1
|
A cell-based framework for modeling cardiac mechanics. Biomech Model Mechanobiol 2023; 22:515-539. [PMID: 36602715 PMCID: PMC10097778 DOI: 10.1007/s10237-022-01660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/19/2022] [Indexed: 01/06/2023]
Abstract
Cardiomyocytes are the functional building blocks of the heart-yet most models developed to simulate cardiac mechanics do not represent the individual cells and their surrounding matrix. Instead, they work on a homogenized tissue level, assuming that cellular and subcellular structures and processes scale uniformly. Here we present a mathematical and numerical framework for exploring tissue-level cardiac mechanics on a microscale given an explicit three-dimensional geometrical representation of cells embedded in a matrix. We defined a mathematical model over such a geometry and parametrized our model using publicly available data from tissue stretching and shearing experiments. We then used the model to explore mechanical differences between the extracellular and the intracellular space. Through sensitivity analysis, we found the stiffness in the extracellular matrix to be most important for the intracellular stress values under contraction. Strain and stress values were observed to follow a normal-tangential pattern concentrated along the membrane, with substantial spatial variations both under contraction and stretching. We also examined how it scales to larger size simulations, considering multicellular domains. Our work extends existing continuum models, providing a new geometrical-based framework for exploring complex cell-cell and cell-matrix interactions.
Collapse
|
2
|
Arif S. A stochastic mathematical model for coupling the cytosolic and sarcoplasmic calcium movements in diseased cardiac myocytes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:545-554. [PMID: 36117233 PMCID: PMC9675677 DOI: 10.1007/s00249-022-01617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Several computational studies have been undertaken to explore the Ca2+-induced Ca2+ release (CICR) events in cardiac myocytes and along with experimental studies it has given us invaluable insight into the mechanism of CICR from spark/blink initiation to termination and regulation, and their interplay under normal and pathological conditions. The computational modelling of this mechanism has mainly been investigated using coupled differential equations (DEs). However, there is a lack of computational investigation into (1) how the different formulation of coupled DEs capture the Ca2+ movement in the cytosol and sarcoplasmic reticulum (SR), (2) the buffer and dye inclusion in both compartments, and (3) the effect of buffer and dye properties on the calcium behaviour. This work is set out to explore (1) the effect of different coupled formulation of DEs on spark/blink occurrence, (2) the inclusion of improved sarcoplasmic buffering properties, and (3) the effects of cytosolic and sarcoplasmic dye and buffer properties on Ca2+ movement. The simulation results show large discrepancies between different formulations of the governing equations. Additionally, extension of the model to include sarcoplasmic buffering properties show normalised fluorescent dye profiles to be in good agreement with experimental and amongst its one- and two-dimensional representations.
Collapse
Affiliation(s)
- Serife Arif
- Academic Section, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
3
|
Timmermann V, Edwards AG, Wall ST, Sundnes J, McCulloch AD. Arrhythmogenic Current Generation by Myofilament-Triggered Ca 2+ Release and Sarcomere Heterogeneity. Biophys J 2019; 117:2471-2485. [PMID: 31810659 PMCID: PMC6990379 DOI: 10.1016/j.bpj.2019.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023] Open
Abstract
Heterogeneous mechanical dyskinesis has been implicated in many arrhythmogenic phenotypes. Strain-dependent perturbations to cardiomyocyte electrophysiology may contribute to this arrhythmogenesis through processes referred to as mechanoelectric feedback. Although the role of stretch-activated ion currents has been investigated using computational models, experimental studies suggest that mechanical strain may also promote arrhythmia by facilitating calcium wave propagation. To investigate whether strain-dependent changes in calcium affinity to the myofilament may promote arrhythmogenic intracellular calcium waves, we modified a mathematical model of rabbit excitation-contraction coupling coupled to a model of myofilament activation and force development. In a one-dimensional compartmental analysis, we bidirectionally coupled 50 sarcomere models in series to model calcium diffusion and stress transfer between adjacent sarcomeres. These considerations enabled the model to capture 1) the effects of mechanical feedback on calcium homeostasis at the sarcomeric level and 2) the combined effects of mechanical and calcium heterogeneities at the cellular level. The results suggest that in conditions of calcium overload, the vulnerable window of stretch-release to trigger suprathreshold delayed afterdepolarizations can be affected by heterogeneity in sarcomere length. Furthermore, stretch and sarcomere heterogeneity may modulate the susceptibility threshold for delayed afterdepolarizations and the aftercontraction wave propagation velocity.
