control. Here, we show that in larval zebrafish, molecularly, morphologically and electrophysiologically distinct types of V2a neurons exhibit complementary patterns of connectivity. Stronger higher-order connections from type I neurons to other excitatory V2a and inhibitory V0d interneurons provide timing control, while stronger last-order connections from type II neurons to motor neurons provide amplitude control. Thus, timing and amplitude are coordinated by distinct interneurons distinguished not by their occupation of hierarchically-arranged anatomical layers, but rather by differences in the reliability and probability of higher-order and last-order connections that ultimately form a single anatomical layer. These findings contribute to our understanding of the origins of timing and amplitude control in the spinal cord. V2a excitatory interneurons in the spinal cord are important for coordinating locomotion. Here the authors describe two types of V2a neuron with differences in higher order and lower order connectivity in larval zebrafish.
Collapse
|
4
|
Li W, Szczecinski NS, Quinn RD. A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model. BIOINSPIRATION & BIOMIMETICS 2017; 12:065002. [PMID: 28748830 DOI: 10.1088/1748-3190/aa8290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A neuromechanical simulation of a planar, bipedal walking robot has been developed. It is constructed as a simplified, planar musculoskeletal model of the biomechanics of the human lower body. The controller consists of a dynamic neural network with central pattern generators (CPGs) entrained by force and movement sensory feedback to generate appropriate muscle forces for walking. The CPG model is a two-level architecture, which consists of separate rhythm generator and pattern formation networks. The biped model walks stably in the sagittal plane without inertial sensors or a centralized posture controller or a 'baby walker' to help overcome gravity. Its gait is similar to humans' and it walks at speeds from 0.850 m s-1 up to 1.289 m s-1 with leg length of 0.84 m. The model walks over small unknown steps (6% of leg length) and up and down 5° slopes without any additional higher level control actions.
Collapse
Affiliation(s)
- Wei Li
- Case Western Reserve University, Cleveland, OH 44106, United States of America
| | | | | |
Collapse
|
5
|
Molnar JL, Pierce SE, Bhullar BAS, Turner AH, Hutchinson JR. Morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150439. [PMID: 26716001 PMCID: PMC4680616 DOI: 10.1098/rsos.150439] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/07/2015] [Indexed: 05/26/2023]
Abstract
The lineage leading to modern Crocodylia has undergone dramatic evolutionary changes in morphology, ecology and locomotion over the past 200+ Myr. These functional innovations may be explained in part by morphological changes in the axial skeleton, which is an integral part of the vertebrate locomotor system. Our objective was to estimate changes in osteological range of motion (RoM) and intervertebral joint stiffness of thoracic and lumbar vertebrae with increasing aquatic adaptation in crocodylomorphs. Using three-dimensional virtual models and morphometrics, we compared the modern crocodile Crocodylus to five extinct crocodylomorphs: Terrestrisuchus, Protosuchus, Pelagosaurus, Steneosaurus and Metriorhynchus, which span the spectrum from terrestrial to fully aquatic. In Crocodylus, we also experimentally measured changes in trunk flexibility with sequential removal of osteoderms and soft tissues. Our results for the more aquatic species matched our predictions fairly well, but those for the more terrestrial early crocodylomorphs did not. A likely explanation for this lack of correspondence is the influence of other axial structures, particularly the rigid series of dorsal osteoderms in early crocodylomorphs. The most important structures for determining RoM and stiffness of the trunk in Crocodylus were different in dorsoventral versus mediolateral bending, suggesting that changes in osteoderm and rib morphology over crocodylomorph evolution would have affected movements in some directions more than others.
Collapse
Affiliation(s)
- Julia L. Molnar
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
- Structure and Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Structure and Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | | | - Alan H. Turner
- Department of Anatomical Sciences, Stonybrook University, Stony Brook, NY 11794, USA
| | - John R. Hutchinson
- Structure and Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| |
Collapse
|
6
|
Andrada E, Haase D, Sutedja Y, Nyakatura JA, Kilbourne BM, Denzler J, Fischer MS, Blickhan R. Mixed gaits in small avian terrestrial locomotion. Sci Rep 2015; 5:13636. [PMID: 26333477 PMCID: PMC4558583 DOI: 10.1038/srep13636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/30/2015] [Indexed: 11/09/2022] Open
Abstract
Scientists have historically categorized gaits discretely (e.g. regular gaits such as walking, running). However, previous results suggest that animals such as birds might mix or regularly or stochastically switch between gaits while maintaining a steady locomotor speed. Here, we combined a novel and completely automated large-scale study (over one million frames) on motions of the center of mass in several bird species (quail, oystercatcher, northern lapwing, pigeon, and avocet) with numerical simulations. The birds studied do not strictly prefer walking mechanics at lower speeds or running mechanics at higher speeds. Moreover, our results clearly display that the birds in our study employ mixed gaits (such as one step walking followed by one step using running mechanics) more often than walking and, surprisingly, maybe as often as grounded running. Using a bio-inspired model based on parameters obtained from real quails, we found two types of stable mixed gaits. In the first, both legs exhibit different gait mechanics, whereas in the second, legs gradually alternate from one gait mechanics into the other. Interestingly, mixed gaits parameters mostly overlap those of grounded running. Thus, perturbations or changes in the state induce a switch from grounded running to mixed gaits or vice versa.
