1
|
Wang S, Zhang X, Hong T, Tzeng OJL, Aslin R. Top-down sensory prediction in the infant brain at 6 months is correlated with language development at 12 and 18 months. BRAIN AND LANGUAGE 2022; 230:105129. [PMID: 35576737 DOI: 10.1016/j.bandl.2022.105129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Previous research has suggested that top-down sensory prediction facilitates, and may be necessary for, efficient transmission of information in the brain. Here we related infants' vocabulary development to the top-down sensory prediction indexed by occipital cortex activation to the unexpected absence of a visual stimulus previously paired with an auditory stimulus. The magnitude of the neural response to the unexpected omission of a visual stimulus was assessed at the age of 6 months with functional near-infrared spectroscopy (fNIRS) and vocabulary scores were obtained using the MacArthur-Bates Communicative Development Inventory (MCDI) when infants reached the age of 12 months and 18 months, respectively. Results indicated significant positive correlations between this predictive neural signal at 6 months and MCDI expressive vocabulary scores at 12 and 18 months. These findings provide additional and robust support for the hypothesis that top-down prediction at the neural level plays a key role in infants' language development.
Collapse
Affiliation(s)
- Shinmin Wang
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan.
| | - Xian Zhang
- Department of Psychiatry, Yale School of Medicine,New Haven, CT, USA.
| | - Tian Hong
- Haskins Laboratories, New Haven, CT, USA.
| | - Ovid J L Tzeng
- Department of Educational Psychology and Counseling, National Taiwan Normal University, Taipei, Taiwan; Taipei Medical University, Taipei, Taiwan; Linguistic Institute, Academia Sinica, Taipei, Taiwan.
| | - Richard Aslin
- Haskins Laboratories, New Haven, CT, USA; Department of Psychology and Child Study Center, Yale University, New Haven, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
2
|
Basic Examination of Haemoglobin Phase of Oxygenation and Deoxygenation in Resting State and Task Periods in Adults Using fNIRS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:189-198. [PMID: 36527636 DOI: 10.1007/978-3-031-14190-4_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique used to measure the relative changes in concentrations of oxygenated haemoglobin (oxy-Hb) and deoxygenated haemoglobin (deoxy-Hb) in the cerebral cortex. While most previous studies using fNIRS have relied only on a single oxy-Hb or deoxy-Hb parameter to infer about neural activation, the phase difference between the oxy- and deoxy-Hb signals (haemoglobin phase of oxygenation and deoxygenation: hPod) has been reported to be an important biomarker for analysing haemodynamic characteristics of the brain in infants. In this study, we examined the basic characteristics of adult hPod to develop a new analysis method to detect more sensitive signals that reflect neural activation in adults using fNIRS. We measured the hPod of 12 healthy adults in the frontal and occipital cortex during rest and upon exposure to visual stimuli and the verbal working memory (WM) task. We found that the average hPod values during the entire measurement period ranged between π and 1.5π rad in all conditions. This result indicates that the phase differences in adults were generally close to a stable antiphase pattern (hPod values around π), regardless of the presence or absence of tasks and stimuli. However, when dynamic changes in hPod values were analysed, significant differences between the resting state and WM tasks were observed during activation period in the frontal and occipital regions. These results suggest that the analysis of dynamic hPod change is useful for detecting a subtle activation for cognitive tasks.
Collapse
|
3
|
Andreu-Perez J, Emberson LL, Kiani M, Filippetti ML, Hagras H, Rigato S. Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience. Commun Biol 2021; 4:1077. [PMID: 34526648 PMCID: PMC8443619 DOI: 10.1038/s42003-021-02534-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/19/2021] [Indexed: 02/08/2023] Open
Abstract
In the last decades, non-invasive and portable neuroimaging techniques, such as functional near infrared spectroscopy (fNIRS), have allowed researchers to study the mechanisms underlying the functional cognitive development of the human brain, thus furthering the potential of Developmental Cognitive Neuroscience (DCN). However, the traditional paradigms used for the analysis of infant fNIRS data are still quite limited. Here, we introduce a multivariate pattern analysis for fNIRS data, xMVPA, that is powered by eXplainable Artificial Intelligence (XAI). The proposed approach is exemplified in a study that investigates visual and auditory processing in six-month-old infants. xMVPA not only identified patterns of cortical interactions, which confirmed the existent literature; in the form of conceptual linguistic representations, it also provided evidence for brain networks engaged in the processing of visual and auditory stimuli that were previously overlooked by other methods, while demonstrating similar statistical performance.
Collapse
Affiliation(s)
- Javier Andreu-Perez
- grid.8356.80000 0001 0942 6946Centre for Computational Intelligence, University of Essex, Colchester, UK
| | - Lauren L. Emberson
- grid.16750.350000 0001 2097 5006Department of Psychology, Princeton University, Princeton, NJ USA
| | - Mehrin Kiani
- grid.8356.80000 0001 0942 6946Centre for Computational Intelligence, University of Essex, Colchester, UK
| | - Maria Laura Filippetti
- grid.8356.80000 0001 0942 6946Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| | - Hani Hagras
- grid.8356.80000 0001 0942 6946Centre for Computational Intelligence, University of Essex, Colchester, UK
| | - Silvia Rigato
- grid.8356.80000 0001 0942 6946Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
4
|
A low-cost multichannel NIRS oximeter for monitoring systemic low-frequency oscillations. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-04897-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Bulgarelli C, de Klerk CCJM, Richards JE, Southgate V, Hamilton A, Blasi A. The developmental trajectory of fronto-temporoparietal connectivity as a proxy of the default mode network: a longitudinal fNIRS investigation. Hum Brain Mapp 2020; 41:2717-2740. [PMID: 32128946 PMCID: PMC7294062 DOI: 10.1002/hbm.24974] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The default mode network (DMN) is a network of brain regions that is activated while we are not engaged in any particular task. While there is a large volume of research documenting functional connectivity within the DMN in adults, knowledge of the development of this network is still limited. There is some evidence for a gradual increase in the functional connections within the DMN during the first 2 years of life, in contrast to other functional resting‐state networks that support primary sensorimotor functions, which are online from very early in life. Previous studies that investigated the development of the DMN acquired data from sleeping infants using fMRI. However, sleep stages are known to affect functional connectivity. In the current longitudinal study, fNIRS was used to measure spontaneous fluctuations in connectivity within fronto‐temporoparietal areas—as a proxy for the DMN—in awake participants every 6 months from 11 months till 36 months. This study validates a method for recording resting‐state data from awake infants, and presents a data analysis pipeline for the investigation of functional connections with infant fNIRS data, which will be beneficial for researchers in this field. A gradual development of fronto‐temporoparietal connectivity was found, supporting the idea that the DMN develops over the first years of life. Functional connectivity reached its maximum peak at about 24 months, which is consistent with previous findings showing that, by 2 years of age, DMN connectivity is similar to that observed in adults.