Collapse
Affiliation(s)
- Viviane Timmermann
- Simula Research Laboratory, Fornebu, Norway; University of Oslo, Oslo, Norway; University of California San Diego, La Jolla, California.
| | - Andrew G Edwards
- Simula Research Laboratory, Fornebu, Norway; University of Oslo, Oslo, Norway
| | | | - Joakim Sundnes
- University of Oslo, Oslo, Norway; University of California San Diego, La Jolla, California
| | | |
Collapse
|
4
|
Arif S, Lai CH, Ramesh NI. Estimation of stochastic behaviour in cardiac myocytes: I. Ca 2+ movements inside the cytosol and sarcoplasmic reticulum on curvilinear domains. JRSM Cardiovasc Dis 2019; 8:2048004018822428. [PMID: 30643637 PMCID: PMC6322098 DOI: 10.1177/2048004018822428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/06/2018] [Accepted: 11/13/2018] [Indexed: 11/15/2022] Open
Abstract
Since the discovery of Ca2+ sparks and their stochastic behaviour in cardiac myocytes, models have focused on the inclusion of stochasticity in their studies. While most models pay much attention to the stochastic modelling of cytosolic Ca2+ concentration the coupling of Ca2+ sparks and blinks in a stochastic model has not been explored fully. The cell morphology in in silico studies in the past is assumed to be Cartesian, spherical or cylindrical. The application on curvilinear grids can easily address certain restrictions posed by such grid set up and provide more realistic cell morphology. In this paper, we present a stochastic reaction-diffusion model that couples Ca2+ sparks and blinks in realistic shapes of cells in curvilinear domains. Methodology: Transformation of the model was performed to the curvilinear coordinate system. The set of equations is used to produce Ca2+ waves initiated from sparks and blinks. A non-buffered and non-dyed version as well as a buffered and dyed version of these equations were studied in light of observing the dynamics on the two different systems. For comparison, results for both the Cartesian and curvilinear grids are provided. Results and conclusions: A successful demonstration of the application of curvilinear grids serving as basis for future developments.
Collapse
Affiliation(s)
- Serife Arif
- Department of Mathematical Sciences, Faculty of Architecture, Computing and Humanities University of Greenwich, London, UK
| | - Choi-Hong Lai
- Department of Mathematical Sciences, Faculty of Architecture, Computing and Humanities University of Greenwich, London, UK
| | - Nadarajah I Ramesh
- Department of Mathematical Sciences, Faculty of Architecture, Computing and Humanities University of Greenwich, London, UK
| |
Collapse
|
5
|
Garcia-Canadilla P, Rodriguez JF, Palazzi MJ, Gonzalez-Tendero A, Schönleitner P, Balicevic V, Loncaric S, Luiken JJFP, Ceresa M, Camara O, Antoons G, Crispi F, Gratacos E, Bijnens B. A two dimensional electromechanical model of a cardiomyocyte to assess intra-cellular regional mechanical heterogeneities. PLoS One 2017; 12:e0182915. [PMID: 28837585 PMCID: PMC5570434 DOI: 10.1371/journal.pone.0182915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023] Open
Abstract
Experimental studies on isolated cardiomyocytes from different animal species and human hearts have demonstrated that there are regional differences in the Ca2+ release, Ca2+ decay and sarcomere deformation. Local deformation heterogeneities can occur due to a combination of factors: regional/local differences in Ca2+ release and/or re-uptake, intra-cellular material properties, sarcomere proteins and distribution of the intracellular organelles. To investigate the possible causes of these heterogeneities, we developed a two-dimensional finite-element electromechanical model of a cardiomyocyte that takes into account the experimentally measured local deformation and cytosolic [Ca2+] to locally define the different variables of the constitutive equations describing the electro/mechanical behaviour of the cell. Then, the model was individualised to three different rat cardiac cells. The local [Ca2+] transients were used to define the [Ca2+]-dependent activation functions. The cell-specific local Young's moduli were estimated by solving an inverse problem, minimizing the error between the measured and simulated local deformations along the longitudinal axis of the cell. We found that heterogeneities in the deformation during contraction were determined mainly by the local elasticity rather than the local amount of Ca2+, while in the relaxation phase deformation was mainly influenced by Ca2+ re-uptake. Our electromechanical model was able to successfully estimate the local elasticity along the longitudinal direction in three different cells. In conclusion, our proposed model seems to be a good approximation to assess the heterogeneous intracellular mechanical properties to help in the understanding of the underlying mechanisms of cardiomyocyte dysfunction.
