1
|
Makarov DN, Eseev MK, Gusarevich ES, Makarova KA, Borisov MS. Ultrashort pulses in structural analysis of diamond layers with angstrom resolution. OPTICS LETTERS 2025; 50:694-697. [PMID: 39815595 DOI: 10.1364/ol.546635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
X-ray crystallography is commonly used to determine crystal structures, whether continuous or ultrashort x rays are used. In this paper, it is shown that using only ultrashort pulses, it is possible to determine interplanar spacing in diamond layers, the distance between which can be only a few angstroms. The results obtained can be extended, with further development of the presented theory, to determine 3D objects in the crystal structure, the dimensions of which can be only a few angstroms.
Collapse
|
2
|
Costain TS, Rolston JB, Neville SP, Schuurman MS. A DFT/MRCI Hamiltonian parameterized using only ab initio data. II. Core-excited states. J Chem Phys 2024; 161:114117. [PMID: 39301854 DOI: 10.1063/5.0227385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
A newly parameterized combined density functional theory and multi-reference configuration interaction (DFT/MRCI) Hamiltonian, termed core-valence separation (CVS)-QE12, is defined for the computation of K-shell core-excitation and core-ionization energies. This CVS counterpart to the recently reported QE8 Hamiltonian [Costain et al., J. Chem. Phys, 160, 224106 (2024)] is parameterized by fitting to benchmark quality ab initio data. The definition of the CVS-QE12 and QE8 Hamiltonians differ from previous CVS-DFT/MRCI parameterizations in three primary ways: (i) the replacement of the BHLYP exchange-correlation functional with QTP17 to yield a balanced description of both core and valence excitation energies, (ii) the adoption of a new, three-parameter damping function, and (iii) the introduction of separate scaling of the core-valence and valence-valence Coulombic interactions. Crucially, the parameters of the CVS-QE12 Hamiltonian are obtained via fitting exclusively to highly accurate ab initio vertical core-excitation and ionization energies computed at the CVS-EOM-CCSDT level of theory. The CVS-QE12 Hamiltonian is validated against further benchmark computations and is found to furnish K-edge core vertical excitation and ionization energies exhibiting absolute errors ≤0.5 eV at low computational cost.
Collapse
Affiliation(s)
- Teagan Shane Costain
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jibrael B Rolston
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Simon P Neville
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - Michael S Schuurman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
3
|
Dodia M, Rouxel JR, Cho D, Zhang Y, Keefer D, Bonn M, Nagata Y, Mukamel S. Water Solvent Reorganization upon Ultrafast Resonant Stimulated X-ray Raman Excitation of a Metalloporphyrin Dimer. J Chem Theory Comput 2024; 20:4254-4264. [PMID: 38727197 DOI: 10.1021/acs.jctc.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/12/2024]
Abstract
We propose an X-ray Raman pump-X-ray diffraction probe scheme to follow solvation dynamics upon charge migration in a solute molecule. The X-ray Raman pump selectively prepares a valence electronic wavepacket in the solute, while the probe provides information about the entire molecular ensemble. A combination of molecular dynamics and ab initio quantum chemistry simulations is applied to a Zn-Ni porphyrin dimer in water. Using time-resolved X-ray diffraction and pair distribution functions, we extracted solvation shell dynamics.