Collapse
Affiliation(s)
- Chiara Bulgarelli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - Carina C J M de Klerk
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK.,Department of Psychology, University of Essex, Colchester, UK
| | - John E Richards
- Institute for Mind and Brain, Department of Psychology, University of South Carolina, Columbia, South Carolina
| | | | - Antonia Hamilton
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Anna Blasi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
6
|
Uchida-Ota M, Arimitsu T, Tsuzuki D, Dan I, Ikeda K, Takahashi T, Minagawa Y. Maternal speech shapes the cerebral frontotemporal network in neonates: A hemodynamic functional connectivity study. Dev Cogn Neurosci 2019; 39:100701. [PMID: 31513977 PMCID: PMC6969365 DOI: 10.1016/j.dcn.2019.100701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/09/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Language development and the capacity for communication in infants are predominantly supported by their mothers, beginning when infants are still in utero. Although a mother's speech should thus have a significant impact on her neonate's brain, neurocognitive evidence for this hypothesis remains elusive. The present study examined 37 neonates using near-infrared spectroscopy and observed the interactions between multiple cortical regions while neonates heard speech spoken by their mothers or by strangers. We analyzed the functional connectivity between regions whose response-activation patterns differed between the two types of speakers. We found that when hearing their mothers' speech, functional connectivity was enhanced in both the neonatal left and right frontotemporal networks. On the left it was enhanced between the inferior/middle frontal gyrus and the temporal cortex, while on the right it was enhanced between the frontal pole and temporal cortex. In particular, the frontal pole was more strongly connected to the left supramarginal area when hearing speech from mothers. These enhanced frontotemporal networks connect areas that are associated with language (left) and voice processing (right) at later stages of development. We suggest that these roles are initially fostered by maternal speech.
Collapse
Affiliation(s)
- Mariko Uchida-Ota
- Center for Advanced Research on Logic and Sensibility, Keio University, Tokyo, Japan; Center for Research in International Education, Tokyo Gakugei University, Tokyo, Japan
| | - Takeshi Arimitsu
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Tsuzuki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Ippeita Dan
- Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Kazushige Ikeda
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yasuyo Minagawa
- Center for Advanced Research on Logic and Sensibility, Keio University, Tokyo, Japan; Department of Psychology, Faculty of Letters, Keio University, Kanagawa, Japan.
| |
Collapse
|
7
|
Bulgarelli C, Blasi A, de Klerk CCJM, Richards JE, Hamilton A, Southgate V. Fronto-temporoparietal connectivity and self-awareness in 18-month-olds: A resting state fNIRS study. Dev Cogn Neurosci 2019; 38:100676. [PMID: 31299480 PMCID: PMC6969340 DOI: 10.1016/j.dcn.2019.100676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
How and when a concept of the 'self' emerges has been the topic of much interest in developmental psychology. Self-awareness has been proposed to emerge at around 18 months, when toddlers start to show evidence of physical self-recognition. However, to what extent physical self-recognition is a valid indicator of being able to think about oneself, is debated. Research in adult cognitive neuroscience has suggested that a common network of brain regions called Default Mode Network (DMN), including the temporo-parietal junction (TPJ) and the medial prefrontal cortex (mPFC), is recruited when we are reflecting on the self. We hypothesized that if mirror self-recognition involves self-awareness, toddlers who exhibit mirror self-recognition might show increased functional connectivity between frontal and temporoparietal regions of the brain, relative to those toddlers who do not yet show mirror self-recognition. Using fNIRS, we collected resting-state data from 18 Recognizers and 22 Non-Recognizers at 18 months of age. We found significantly stronger fronto-temporoparietal connectivity in Recognizers compared to Non-Recognizers, a finding which might support the hypothesized relationship between mirror-self recognition and self-awareness in infancy.
Collapse
Affiliation(s)
- Chiara Bulgarelli
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, UK; Department of Medical Physics and Bioengineering, University College London, UK.
| | - Anna Blasi
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, UK; Department of Medical Physics and Bioengineering, University College London, UK
| | - Carina C J M de Klerk
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, UK; Department of Psychology, University of Essex, UK
| | - John E Richards
- University of South Carolina, Institute for Mind and Brain, Department of Psychology, United States
| | - Antonia Hamilton
- Institute of Cognitive Neuroscience, University College London, UK
| | | |
Collapse
|
8
|
Bortfeld H. Functional near-infrared spectroscopy as a tool for assessing speech and spoken language processing in pediatric and adult cochlear implant users. Dev Psychobiol 2018; 61:430-443. [PMID: 30588618 DOI: 10.1002/dev.21818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/04/2018] [Accepted: 11/16/2018] [Indexed: 11/11/2022]
Abstract
Much of what is known about the course of auditory learning in following cochlear implantation is based on behavioral indicators that users are able to perceive sound. Both prelingually deafened children and postlingually deafened adults who receive cochlear implants display highly variable speech and language processing outcomes, although the basis for this is poorly understood. To date, measuring neural activity within the auditory cortex of implant recipients of all ages has been challenging, primarily because the use of traditional neuroimaging techniques is limited by the implant itself. Functional near-infrared spectroscopy (fNIRS) is an imaging technology that works with implant users of all ages because it is non-invasive, compatible with implant devices, and not subject to electrical artifacts. Thus, fNIRS can provide insight into processing factors that contribute to variations in spoken language outcomes in implant users, both children and adults. There are important considerations to be made when using fNIRS, particularly with children, to maximize the signal-to-noise ratio and to best identify and interpret cortical responses. This review considers these issues, recent data, and future directions for using fNIRS as a tool to understand spoken language processing in children and adults who hear through a cochlear implant.
