1
|
Kopylova V, Boronovskiy S, Nartsissov Y. Approaches to vascular network, blood flow, and metabolite distribution modeling in brain tissue. Biophys Rev 2023; 15:1335-1350. [PMID: 37974995 PMCID: PMC10643724 DOI: 10.1007/s12551-023-01106-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 11/19/2023] Open
Abstract
The cardiovascular system plays a key role in the transport of nutrients, ensuring a continuous supply of all cells of the body with the metabolites necessary for life. The blood supply to the brain is carried out by the large arteries located on its surface, which branch into smaller arterioles that penetrate the cerebral cortex and feed the capillary bed, thereby forming an extensive branching network. The formation of blood vessels is carried out via vasculogenesis and angiogenesis, which play an important role in both embryo and adult life. The review presents approaches to modeling various aspects of both the formation of vascular networks and the construction of the formed arterial tree. In addition, a brief description of models that allows one to study the blood flow in various parts of the circulatory system and the spatiotemporal metabolite distribution in brain tissues is given. Experimental study of these issues is not always possible due to both the complexity of the cardiovascular system and the mechanisms through which the perfusion of all body cells is carried out. In this regard, mathematical models are a good tool for studying hemodynamics and can be used in clinical practice to diagnose vascular diseases and assess the need for treatment.
Collapse
Affiliation(s)
- Veronika Kopylova
- Institute of Cytochemistry and Molecular Pharmacology, Moscow, 115404 Russia
| | | | - Yaroslav Nartsissov
- Institute of Cytochemistry and Molecular Pharmacology, Moscow, 115404 Russia
- Biomedical Research Group, BiDiPharma GmbH, Siek, 22962 Germany
| |
Collapse
|
2
|
Vavourakis V, Wijeratne PA, Shipley R, Loizidou M, Stylianopoulos T, Hawkes DJ. A Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growth. PLoS Comput Biol 2017; 13:e1005259. [PMID: 28125582 PMCID: PMC5268362 DOI: 10.1371/journal.pcbi.1005259] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022] Open
Abstract
Vascularisation is a key feature of cancer growth, invasion and metastasis. To better understand the governing biophysical processes and their relative importance, it is instructive to develop physiologically representative mathematical models with which to compare to experimental data. Previous studies have successfully applied this approach to test the effect of various biochemical factors on tumour growth and angiogenesis. However, these models do not account for the experimentally observed dependency of angiogenic network evolution on growth-induced solid stresses. This work introduces two novel features: the effects of hapto- and mechanotaxis on vessel sprouting, and mechano-sensitive dynamic vascular remodelling. The proposed three-dimensional, multiscale, in-silico model of dynamically coupled angiogenic tumour growth is specified to in-vivo and in-vitro data, chosen, where possible, to provide a physiologically consistent description. The model is then validated against in-vivo data from murine mammary carcinomas, with particular focus placed on identifying the influence of mechanical factors. Crucially, we find that it is necessary to include hapto- and mechanotaxis to recapitulate observed time-varying spatial distributions of angiogenic vasculature.
Collapse
Affiliation(s)
- Vasileios Vavourakis
- University College London, Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
- * E-mail:
| | - Peter A. Wijeratne
- University College London, Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| | - Rebecca Shipley
- University College London, Department of Mechanical Engineering, London, United Kingdom
| | - Marilena Loizidou
- University College London, Department of Surgery, London, United Kingdom
| | | | - David J. Hawkes
- University College London, Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| |
Collapse
|
3
|
Neufeld E, Szczerba D, Chavannes N, Kuster N. A novel medical image data-based multi-physics simulation platform for computational life sciences. Interface Focus 2014; 3:20120058. [PMID: 24427518 DOI: 10.1098/rsfs.2012.0058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.