Collapse
Affiliation(s)
- Mayank Dodia
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jérémy R Rouxel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Daeheum Cho
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yu Zhang
- Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Daniel Keefer
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
4
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Principi E. Preface to Special Topic: The Advent of Ultrafast X-Ray Absorption Spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:030401. [PMID: 38912290 PMCID: PMC11193549 DOI: 10.1063/4.0000259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Affiliation(s)
- Emiliano Principi
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 – km 163.5, 34149 Basovizza (TS), Italy
| |
Collapse
|
6
|
Banerjee A, Jay RM, Leitner T, Wang RP, Harich J, Stefanuik R, Coates MR, Beale EV, Kabanova V, Kahraman A, Wach A, Ozerov D, Arrell C, Milne C, Johnson PJM, Cirelli C, Bacellar C, Huse N, Odelius M, Wernet P. Accessing metal-specific orbital interactions in C-H activation with resonant inelastic X-ray scattering. Chem Sci 2024; 15:2398-2409. [PMID: 38362433 PMCID: PMC10866335 DOI: 10.1039/d3sc04388f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2023] [Accepted: 01/01/2024] [Indexed: 02/17/2024] Open
Abstract
Photochemically prepared transition-metal complexes are known to be effective at cleaving the strong C-H bonds of organic molecules in room temperature solutions. There is also ample theoretical evidence that the two-way, metal to ligand (MLCT) and ligand to metal (LMCT), charge-transfer between an incoming alkane C-H group and the transition metal is the decisive interaction in the C-H activation reaction. What is missing, however, are experimental methods to directly probe these interactions in order to reveal what determines reactivity of intermediates and the rate of the reaction. Here, using quantum chemical simulations we predict and propose future time-resolved valence-to-core resonant inelastic X-ray scattering (VtC-RIXS) experiments at the transition metal L-edge as a method to provide a full account of the evolution of metal-alkane interactions during transition-metal mediated C-H activation reactions. For the model system cyclopentadienyl rhodium dicarbonyl (CpRh(CO)2), we demonstrate, by simulating the VtC-RIXS signatures of key intermediates in the C-H activation pathway, how the Rh-centered valence-excited states accessible through VtC-RIXS directly reflect changes in donation and back-donation between the alkane C-H group and the transition metal as the reaction proceeds via those intermediates. We benchmark and validate our quantum chemical simulations against experimental steady-state measurements of CpRh(CO)2 and Rh(acac)(CO)2 (where acac is acetylacetonate). Our study constitutes the first step towards establishing VtC-RIXS as a new experimental observable for probing reactivity of C-H activation reactions. More generally, the study further motivates the use of time-resolved VtC-RIXS to follow the valence electronic structure evolution along photochemical, photoinitiated and photocatalytic reactions with transition metal complexes.
Collapse
Affiliation(s)
- Ambar Banerjee
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Raphael M Jay
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Torsten Leitner
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Ru-Pan Wang
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg 22761 Hamburg Germany
| | - Jessica Harich
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg 22761 Hamburg Germany
| | - Robert Stefanuik
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| | - Michael R Coates
- Department of Physics, Stockholm University, AlbaNova University Center 106 91 Stockholm Sweden
| | - Emma V Beale
- Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
| | | | | | - Anna Wach
- Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
- Institute of Nuclear Physics, Polish Academy of Sciences PL-31342 Krakow Poland
| | - Dmitry Ozerov
- Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
| | | | | | | | | | | | - Nils Huse
- Center for Free-Electron Laser Science, Department of Physics, University of Hamburg 22761 Hamburg Germany
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center 106 91 Stockholm Sweden
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
| |
Collapse
|
7
|
Zhang TH, Wang WM, Li YT, Zhang J. Electromagnetically Induced Transparency in the Strongly Relativistic Regime. PHYSICAL REVIEW LETTERS 2024; 132:065105. [PMID: 38394557 DOI: 10.1103/physrevlett.132.065105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024]
Abstract
Stable transport of laser beams in highly overdense plasmas is of significance in the fast ignition of inertial confinement fusion, relativistic electron generation, and powerful electromagnetic emission, but hard to realize. Early in 1996, Harris proposed an electromagnetically induced transparency (EIT) mechanism, analogous to the concept in atomic physics, to transport a low-frequency (LF) laser in overdense plasmas aided by a high-frequency pump laser. However, subsequent investigations show that EIT cannot occur in real plasmas with boundaries. Here, our particle-in-cell simulations show that EIT can occur in the strongly relativistic regime and result in stable propagation of a LF laser in bounded plasmas with tens of its critical density. A relativistic three-wave coupling model is developed, and the criteria and frequency passband for EIT occurrence are presented. The passband is sufficiently wide in the strongly relativistic regime, allowing EIT to work sustainably. Nevertheless, it is narrowed to nearly an isolated point in the weakly relativistic regime, which can explain the quenching of EIT in bounded plasmas found in previous investigations.