Collapse
Affiliation(s)
- Heather Bortfeld
- Psychological Sciences, University of California, Merced, Merced, California
| |
Collapse
|
9
|
Sassaroli A, Tgavalekos K, Fantini S. The meaning of "coherent" and its quantification in coherent hemodynamics spectroscopy. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2018; 11:1850036. [PMID: 31762798 PMCID: PMC6874396 DOI: 10.1142/s1793545818500360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have recently introduced a new technique, coherent hemodynamics spectroscopy (CHS), which aims at characterizing a specific kind of tissue hemodynamics that feature a high level of covariation with a given physiological quantity. In this study, we carry out a detailed analysis of the significance of coherence and phase synchronization between oscillations of arterial blood pressure (ABP) and total hemoglobin concentration ([Hbt]), measured with near-infrared spectroscopy (NIRS) during a typical protocol for CHS, based on a cyclic thigh cuff occlusion and release. Even though CHS is based on a linear time invariant model between ABP (input) and NIRS measurands (outputs), for practical reasons in a typical CHS protocol, we induce finite "groups" of ABP oscillations, in which each group is characterized by a different frequency. For this reason, ABP (input) and NIRS measurands (output) are not stationary processes, and we have used wavelet coherence and phase synchronization index (PSI), as a metric of coherence and phase synchronization, respectively. PSI was calculated by using both the wavelet cross spectrum and the Hilbert transform. We have also used linear coherence (which requires stationary process) for comparison with wavelet coherence. The method of surrogate data is used to find critical values for the significance of covariation between ABP and [Hbt]. Because we have found similar critical values for wavelet coherence and PSI by using five of the most used methods of surrogate data, we propose to use the data-independent Gaussian random numbers (GRNs), for CHS. By using wavelet coherence and wavelet cross spectrum, and GRNs as surrogate data, we have found the same results for the significance of coherence and phase synchronization between ABP and [Hbt]: on a total set of 20 periods of cuff oscillations, we have found 17 coherent oscillations and 17 phase synchronous oscillations. Phase synchronization assessed with Hilbert transform yielded similar results with 14 phase synchronous oscillations. Linear coherence and wavelet coherence overall yielded similar number of significant values. We discuss possible reasons for this result. Despite the similarity of linear and wavelet coherence, we argue that wavelet coherence is preferable, especially if one wants to use baseline spontaneous oscillations, in which phase locking and coherence between signals might be only temporary.
Collapse
|
10
|
Developmental changes in cortical sensory processing during wakefulness and sleep. Neuroimage 2018; 178:519-530. [DOI: 10.1016/j.neuroimage.2018.05.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/05/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
|
11
|
Glowinsky S, Samadani A, Chau T. Limited value of temporo-parietal hemodynamic signals in an optical-electric auditory brain-computer interface. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab29a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Issard C, Gervain J. Variability of the hemodynamic response in infants: Influence of experimental design and stimulus complexity. Dev Cogn Neurosci 2018; 33:182-193. [PMID: 29397345 PMCID: PMC6969282 DOI: 10.1016/j.dcn.2018.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
Measuring brain activity in developmental populations remains a major challenge despite great technological advances. Among the numerous available methods, functional near-infrared spectroscopy (fNIRS), an imaging modality that probes the hemodynamic response, is a powerful tool for recording brain activity in a great variety of situations and populations. Neurocognitive studies with infants have often reported inverted hemodynamic responses, i.e. a decrease instead of an increase in regional blood oxygenation, but the exact physiological explanation and cognitive interpretation of this response remain unclear. Here, we first provide an overview of the basic principles of NIRS and its use in cognitive developmental neuroscience. We then review the infant fNIRS literature to show that the hemodynamic response is modulated by experimental design and stimulus complexity, sometimes leading to hemodynamic responses with non-canonical shapes. We also argue that this effect is further modulated by the age of participants, the cortical regions involved, and the developmental stage of the tested cognitive process. We argue that this variability needs to be taken into account when designing and interpreting developmental studies measuring the hemodynamic response.
Collapse
Affiliation(s)
- Cécile Issard
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France.
| | - Judit Gervain
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France; Laboratoire Psychologie de la Perception, CNRS UMR 8242, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
13
|
Taga G, Watanabe H, Homae F. Spatial variation in the hemoglobin phase of oxygenation and deoxygenation in the developing cortex of infants. NEUROPHOTONICS 2018; 5:011017. [PMID: 29021987 PMCID: PMC5633865 DOI: 10.1117/1.nph.5.1.011017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/18/2017] [Indexed: 05/06/2023]
Abstract
Spontaneous low-frequency oscillatory changes in oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) are observed using functional near-infrared spectroscopy (fNIRS). A previous study showed that the time-averaged phase difference between oxy-Hb and deoxy-Hb changes, referred to as hemoglobin phase of oxygenation and deoxygenation (hPod), is sensitive to the development of the cortex. We examined phase-locking index of hPod, referred to as [Formula: see text], in addition to hPod, in neonates and 3- and 6-month-old infants using the 94-channel fNIRS data, which covered large lateral regions of the cortex. The results showed that (1) developmental changes in hPod exhibited spatial dependency; (2) [Formula: see text] increased between the neonate group and 3-month-old infant group over the posterior, but not anterior, regions of the cortex; and (3) the cortical regions of each age group were clustered in several domains with specific characteristics of hPod and [Formula: see text]. This study indicates that the neonatal cortex is composed of regions with specific characteristics of hPod and [Formula: see text], and drastic changes occur between the neonatal period and 3 months of age. This study suggests that hPod and [Formula: see text] are sensitive to the cortical region-specific development of the circulatory, blood flow, metabolic, and neurovascular functions in young infants.
Collapse
Affiliation(s)
- Gentaro Taga
- The University of Tokyo, Graduate School of Education, Tokyo, Japan
- Address all correspondence to: Gentaro Taga, E-mail:
| | - Hama Watanabe
- The University of Tokyo, Graduate School of Education, Tokyo, Japan
| | - Fumitaka Homae
- Tokyo Metropolitan University, Department of Language Sciences, Hachioji-shi, Tokyo, Japan
- Tokyo Metropolitan University, Research Center for Language, Brain and Genetics, Hachioji-shi, Tokyo, Japan
| |
Collapse
|
14
|
Dunn W, Little L, Dean E, Robertson S, Evans B. The State of the Science on Sensory Factors and Their Impact on Daily Life for Children: A Scoping Review. OTJR-OCCUPATION PARTICIPATION AND HEALTH 2017; 36:3S-26S. [PMID: 27504990 DOI: 10.1177/1539449215617923] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to identify and synthesize research about how sensory factors affect daily life of children. We designed a conceptual model to guide a scoping review of research published from 2005 to October 2014 (10 years). We searched MEDLINE, CINAHL, and PsycINFO and included studies about sensory perception/processing; children, adolescents/young adults; and participation. We excluded studies about animals, adults, and review articles. Our process resulted in 261 articles meeting criteria. Research shows that children with conditions process sensory input differently than peers. Neuroscience evidence supports the relationship between sensory-related behaviors and brain activity. Studies suggest that sensory processing is linked to social participation, cognition, temperament, and participation. Intervention research illustrates the importance of contextually relevant practices. Future work can examine the developmental course of sensory processing aspects of behavior across the general population and focus on interventions that support children's sensory processing as they participate in their daily lives.