Collapse
Affiliation(s)
- Emanuel Andrada
- Science of Motion, Friedrich-Schiller University of Jena, Germany.,Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller University of Jena, Germany
| | - Daniel Haase
- Computer Vision Group, Friedrich-Schiller University of Jena, Germany
| | - Yefta Sutedja
- Science of Motion, Friedrich-Schiller University of Jena, Germany
| | - John A Nyakatura
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller University of Jena, Germany.,AG Morphologie und Formengeschichte, Bild Wissen Gestaltung: ein interdisziplinäres Labor, Institut für Biologie, Humboldt University Berlin, Germany
| | - Brandon M Kilbourne
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller University of Jena, Germany.,College for Life Sciences, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Joachim Denzler
- Computer Vision Group, Friedrich-Schiller University of Jena, Germany
| | - Martin S Fischer
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller University of Jena, Germany
| | | |
Collapse
|
7
|
Ryczko D, Knüsel J, Crespi A, Lamarque S, Mathou A, Ijspeert AJ, Cabelguen JM. Flexibility of the axial central pattern generator network for locomotion in the salamander. J Neurophysiol 2014; 113:1921-40. [PMID: 25540227 DOI: 10.1152/jn.00894.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In tetrapods, limb and axial movements are coordinated during locomotion. It is well established that inter- and intralimb coordination show considerable variations during ongoing locomotion. Much less is known about the flexibility of the axial musculoskeletal system during locomotion and the neural mechanisms involved. Here we examined this issue in the salamander Pleurodeles waltlii, which is capable of locomotion in both aquatic and terrestrial environments. Kinematics of the trunk and electromyograms from the mid-trunk epaxial myotomes were recorded during four locomotor behaviors in freely moving animals. A similar approach was used during rhythmic struggling movements since this would give some insight into the flexibility of the axial motor system. Our results show that each of the forms of locomotion and the struggling behavior is characterized by a distinct combination of mid-trunk motor patterns and cycle durations. Using in vitro electrophysiological recordings in isolated spinal cords, we observed that the spinal networks activated with bath-applied N-methyl-d-aspartate could generate these axial motor patterns. In these isolated spinal cord preparations, the limb motor nerve activities were coordinated with each mid-trunk motor pattern. Furthermore, isolated mid-trunk spinal cords and hemicords could generate the mid-trunk motor patterns. This indicates that each side of the cord comprises a network able to generate coordinated axial motor activity. The roles of descending and sensory inputs in the behavior-related changes in axial motor coordination are discussed.
Collapse
Affiliation(s)
- D Ryczko
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| | - J Knüsel
- Biorobotics Laboratory (BIOROB), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - A Crespi
- Biorobotics Laboratory (BIOROB), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Lamarque
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| | - A Mathou
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| | - A J Ijspeert
- Biorobotics Laboratory (BIOROB), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J M Cabelguen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| |
Collapse
|
8
|
Giszter SF, Hart CB, Silfies SP. Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man. Exp Brain Res 2009; 200:283-306. [PMID: 19838690 DOI: 10.1007/s00221-009-2016-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 09/09/2009] [Indexed: 12/16/2022]
Affiliation(s)
- Simon F Giszter
- Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
9
|
Lucas PW, Sui Z, Ang KY, Tan HTW, King SH, Sadler B, Peri N. Meals Versus Snacks and the Human Dentition and Diet During the Paleolithic. THE EVOLUTION OF HOMININ DIETS 2009. [DOI: 10.1007/978-1-4020-9699-0_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Pfeiffer F, Inoue H. Walking: technology and biology. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2007; 365:3-9. [PMID: 17148046 DOI: 10.1098/rsta.2006.1918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
If all the signs are to be believed, then the twenty-first century will technologically be characterized by machine walking and its relevant products, which possess all chances to become real bulk goods in the course of the next decades. With several university institutes and with Honda and Sony from the industrial side, Japan is today and without any doubt the leading nation in research and development of walking machines. The US and Europe follow at some distance. Walking machines will influence all areas of daily and industrial life and, with the fast evolution of artificial intelligence, will become a real partner of human beings. All relevant technologies are highly interdisciplinary, they will push the future technologies of all technical fields. The special issue on this topic gives a selection of walking machine research and development including some aspects from biology.
Collapse
Affiliation(s)
- Friedrich Pfeiffer
- Institute of Applied Mechanics, Technical University Munich, 85748 Garching, Germany.
| | | |
Collapse
|