Collapse
Affiliation(s)
- Tie-Huai Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Min Wang
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
- IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Tong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jie Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
- IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory for Laser Plasmas (MoE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Caprini L, Löwen H, Geilhufe RM. Ultrafast entropy production in pump-probe experiments. Nat Commun 2024; 15:94. [PMID: 38169471 PMCID: PMC10761836 DOI: 10.1038/s41467-023-44277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
The ultrafast control of materials has opened the possibility to investigate non-equilibrium states of matter with striking properties, such as transient superconductivity and ferroelectricity, ultrafast magnetization and demagnetization, as well as Floquet engineering. The characterization of the ultrafast thermodynamic properties within the material is key for their control and design. Here, we develop the ultrafast stochastic thermodynamics for laser-excited phonons. We calculate the entropy production and heat absorbed from experimental data for single phonon modes of driven materials from time-resolved X-ray scattering experiments where the crystal is excited by a laser pulse. The spectral entropy production is calculated for SrTiO3 and KTaO3 for different temperatures and reveals a striking relation with the power spectrum of the displacement-displacement correlation function by inducing a broad peak beside the eigenmode-resonance.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - R Matthias Geilhufe
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| |
Collapse
|
9
|
Lu W, Nicoul M, Shymanovich U, Tarasevitch A, Horn-von Hoegen M, von der Linde D, Sokolowski-Tinten K. A modular table-top setup for ultrafast x-ray diffraction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:013002. [PMID: 38190494 DOI: 10.1063/5.0181132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/14/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024]
Abstract
We present a table-top setup for femtosecond time-resolved x-ray diffraction based on a Cu Kα (8.05 keV) laser driven plasma x-ray source. Due to its modular design, it provides high accessibility to its individual components (e.g., x-ray optics and sample environment). The Kα-yield of the source is optimized using a pre-pulse scheme. A magnifying multilayer x-ray mirror with Montel-Helios geometry is used to collect the emitted radiation, resulting in a quasi-collimated flux of more than 105 Cu Kα photons/pulse impinging on the sample under investigation at a repetition rate of 10 Hz. A gas ionization chamber detector is placed right after the x-ray mirror and used for the normalization of the diffraction signals, enabling the measurement of relative signal changes of less than 1% even at the given low repetition rate. Time-resolved diffraction experiments on laser-excited epitaxial Bi films serve as an example to demonstrate the capabilities of the setup. The setup can also be used for Debye-Scherrer type measurements on poly-crystalline samples.
Collapse
|
10
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Milošević DB, Habibović D. High-order harmonic generation by aligned homonuclear diatomic cations. Phys Chem Chem Phys 2023; 25:28848-28860. [PMID: 37853799 DOI: 10.1039/d3cp02447d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2023]
Abstract
We introduce the theory of high-order harmonic generation by aligned homonuclear diatomic cations using a strong-field approximation. The target cation is represented as a system which consists of two atomic (ionic) centres and one active electron, while the driving field is either a monochromatic or bichromatic field. For a linearly polarised driving field, we investigate the differences between the harmonic spectra obtained with a neutral molecule and the corresponding molecular cation. Due to the larger ionisation potential, the molecular cations can withstand much higher laser-field intensity than the corresponding neutral molecule before the saturation effects become significant. This allows one to produce high-order harmonics with energy in the water-window interval or beyond. Also, the harmonic spectrum provides information about the structure of the highest-occupied molecular orbital. In order to obtain elliptically polarised harmonics, we suggest that an orthogonally polarised two-colour field is employed as a driving field. In this case, we analyse the harmonic ellipticity as a function of the relative orientation of the cation in the laser field. We show that the regions with large harmonic ellipticity in the harmonic energy-orientation angle plane are the broadest for cations whose molecular orbital does not have a nodal plane. Finally, we show that the molecular cations exposed to an orthogonally polarised two-colour field represent an excellent setup for the production of elliptically polarised attosecond pulses with a duration shorter than 100 as.
Collapse
Affiliation(s)
- Dejan B Milošević
- University of Sarajevo, Faculty of Science, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
- Academy of Sciences and Arts of Bosnia and Herzegovina, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina
| | - Dino Habibović
- University of Sarajevo, Faculty of Science, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| |
Collapse
|
12
|
Makarov D, Kharlamova A. Scattering of Attosecond Laser Pulses on a DNA Molecule during Its Nicking and Bending. Int J Mol Sci 2023; 24:15574. [PMID: 37958558 PMCID: PMC10650442 DOI: 10.3390/ijms242115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
It is well known that X-ray crystallography is based on X-ray diffraction (XRD) for atoms and molecules. The diffraction pattern arises as a result of scattering of incident radiation, which makes it possible to determine the structure of the scattering substance. With the advent of ultrashort radiation sources, the theory and interpretation of X-ray diffraction analysis have remained the same. This work shows that when an attosecond laser pulse is scattered on a DNA molecule, including during its nicking and bending, the pulse duration is an important characteristic of the scattering. In this case, the diffraction pattern changes significantly compared to the previously known scattering theory. The results obtained must be used in XRD theory to study DNA structures, their mutations and damage, since the previously known theory can produce large errors and, therefore, the DNA structure can be "decoding" incorrectly.