Collapse
Affiliation(s)
- Winnie Dunn
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Lauren Little
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Evan Dean
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Sara Robertson
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin Evans
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
15
|
Shirvan RA, Setarehdan SK, Nasrabadi AM. A new approach to estimating the evoked hemodynamic response applied to dual channel functional near infrared spectroscopy. Comput Biol Med 2017; 84:9-19. [DOI: 10.1016/j.compbiomed.2017.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 11/26/2022]
|
16
|
Aarabi A, Osharina V, Wallois F. Effect of confounding variables on hemodynamic response function estimation using averaging and deconvolution analysis: An event-related NIRS study. Neuroimage 2017; 155:25-49. [PMID: 28450140 DOI: 10.1016/j.neuroimage.2017.04.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 11/17/2022] Open
Abstract
Slow and rapid event-related designs are used in fMRI and functional near-infrared spectroscopy (fNIRS) experiments to temporally characterize the brain hemodynamic response to discrete events. Conventional averaging (CA) and the deconvolution method (DM) are the two techniques commonly used to estimate the Hemodynamic Response Function (HRF) profile in event-related designs. In this study, we conducted a series of simulations using synthetic and real NIRS data to examine the effect of the main confounding factors, including event sequence timing parameters, different types of noise, signal-to-noise ratio (SNR), temporal autocorrelation and temporal filtering on the performance of these techniques in slow and rapid event-related designs. We also compared systematic errors in the estimates of the fitted HRF amplitude, latency and duration for both techniques. We further compared the performance of deconvolution methods based on Finite Impulse Response (FIR) basis functions and gamma basis sets. Our results demonstrate that DM was much less sensitive to confounding factors than CA. Event timing was the main parameter largely affecting the accuracy of CA. In slow event-related designs, deconvolution methods provided similar results to those obtained by CA. In rapid event-related designs, our results showed that DM outperformed CA for all SNR, especially above -5 dB regardless of the event sequence timing and the dynamics of background NIRS activity. Our results also show that periodic low-frequency systemic hemodynamic fluctuations as well as phase-locked noise can markedly obscure hemodynamic evoked responses. Temporal autocorrelation also affected the performance of both techniques by inducing distortions in the time profile of the estimated hemodynamic response with inflated t-statistics, especially at low SNRs. We also found that high-pass temporal filtering could substantially affect the performance of both techniques by removing the low-frequency components of HRF profiles. Our results emphasize the importance of characterization of event timing, background noise and SNR when estimating HRF profiles using CA and DM in event-related designs.
Collapse
Affiliation(s)
- Ardalan Aarabi
- Faculty of Medicine, University of Picardie Jules Verne, Amiens 80036, France; GRAMFC-Inserm U1105, University Research Center (CURS), University Hospital, Amiens, 80054 France.
| | - Victoria Osharina
- GRAMFC-Inserm U1105, University Research Center (CURS), University Hospital, Amiens, 80054 France
| | - Fabrice Wallois
- GRAMFC-Inserm U1105, University Research Center (CURS), University Hospital, Amiens, 80054 France; EFSN Pediatric (Pediatric Nervous System Functional Investigation Unit), CHU AMIENS - SITE SUD, Amiens, France
| |
Collapse
|
17
|
Fontes AA, Miranda DMD, Resende LMD. Espectroscopia de luz próxima ao infravermelho e processamento sensorial auditivo em lactentes. REVISTA CEFAC 2016. [DOI: 10.1590/1982-0216201618422615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Objetivo: revisar sistematicamente, por meio de busca nas plataformas Medline e Lilacs o uso da espectroscopia de luz próxima ao infravermelho (NIRS) como instrumento para a avaliação da audição a nível cortical em lactentes. Métodos: foi realizada uma revisão integrativa baseada nos critérios estabelecidos pela Cochrane Handbook, passando pelas etapas de definição da questão norteadora (o tema a ser pesquisado), definição das bases de dados para localização dos estudos, seleção e análise crítica dos artigos. A pesquisa bibliográfica foi realizada no período de setembro a dezembro de 2014. Os critérios de inclusão utilizados foram: artigos publicados nos idiomas inglês, português e espanhol, com a população infantil (bebês de 0 a 24 meses) e tipo de estudo (coorte, caso controle, transversal). Resultados: foram identificados 1674 artigos e 12 atenderam os critérios de inclusão deste estudo. Todos os artigos utilizaram o estímulo auditivo para medir alterações na hemodinâmica cerebral, porém com áreas cerebrais de interesse diferentes. E foram agrupados em três categorias quanto ao tipo de estímulo: apenas sons vocais, sons vocais e outros estímulos auditivos e sons não vocais. Conclusão: a NIRS é um instrumento eficaz para investigação da audição a nível cortical na população infantil.
Collapse
|
18
|
Tan Q, Zhang M, Wang Y, Zhang M, Wang Y, Xin Q, Wang B, Li Z. Frequency-specific functional connectivity revealed by wavelet-based coherence analysis in elderly subjects with cerebral infarction using NIRS method. Med Phys 2015; 42:5391-403. [PMID: 26328988 DOI: 10.1118/1.4928672] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Resting-state functional connectivity in subjects with cerebral infarction (CI) was assessed using wavelet-based coherence analysis of near-infrared spectroscopy (NIRS) signals. METHODS Continuous recordings of NIRS signals were measured from the prefrontal cortex and sensorimotor cortical areas of 12 subjects with CI (CI group) and 16 healthy subjects (healthy group) during the resting state. The channels in these areas were divided into four connection types: homologous connectivity, frontoposterior connectivity, contralateral connectivity, and homolateral connectivity. Wavelet coherence (WCO) and wavelet phase coherence (WPCO) were calculated in six frequency intervals in each channel pair: I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; IV, 0.021-0.052 Hz; V, 0.0095-0.021 Hz; and VI, 0.005-0.0095 Hz. RESULTS WCO in the six frequency intervals was significant for all channels in the healthy group. By contrast, WCO in frequency intervals II-VI showed weakened connectivity in the CI group, especially in terms of frontoposterior connectivity. WCO was significantly lower in the CI group than in the healthy group in the following connectivities and frequency intervals: front-posterior, IV-VI (p < 0.05); homologous, III-V (p < 0.01); motor-contralateral, III-V (p < 0.05); and motor-homolateral, III-V (p < 0.05). WPCO in frequency intervals III (F = 5.032, p = 0.033) and IV (F = 11.95, p = 0.002) in frontoposterior connectivity, as well as in intervals III-V in homologous, motor-contralateral and motor-homolateral connectivities were significantly lower (p < 0.05) in the CI group than in the healthy group. However, WPCO in interval I showed significantly higher levels in motor-homolateral connectivity in the CI group than in the healthy group (F = 4.241, p = 0.049). CONCLUSIONS The authors' results suggest that CI causes a frequency-specific disruption in resting-state connectivity. This may be useful for assessing the effectiveness of functional recovery after CI.