Collapse
Affiliation(s)
| | - Jose F. Rodriguez
- LaBS, Chemistry, materials and chemical engineering department “Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Maria J. Palazzi
- Dept. of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Gonzalez-Tendero
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Vedrana Balicevic
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Sven Loncaric
- Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | | | - Mario Ceresa
- Dept. of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oscar Camara
- Dept. of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gudrun Antoons
- Dept. of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Fatima Crispi
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Eduard Gratacos
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Bart Bijnens
- Dept. of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
6
|
Arif S, Natkunam K, Buyandelger B, Lai CH, Knöll R. An inverse problem approach to identify the internal force of a mechanosensation process in a cardiac myocyte. INFORMATICS IN MEDICINE UNLOCKED 2017. [DOI: 10.1016/j.imu.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Capulli AK, MacQueen LA, Sheehy SP, Parker KK. Fibrous scaffolds for building hearts and heart parts. Adv Drug Deliv Rev 2016; 96:83-102. [PMID: 26656602 PMCID: PMC4807693 DOI: 10.1016/j.addr.2015.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
Extracellular matrix (ECM) structure and biochemistry provide cell-instructive cues that promote and regulate tissue growth, function, and repair. From a structural perspective, the ECM is a scaffold that guides the self-assembly of cells into distinct functional tissues. The ECM promotes the interaction between individual cells and between different cell types, and increases the strength and resilience of the tissue in mechanically dynamic environments. From a biochemical perspective, factors regulating cell-ECM adhesion have been described and diverse aspects of cell-ECM interactions in health and disease continue to be clarified. Natural ECMs therefore provide excellent design rules for tissue engineering scaffolds. The design of regenerative three-dimensional (3D) engineered scaffolds is informed by the target ECM structure, chemistry, and mechanics, to encourage cell infiltration and tissue genesis. This can be achieved using nanofibrous scaffolds composed of polymers that simultaneously recapitulate 3D ECM architecture, high-fidelity nanoscale topography, and bio-activity. Their high porosity, structural anisotropy, and bio-activity present unique advantages for engineering 3D anisotropic tissues. Here, we use the heart as a case study and examine the potential of ECM-inspired nanofibrous scaffolds for cardiac tissue engineering. We asked: Do we know enough to build a heart? To answer this question, we tabulated structural and functional properties of myocardial and valvular tissues for use as design criteria, reviewed nanofiber manufacturing platforms and assessed their capabilities to produce scaffolds that meet our design criteria. Our knowledge of the anatomy and physiology of the heart, as well as our ability to create synthetic ECM scaffolds have advanced to the point that valve replacement with nanofibrous scaffolds may be achieved in the short term, while myocardial repair requires further study in vitro and in vivo.
Collapse
Affiliation(s)
- A K Capulli
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - L A MacQueen
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Sean P Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - K K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Demongeot J, Françoise JP, Nerini D. From biological and clinical experiments to mathematical models. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:4657-4663. [PMID: 19884173 DOI: 10.1098/rsta.2009.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|