Collapse
Affiliation(s)
- Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS) , Zeughausstr. 43, 8004 Zürich , Switzerland
| | - Dominik Szczerba
- Foundation for Research on Information Technologies in Society (IT'IS) , Zeughausstr. 43, 8004 Zürich , Switzerland
| | - Nicolas Chavannes
- Foundation for Research on Information Technologies in Society (IT'IS) , Zeughausstr. 43, 8004 Zürich , Switzerland
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS) , Zeughausstr. 43, 8004 Zürich , Switzerland ; Swiss Federal Institute of Technology (ETH) Zürich , 8092 Zürich , Switzerland
| |
Collapse
|
4
|
Stamatelos SK, Kim E, Pathak AP, Popel AS. A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions. Microvasc Res 2013; 91:8-21. [PMID: 24342178 DOI: 10.1016/j.mvr.2013.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 12/19/2022]
Abstract
Induction of tumor angiogenesis is among the hallmarks of cancer and a driver of metastatic cascade initiation. Recent advances in high-resolution imaging enable highly detailed three-dimensional geometrical representation of the whole-tumor microvascular architecture. This enormous increase in complexity of image-based data necessitates the application of informatics methods for the analysis, mining and reconstruction of these spatial graph data structures. We present a novel methodology that combines ex-vivo high-resolution micro-computed tomography imaging data with a bioimage informatics algorithm to track and reconstruct the whole-tumor vasculature of a human breast cancer model. The reconstructed tumor vascular network is used as an input of a computational model that estimates blood flow in each segment of the tumor microvascular network. This formulation involves a well-established biophysical model and an optimization algorithm that ensures mass balance and detailed monitoring of all the vessels that feed and drain blood from the tumor microvascular network. Perfusion maps for the whole-tumor microvascular network are computed. Morphological and hemodynamic indices from different regions are compared to infer their role in overall tumor perfusion.
Collapse
Affiliation(s)
- Spyros K Stamatelos
- Department of Biomedical Engineering, The Johns Hopkins University, School of Medicine, USA.
| | - Eugene Kim
- Department of Biomedical Engineering, The Johns Hopkins University, School of Medicine, USA; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, USA
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, The Johns Hopkins University, School of Medicine, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, USA
| |
Collapse
|
5
|
Tissue metabolism driven arterial tree generation. Med Image Anal 2012; 16:1397-414. [DOI: 10.1016/j.media.2012.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/19/2012] [Accepted: 04/29/2012] [Indexed: 12/11/2022]
|
6
|
Kim E, Stamatelos S, Cebulla J, Bhujwalla ZM, Popel AS, Pathak AP. Multiscale imaging and computational modeling of blood flow in the tumor vasculature. Ann Biomed Eng 2012; 40:2425-41. [PMID: 22565817 DOI: 10.1007/s10439-012-0585-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/27/2012] [Indexed: 12/30/2022]
Abstract
The evolution in our understanding of tumor angiogenesis has been the result of pioneering imaging and computational modeling studies spanning the endothelial cell, microvasculature and tissue levels. Many of these primary data on the tumor vasculature are in the form of images from pre-clinical tumor models that provide a wealth of qualitative and quantitative information in many dimensions and across different spatial scales. However, until recently, the visualization of changes in the tumor vasculature across spatial scales remained a challenge due to a lack of techniques for integrating micro- and macroscopic imaging data. Furthermore, the paucity of three-dimensional (3-D) tumor vascular data in conjunction with the challenges in obtaining such data from patients presents a serious hurdle for the development and validation of predictive, multiscale computational models of tumor angiogenesis. In this review, we discuss the development of multiscale models of tumor angiogenesis, new imaging techniques capable of reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of "image-based models" of tumor blood flow and molecular transport. Collectively, these developments are helping us gain a fundamental understanding of the cellular and molecular regulation of tumor angiogenesis that will benefit the development of new cancer therapies. Eventually, we expect this exciting integration of multiscale imaging and mathematical modeling to have widespread application beyond the tumor vasculature to other diseases involving a pathological vasculature, such as stroke and spinal cord injury.
Collapse
Affiliation(s)
- Eugene Kim
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Neuroimaging allows researchers and clinicians to noninvasively assess structure and function of the brain. With the advances of imaging modalities such as magnetic resonance, nuclear, and optical imaging; the design of target-specific probes; and/or the introduction of reporter gene assays, these technologies are now capable of visualizing cellular and molecular processes in vivo. Undoubtedly, the system biological character of molecular neuroimaging, which allows for the study of molecular events in the intact organism, will enhance our understanding of physiology and pathophysiology of the brain and improve our ability to diagnose and treat diseases more specifically. Technical/scientific challenges to be faced are the development of highly sensitive imaging modalities, the design of specific imaging probe molecules capable of penetrating the CNS and reporting on endogenous cellular and molecular processes, and the development of tools for extracting quantitative, biologically relevant information from imaging data. Today, molecular neuroimaging is still an experimental approach with limited clinical impact; this is expected to change within the next decade. This article provides an overview of molecular neuroimaging approaches with a focus on rodent studies documenting the exploratory state of the field. Concepts are illustrated by discussing applications related to the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, ETH & University of Zürich, Switzerland
| | | |
Collapse
|
8
|
|
9
|
Perfahl H, Byrne HM, Chen T, Estrella V, Alarcón T, Lapin A, Gatenby RA, Gillies RJ, Lloyd MC, Maini PK, Reuss M, Owen MR. Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PLoS One 2011; 6:e14790. [PMID: 21533234 PMCID: PMC3076378 DOI: 10.1371/journal.pone.0014790] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/28/2011] [Indexed: 12/01/2022] Open
Abstract
We investigate a three-dimensional multiscale model of vascular tumour growth, which couples blood flow, angiogenesis, vascular remodelling, nutrient/growth factor transport, movement of, and interactions between, normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. In particular, we determine how the domain size, aspect ratio and initial vascular network influence the tumour's growth dynamics and its long-time composition. We establish whether it is possible to extrapolate simulation results obtained for small domains to larger ones, by constructing a large simulation domain from a number of identical subdomains, each subsystem initially comprising two parallel parent vessels, with associated cells and diffusible substances. We find that the subsystem is not representative of the full domain and conclude that, for this initial vessel geometry, interactions between adjacent subsystems contribute to the overall growth dynamics. We then show that extrapolation of results from a small subdomain to a larger domain can only be made if the subdomain is sufficiently large and is initialised with a sufficiently complex vascular network. Motivated by these results, we perform simulations to investigate the tumour's response to therapy and show that the probability of tumour elimination in a larger domain can be extrapolated from simulation results on a smaller domain. Finally, we demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.