Collapse
Affiliation(s)
- Qitao Tan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Ming Zhang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Yi Wang
- Ji'nan Central Hospital, Jinan 250013, China
| | - Manyu Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yan Wang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Qing Xin
- Hospital of Shandong University, Jinan 250061, China
| | - Bitan Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
19
|
Han Q, Li Z, Gao Y, Li W, Xin Q, Tan Q, Zhang M, Zhang Y. Phase synchronization analysis of prefrontal tissue oxyhemoglobin oscillations in elderly subjects with cerebral infarction. Med Phys 2015; 41:102702. [PMID: 25281981 DOI: 10.1118/1.4896113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This study aims to assess the phase relationship of prefrontal tissue oxyhemoglobin oscillations using wavelet phase coherence analysis of cerebral Delta [HbO₂] signals in cerebral infarction (CI) patients during the resting state. METHODS Continuous recordings of near-infrared spectroscopy signals were obtained from the left and right prefrontal lobes in 21 subjects with CI (Group CI, age: 76.6 ± 8.5 yr) and 21 healthy elderly subjects (Group Healthy, age: 69.0 ± 7.4 yr) during the resting state. The Group CI was further divide into two groups: CI with hypertension and CI without hypertension. The phase synchronization between left and right prefrontal Delta [HbO₂] oscillations in four frequency intervals (I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; and IV, 0.021-0.052 Hz) was analyzed using wavelet phase coherence method. RESULTS The phase coherences in intervals III and IV were significantly lower in CI with hypertension than in healthy elderly subjects (F = 12.974, p = 0.001 for III and F = 10.073, p = 0.004 for interval IV). The phase coherence of CI without hypertension in interval III was significantly lower than in healthy elderly subjects (F = 9.909, p = 0.004). Also, the phase coherence in interval IV was significantly lower in CI with hypertension than in CI without hypertension (F = 5.665, p = 0.028). Also, the phase agreement in interval IV showed evident difference between Group CI with hypertension and without hypertension. CONCLUSIONS The difference in phase characteristics of prefrontal tissue oxyhemoglobin oscillations between the CI patients and healthy elderly indicates altered phase synchronization. Moreover, the CI combined with hypertension would aggravate this process. This study provides new insight into the phase dynamics of cerebral oxygenation and may be useful in assessing the risk for stroke.
Collapse
Affiliation(s)
- Qingyu Han
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yuanjin Gao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Wenhao Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Qing Xin
- Hospital of Shandong University, Jinan 250061, China
| | - Qitao Tan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Manyu Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yixun Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
20
|
Funane T, Homae F, Watanabe H, Kiguchi M, Taga G. Greater contribution of cerebral than extracerebral hemodynamics to near-infrared spectroscopy signals for functional activation and resting-state connectivity in infants. NEUROPHOTONICS 2014; 1:025003. [PMID: 26157977 PMCID: PMC4478757 DOI: 10.1117/1.nph.1.2.025003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/15/2014] [Accepted: 07/25/2014] [Indexed: 05/12/2023]
Abstract
While near-infrared spectroscopy (NIRS) has been increasingly applied to neuroimaging and functional connectivity studies in infants, it has not been quantitatively examined as to what extent the deep tissue (such as cerebral tissue) as opposed to shallow tissue (such as scalp), contributes to NIRS signals measured in infants. A method for separating the effects of deep- and shallow-tissue layers was applied to data of nine sleeping three-month-old infants who had been exposed to 3-s speech sounds or silence (i.e., resting state) and whose hemodynamic changes over their bilateral temporal cortices had been measured by using an NIRS system with multiple source-detector (S-D) distances. The deep-layer contribution was found to be large during resting [67% at S-D 20 mm, 78% at S-D 30 mm for oxygenated hemoglobin (oxy-Hb)] as well as during the speech condition (72% at S-D 20 mm, 82% at S-D 30 mm for oxy-Hb). A left-right connectivity analysis showed that correlation coefficients between left and right channels did not differ between original- and deep-layer signals under no-stimulus conditions and that of original- and deep-layer signals were larger than those of the shallow layer. These results suggest that NIRS signals obtained in infants with appropriate S-D distances largely reflected cerebral hemodynamic changes.
Collapse
Affiliation(s)
- Tsukasa Funane
- Hitachi, Ltd., Central Research Laboratory, 2520 Akanuma, Hatoyama, Saitama 350–0395, Japan
| | - Fumitaka Homae
- Tokyo Metropolitan University, Department of Language Sciences, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hama Watanabe
- The University of Tokyo, Graduate School of Education, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masashi Kiguchi
- Hitachi, Ltd., Central Research Laboratory, 2520 Akanuma, Hatoyama, Saitama 350–0395, Japan
| | - Gentaro Taga
- The University of Tokyo, Graduate School of Education, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Abstract
Over the past 20 years, the field of cognitive neuroscience has relied heavily on hemodynamic measures of blood oxygenation in local regions of the brain to make inferences about underlying cognitive processes. These same functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) techniques have recently been adapted for use with human infants. We review the advantages and disadvantages of these two neuroimaging methods for studies of infant cognition, with a particular emphasis on their technical limitations and the linking hypotheses that are used to draw conclusions from correlational data. In addition to summarizing key findings in several domains of infant cognition, we highlight the prospects of improving the quality of fNIRS data from infants to address in a more sophisticated way how cognitive development is mediated by changes in underlying neural mechanisms.
Collapse
Affiliation(s)
- Richard N Aslin
- Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627; ,
| | | | | |
Collapse
|
22
|
Han Q, Zhang M, Li W, Gao Y, Xin Q, Wang Y, Li Z. Wavelet coherence analysis of prefrontal tissue oxyhaemoglobin signals as measured using near-infrared spectroscopy in elderly subjects with cerebral infarction. Microvasc Res 2014; 95:108-15. [PMID: 25117487 DOI: 10.1016/j.mvr.2014.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/29/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
This study aims to assess the prefrontal functional connectivity using wavelet coherence analysis of cerebral tissue oxyhaemoglobin concentration (Delta [HbO2]) signals in elderly subjects with cerebral infarction (CI) during the resting state. Continuous recordings of near-infrared spectroscopy (NIRS) signals were obtained from the left and right prefrontal lobes in 10 subjects with CI (age: 74.4±9.0years) and 18 healthy elderly subjects (age: 69.9±7.3years) during the resting state. The coherence between left and right prefrontal Delta [HbO2] oscillations in four frequency intervals (I, 0.6-2Hz; II, 0.145-0.6Hz; III, 0.052-0.145Hz and IV, 0.021-0.052Hz) was analyzed using wavelet coherence analysis. In healthy elderly subjects, the Delta [HbO2] oscillations were significantly wavelet coherent in intervals I and III (p<0.05), wavelet phase coherent in intervals from I to IV. In elderly subjects with CI, the left and right Delta [HbO2] oscillations were significantly wavelet coherent and phase coherent in interval I (p<0.05). In elderly subjects with CI, the power and phase coherences were significantly lower in interval III (p<0.01) than in healthy subjects. The difference in wavelet coherence between the healthy elderly and elderly with CI indicates an altered brain functional connectivity in CI patients. This may be useful for assessing the effectiveness of functional recovery following a CI.
Collapse
Affiliation(s)
- Qingyu Han
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China
| | - Ming Zhang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, PR China
| | - Wenhao Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China
| | - Yuanjin Gao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China
| | - Qing Xin
- Hospital of Shandong University, Jinan 250061, PR China
| | - Yan Wang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, PR China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China.
| |
Collapse
|
23
|
Molavi B, May L, Gervain J, Carreiras M, Werker JF, Dumont GA. Analyzing the resting state functional connectivity in the human language system using near infrared spectroscopy. Front Hum Neurosci 2014; 7:921. [PMID: 24523685 PMCID: PMC3905209 DOI: 10.3389/fnhum.2013.00921] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/16/2013] [Indexed: 12/02/2022] Open
Abstract
We have evaluated the use of phase synchronization to identify resting state functional connectivity (RSFC) in the language system in infants using functional near infrared spectroscopy (fNIRS). We used joint probability distribution of phase between fNIRS channels with a seed channel in the language area to estimate phase relations and to identify the language system network. Our results indicate the feasibility of this method in identifying the language system. The connectivity maps are consistent with anatomical cortical connections and are also comparable to those obtained from functional magnetic resonance imaging (fMRI) functional connectivity studies. The results also indicate left hemisphere lateralization of the language network.
Collapse
Affiliation(s)
- Behnam Molavi
- Department of Electrical and Computer Engineering, University of British Columbia Vancouver BC, Canada
| | - Lillian May
- Department of Psychology, University of British Columbia Vancouver, BC, Canada
| | - Judit Gervain
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Sorbonne Paris Cité Paris, France ; Laboratoire Psychologie de la Perception, Centre national de la recherche scientifique Paris, France
| | - Manuel Carreiras
- Basque Center on Cognition Brain and Language San Sebastián, Spain ; IKERBASQUE, Basque Foundation for Science Bilbao, Spain
| | - Janet F Werker
- Department of Psychology, University of British Columbia Vancouver, BC, Canada
| | - Guy A Dumont
- Department of Electrical and Computer Engineering, University of British Columbia Vancouver BC, Canada
| |
Collapse
|
24
|
Matsui M, Homae F, Tsuzuki D, Watanabe H, Katagiri M, Uda S, Nakashima M, Dan I, Taga G. Referential framework for transcranial anatomical correspondence for fNIRS based on manually traced sulci and gyri of an infant brain. Neurosci Res 2014; 80:55-68. [PMID: 24445146 DOI: 10.1016/j.neures.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Functional near infrared spectroscopy (fNIRS), which is compact, portable, and tolerant of body movement, is suitable for monitoring infant brain functions. Nevertheless, fNIRS also poses a technical problem in that it cannot provide structural information. Supplementation with structural magnetic resonance images (MRI) is not always feasible for infants who undergo fNIRS measurement. Probabilistic registration methods using an MRI database instead of subjects' own MRIs are optimized for adult studies and offer only limited resources for infant studies. To overcome this, we used high-quality infant MRI data for a 12-month-old infant and manually delineated segmented gyri from among the highly visible macroanatomies on the lateral cortical surface. These macroanatomical regions are primarily linked to the spherical coordinate system based on external cranial landmarks, and further to traditional 10-20-based head-surface positioning systems. While macroanatomical structures were generally comparable between adult and infant atlases, differences were found in the parietal lobe, which was positioned posteriorly at the vertex in the infant brain. The present study provides a referential framework for macroanatomical analyses in infant fNIRS studies. With this resource, multichannel fNIRS functional data could be analyzed in reference to macroanatomical structures through virtual and probabilistic registrations without acquiring subject-specific MRIs.
Collapse
Affiliation(s)
- Mie Matsui
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Fumitaka Homae
- Department of Language Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Daisuke Tsuzuki
- Applied Cognitive Neuroscience Laboratory, Research and Development Initiatives, Chuo University, 1-13-27 Kasuga, Bunkyo-ward, Tokyo 112-8551, Japan
| | - Hama Watanabe
- Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masatoshi Katagiri
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoshi Uda
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mitsuhiro Nakashima
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ippeita Dan
- Applied Cognitive Neuroscience Laboratory, Research and Development Initiatives, Chuo University, 1-13-27 Kasuga, Bunkyo-ward, Tokyo 112-8551, Japan.