Collapse
Affiliation(s)
- Holger Perfahl
- Center Systems Biology, University of Stuttgart, Stuttgart, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mescam M, Kretowski M, Bezy-Wendling J. Multiscale model of liver DCE-MRI towards a better understanding of tumor complexity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2010; 29:699-707. [PMID: 19758856 PMCID: PMC2890580 DOI: 10.1109/tmi.2009.2031435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The use of quantitative imaging for the characterization of hepatic tumors in magnetic resonance imaging (MRI) can improve the diagnosis and therefore the treatment of these life-threatening tumors. However, image parameters remain difficult to interpret because they result from a mixture of complex processes related to pathophysiology and to acquisition. These processes occur at variable spatial and temporal scales. We propose a multiscale model of liver dynamic contrast-enhanced (DCE) MRI in order to better understand the tumor complexity in images. Our design couples a model of the organ (tissue and vasculature) with a model of the image acquisition. At the macroscopic scale, vascular trees take a prominent place. Regarding the formation of MRI images, we propose a distributed model of parenchymal biodistribution of extracellular contrast agents. Model parameters can be adapted to simulate the tumor development. The sensitivity of the multiscale model of liver DCE-MRI was studied through observations of the influence of two physiological parameters involved in carcinogenesis (arterial flow and capillary permeability) on its outputs (MRI images at arterial and portal phases). Finally, images were simulated for a set of parameters corresponding to the five stages of hepatocarcinogenesis (from regenerative nodules to poorly differentiated HepatoCellular Carcinoma).
Collapse
Affiliation(s)
- Muriel Mescam
- LTSI, Laboratoire Traitement du Signal et de l'Image
INSERM : U642Université de Rennes ICampus de Beaulieu, 263 Avenue du Général Leclerc - CS 74205 - 35042 Rennes Cedex,FR
| | - Marek Kretowski
- Faculty of Computer Science - University of Białystok
Bialystok Technical UniversityBialystok University of Technology Faculty of Computer Science Wiejska 45a, 15-351, Bialystok,PL
- * Correspondence should be adressed to: Marek Kretowski
| | - Johanne Bezy-Wendling
- LTSI, Laboratoire Traitement du Signal et de l'Image
INSERM : U642Université de Rennes ICampus de Beaulieu, 263 Avenue du Général Leclerc - CS 74205 - 35042 Rennes Cedex,FR
- * Correspondence should be adressed to: Johanne Bezy-Wendling
| |
Collapse
|
11
|
|
12
|
Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V. Nonlinear modelling of cancer: bridging the gap between cells and tumours. NONLINEARITY 2010; 23:R1-R9. [PMID: 20808719 PMCID: PMC2929802 DOI: 10.1088/0951-7715/23/1/r01] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis.
Collapse
Affiliation(s)
- J S Lowengrub
- Department of Biomedical Engineering, Center for Mathematical and Computational Biology, University of California at Irvine, Irvine, CA 92697, USA
| | - H B Frieboes
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - F Jin
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - Y-L Chuang
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - X Li
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - P Macklin
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - S M Wise
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - V Cristini
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
13
|
Mueggler T, Baltes C, Rudin M. Molecular neuroimaging in rodents: assessing receptor expression and function. Eur J Neurosci 2009; 30:1860-9. [DOI: 10.1111/j.1460-9568.2009.06987.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Kohl P, Coveney P, Clapworthy G, Viceconti M. The virtual physiological human. Editorial. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3223-3224. [PMID: 18593665 DOI: 10.1098/rsta.2008.0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|