| | - Gentaro Taga
- Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Alderliesten T, De Vis J, Lemmers P, van Bel F, Benders M, Hendrikse J, Petersen E. Simultaneous quantitative assessment of cerebral physiology using respiratory-calibrated MRI and near-infrared spectroscopy in healthy adults. Neuroimage 2014; 85 Pt 1:255-63. [DOI: 10.1016/j.neuroimage.2013.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022] Open
|
26
|
Hemmati Berivanlou N, Setarehdan SK, Ahmadi Noubari H. Evoked hemodynamic response estimation using ensemble empirical mode decomposition based adaptive algorithm applied to dual channel functional near infrared spectroscopy (fNIRS). J Neurosci Methods 2013; 224:13-25. [PMID: 24365048 DOI: 10.1016/j.jneumeth.2013.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The quality of the functional near infrared spectroscopy (fNIRS) recordings is highly degraded by the presence of physiological interferences. It is crucial to efficiently separate the evoked hemodynamic responses (EHRs) from other background hemodynamic activities prior to any further processing. NEW METHOD This paper presents a novel algorithm for physiological interferences reduction from the dual channel fNIRS measurements using ensemble empirical mode decomposition (EEMD) technique. The proposed algorithm is comprised of two main steps: (1) decomposing reference signal into its constituents called intrinsic mode functions (IMFs) and (2) adaptively defining appropriate weights of the corresponding IMFs to estimate the proportion of physiological interference in standard channel measurement. RESULTS Performance of the proposed algorithm was evaluated using both synthetic and semi-real brain hemodynamic data based on four parameters of relative mean squared error (rMSE), Pearson's correlation coefficient (R(2)), percentage estimation error of peak amplitude (EPA) and peak latency (EL). COMPARISON WITH EXISTING METHODS Results obtained from synthetic data revealed that both the EEMD based normalized least mean squares (EEMD-NLMS) and EEMD based recursive least squares (EEMD-RLS) methods could reduce the average rMSE by at least 34% and 49%, respectively, when compared with widely used methods: block averaging, band-pass filtering and principal and/or independent component analysis. Furthermore, the two proposed methods outperform the regression method in reducing rMSE by at least 21% and 35% respectively when applied to semi-real data. CONCLUSIONS An effective algorithm for estimating the EHRs from raw fNIRS data was proposed in which no assumption about the amplitude, shape and duration of the responses is considered.
Collapse
Affiliation(s)
- Nima Hemmati Berivanlou
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Kamaledin Setarehdan
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Hossein Ahmadi Noubari
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Electrical and Computer Engineering Department, University of British Columbia, Vancouver, Canada
| |
Collapse
|
27
|
Homae F. A brain of two halves: insights into interhemispheric organization provided by near-infrared spectroscopy. Neuroimage 2013; 85 Pt 1:354-62. [PMID: 23770412 DOI: 10.1016/j.neuroimage.2013.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/14/2013] [Accepted: 06/03/2013] [Indexed: 12/14/2022] Open
Abstract
The discovery of functional lateralization and localization of the brain marked the beginning of a new era in neuroscience. While the past 150 years of research have provided a great deal of knowledge of hemispheric differences and functional relationships, the precise organization of functional laterality remains a topic of intense debate. Here I will shed light on the functional organization of the two hemispheres by reviewing some of the most recent functional near-infrared spectroscopy (NIRS) studies that have reported hemispheric differences in activation patterns. Most NIRS studies using visual stimuli, which revealed functional differentiation between the hemispheres, have reported unilateral activation, i.e., significant levels of activation in only one hemisphere. Auditory stimuli, including speech sounds, elicited bilateral activation, while the limited number of studies on young infants revealed primarily unilateral activation. The stimulus modality and the age of the participants therefore determine whether the resulting cortical activation is unilateral or bilateral. By combining a review of the existing literature with NIRS results regarding homologous connectivity across hemispheres, I hypothesized that the origin of functional lateralization changes from the independence of each hemispheric region, to mutual inhibition between homologous regions during development. Future studies applying multi-modal measurements along with NIRS and spatiotemporal analyses will further deepen our understanding of the interhemispheric organization of brain function.
Collapse
Affiliation(s)
- Fumitaka Homae
- Department of Language Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
28
|
Scarpa F, Brigadoi S, Cutini S, Scatturin P, Zorzi M, Dell'Acqua R, Sparacino G. A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements. Neuroimage 2013; 72:106-19. [DOI: 10.1016/j.neuroimage.2013.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 12/17/2012] [Accepted: 01/13/2013] [Indexed: 10/27/2022] Open
|
29
|
Brigadoi S, Ceccherini L, Cutini S, Scarpa F, Scatturin P, Selb J, Gagnon L, Boas DA, Cooper RJ. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. Neuroimage 2013; 85 Pt 1:181-91. [PMID: 23639260 DOI: 10.1016/j.neuroimage.2013.04.082] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/25/2022] Open
Abstract
Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment.
Collapse
Affiliation(s)
- Sabrina Brigadoi
- Department of Developmental Psychology, University of Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Imai M, Watanabe H, Yasui K, Kimura Y, Shitara Y, Tsuchida S, Takahashi N, Taga G. Functional connectivity of the cortex of term and preterm infants and infants with Down's syndrome. Neuroimage 2013; 85 Pt 1:272-8. [PMID: 23631984 DOI: 10.1016/j.neuroimage.2013.04.080] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) imaging studies have revealed the functional development of the human brain in early infancy. By measuring spontaneous fluctuations in cerebral blood oxygenation with NIRS, we can examine the developmental status of the functional connectivity of networks in the cortex. However, it has not been clarified whether premature delivery and/or chromosomal abnormalities affect the development of the functional connectivity of the cortex. In the current study, we investigated the spontaneous brain activity of sleeping infants who were admitted to a neonatal intensive care unit at term age. We classified them into the 3 following infant groups: (i) term-or-late-preterm, (ii) early-preterm, and (iii) Down's syndrome (DS). We used multichannel NIRS to measure the spontaneous changes in oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) at 10 measurement channels, which covered the frontal, temporal, and occipital regions. In order to reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of the time-course signals among all of the pairs of measurement channels. The functional connectivity was classified into the 4 following types: (i) short-range, (ii) contralateral-transverse, (iii) ipsilateral-longitudinal, and (iv) control. In order to examine whether the local properties of hemodynamics reflected any pathological conditions, we calculated the phase differences between the oxy- and deoxy-Hb time-course signals in the 3 groups. The statistical analyses of the functional connectivity data showed main effects of group and the types of connectivity. For the group effect, the mean functional connectivity of the infants in the term-or-late-preterm group did not differ from that in the early-preterm group, and the mean functional connectivity of the infants in the DS group was lower than that in the other 2 groups. For the effect of types of connectivity, short-range connectivity was highest compared to any of the other types of connectivity, and the second highest connectivity was the contralateral-transverse one. The phase differences between the oxy- and deoxy-Hb changes showed that there were significant differences between the DS group and the other 2 groups. Our findings suggested that the development of the functional connectivity of cortical networks did not differ between term-or-late-preterm infants and early-preterm infants around term-equivalent ages, while DS infants had alterations in their functional connectivity development and local hemodynamics at term age. The highest short-range connectivity and the second highest contralateral-transverse connectivity suggested that the precursors for the basic cortical networks of functional connectivity were present at term age.
Collapse
Affiliation(s)
- Makiko Imai
- Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Naoi N, Fuchino Y, Shibata M, Niwa F, Kawai M, Konishi Y, Okanoya K, Myowa-Yamakoshi M. Decreased right temporal activation and increased interhemispheric connectivity in response to speech in preterm infants at term-equivalent age. Front Psychol 2013; 4:94. [PMID: 23459601 PMCID: PMC3585712 DOI: 10.3389/fpsyg.2013.00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/08/2013] [Indexed: 11/13/2022] Open
Abstract
Preterm infants are at increased risk of language-related problems later in life; however, few studies have examined the effects of preterm birth on cerebral responses to speech at very early developmental stages. This study examined cerebral activation and functional connectivity in response to infant-directed speech (IDS) and adult-directed speech (ADS) in full-term neonates and preterm infants at term-equivalent age using 94-channel near-infrared spectroscopy. The results showed that compared with ADS, IDS increased activity in larger brain areas such as the bilateral frontotemporal, temporal, and temporoparietal regions, both in full-term and preterm infants. Preterm infants exhibited decreased activity in response to speech stimuli in the right temporal region compared with full-term infants, although the significance was low. Moreover, preterm infants exhibited increased interhemispheric connectivity compared with full-term controls, especially in the temporal and temporoparietal regions. These differences suggest that preterm infants may follow different developmental trajectories from those born at term owing to differences in intrauterine and extrauterine development.
Collapse
Affiliation(s)
- Nozomi Naoi
- Okanoya Emotional Information Project, The Exploratory Research for Advanced Technology, Japan Agency of Science and Technology Saitama, Japan ; Graduate School of Education, Kyoto University Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sasai S, Homae F, Watanabe H, Sasaki AT, Tanabe HC, Sadato N, Taga G. A NIRS-fMRI study of resting state network. Neuroimage 2012; 63:179-93. [PMID: 22713670 DOI: 10.1016/j.neuroimage.2012.06.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 11/17/2022] Open
Abstract
Resting state functional connectivity, which is defined as temporal correlation of spontaneous activity between diverse brain regions, has been reported to form resting state networks (RSNs), consisting of a specific set of brain regions, based on functional magnetic resonance imaging (fMRI). Recently, studies using near-infrared spectroscopy (NIRS) reported that NIRS signals also show temporal correlation between different brain regions. The local relationship between NIRS and fMRI signals has been examined by simultaneously recording these signals when participants perform tasks or respond to stimuli. However, the NIRS-fMRI signal relationship during the resting state has been reported only between NIRS signals obtained within limited regions and whole brain fMRI signals. Therefore, it remains unclear whether NIRS signals obtained at diverse regions correlate with regional fMRI signals close to the NIRS measurement channels, especially in relation to the RSNs. In this study, we tested whether the signals measured by these different modalities during the resting state have the consistent characteristics of the RSNs. Specifically, NIRS signals during the resting state were acquired over the frontal, temporal, and occipital cortices while whole brain fMRI data was simultaneously recorded. First, by projecting the NIRS channel positions over the cerebral cortical surface, we identified the most likely anatomical locations of all NIRS channels used in the study. Next, to investigate the regional signal relationship between NIRS and fMRI, we calculated the cross-correlation between NIRS signals and fMRI signals in the brain regions adjacent to each NIRS channel. For each NIRS channel, we observed the local maxima of correlation coefficients between NIRS and fMRI signals within a radius of 2 voxels from the projection point. Furthermore, we also found that highly correlated voxels with the NIRS signal were mainly localized within brain tissues for all NIRS channels, with the exception of 2 frontal channels. Finally, by calculating the correlation between NIRS signals at a channel and whole brain fMRI signals, we observed that NIRS signals correlate with fMRI signals not only within brain regions adjacent to NIRS channels but also within distant brain regions constituting RSNs, such as the dorsal attention, fronto-parietal control, and default mode networks. These results support the idea that NIRS signals obtained at several cortical regions during the resting state mainly reflect regional spontaneous hemodynamic fluctuations that originate from spontaneous cortical activity, and include information that characterizes the RSNs. Because NIRS is relatively easy to use and a less physically demanding neuroimaging technique, our findings should facilitate a broad application of this technique to examine RSNs, especially for clinical populations and conditions unsuitable for fMRI.
Collapse
Affiliation(s)
- Shuntaro Sasai
- Graduate School of Education, The University of Tokyo, Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Aslin RN. Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy. Cogn Neuropsychol 2012; 29:7-33. [PMID: 22329690 DOI: 10.1080/02643294.2012.654773] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Near-infrared spectroscopy (NIRS) is a noninvasive diffuse optical-imaging technique that can measure local metabolic demand in the surface of the cortex due to differential absorption of light by oxygenated and deoxygenated blood. Over the past decade, NIRS has become increasingly used as a complement to other neuroimaging techniques, such as electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI), particularly in paediatric populations who cannot easily be tested using fMRI and MEG. In this review of empirical findings from human infants, ranging in age from birth to 12 months of age, a number of interpretive concerns are raised about what can be concluded from NIRS data. In addition, inconsistencies across studies are highlighted, and strategies are proposed for enhancing the reliability of NIRS data gathered from infants. Finally, a variety of new and promising advances in NIRS techniques are highlighted.
Collapse
Affiliation(s)
- Richard N Aslin
- Department of Brain and Cognitive Sciences, University of Rochester, NY, USA.
| |
Collapse
|
34
|
Elwell CE, Cooper CE. Making light work: illuminating the future of biomedical optics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4358-79. [PMID: 22006895 DOI: 10.1098/rsta.2011.0302] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In 1996, the Royal Society held a Discussion Meeting entitled 'Near-infrared spectroscopy and imaging of living systems'. In 2010, this topic was revisited in a Theo Murphy Royal Society Scientific Discussion Meeting entitled 'Making light work: illuminating the future of biomedical optics'. The second meeting provided the opportunity for leading researchers to reflect on how the technology, methods and applications have evolved over the past 14 years and assess where they have made a major impact. Particular emphasis was placed on discussions of future prospects and associated challenges. This Introduction provides an overview of the state of the art of near-infrared spectroscopy (NIRS) and biomedical optics, with specific reference to the contributed papers from the invited speakers included in this issue. Importantly, we also reflect on the contributions from all of the attendees by highlighting the issues raised during oral presentations, facilitated panel sessions and discussions, and use these to summarize the current opinion on the development and application of optical systems for use in the clinical and life sciences. A notable outcome from the meeting was a plan to establish a biennial international conference for developers and users of NIRS technologies.
Collapse
Affiliation(s)
- Clare E Elwell
- Near Infrared Spectroscopy Research Group, Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|