Collapse
Affiliation(s)
- Dmitry Makarov
- Department of Fundamental and Applied Physics, Northern (Arctic) Federal University, Nab. Severnoi Dviny 17, 163002 Arkhangelsk, Russia;
| | | |
Collapse
|
13
|
Herbert JM, Zhu Y, Alam B, Ojha AK. Time-Dependent Density Functional Theory for X-ray Absorption Spectra: Comparing the Real-Time Approach to Linear Response. J Chem Theory Comput 2023; 19:6745-6760. [PMID: 37708349 DOI: 10.1021/acs.jctc.3c00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/16/2023]
Abstract
We simulate X-ray absorption spectra at elemental K-edges using time-dependent density functional theory (TDDFT) in both its conventional linear-response implementation and its explicitly time-dependent or "real-time" formulation. Real-time TDDFT simulations enable broadband spectra calculations without the need to invoke frozen occupied orbitals ("core/valence separation"), but we find that these spectra are often contaminated by transitions to the continuum that originate from lower-energy core and semicore orbitals. This problem becomes acute in triple-ζ basis sets, although it is sometimes sidestepped in double-ζ basis sets. Transitions to the continuum acquire surprisingly large dipole oscillator strengths, leading to spectra that are difficult to interpret. Meaningful spectra can be recovered by means of a filtering technique that decomposes the spectrum into contributions from individual occupied orbitals, and the same procedure can be used to separate L- and K-edge spectra arising from different elements within a given molecule. In contrast, conventional linear-response TDDFT requires core/valence separation but is free of these artifacts. It is also significantly more efficient than the real-time approach, even when hundreds of individual states are needed to reproduce near-edge absorption features and even when Padé approximants are used to reduce the real-time simulations to just 2-4 fs of time propagation. Despite the cost, the real-time approach may be useful to examine the validity of the core/valence separation approximation.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ying Zhu
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bushra Alam
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Avik Kumar Ojha
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Ghomashi B, Walker S, Becker A. Enabling elliptically polarized high harmonic generation with short cross polarized laser pulses. Sci Rep 2023; 13:12843. [PMID: 37553388 PMCID: PMC10409740 DOI: 10.1038/s41598-023-39814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Enabling elliptically polarized high-order harmonics overcomes a historical limitation in the generation of this highly nonlinear process in atomic, molecular and optical physics with applications in other branches. Here, we shed new light on a controversy between experimental observations and theoretical predictions on the possibility to generate harmonics with large ellipticity using two bichromatic laser pulses which are linearly polarized in orthogonal directions. Results of numerical calculations confirm the previous experimental data that in short laser pulses even harmonics with large ellipticity can be obtained for the interaction of such cross-polarized laser pulses with atoms initially in a s- or p-state, while odd harmonics have low ellipticity. The amount of the ellipticity can be controlled via the relative carrier-envelope phase of the pulses, their intensity ratio and the duration of the pulses.
Collapse
Affiliation(s)
- B Ghomashi
- JILA and Department of Physics, University of Colorado, Boulder, CO, 80309-0440, USA.
| | - S Walker
- JILA and Department of Physics, University of Colorado, Boulder, CO, 80309-0440, USA
| | - A Becker
- JILA and Department of Physics, University of Colorado, Boulder, CO, 80309-0440, USA
| |
Collapse
|
15
|
Gross N, Kuhs CT, Ostovar B, Chiang WY, Wilson KS, Volek TS, Faitz ZM, Carlin CC, Dionne JA, Zanni MT, Gruebele M, Roberts ST, Link S, Landes CF. Progress and Prospects in Optical Ultrafast Microscopy in the Visible Spectral Region: Transient Absorption and Two-Dimensional Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14557-14586. [PMID: 37554548 PMCID: PMC10406104 DOI: 10.1021/acs.jpcc.3c02091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/29/2023] [Revised: 06/24/2023] [Indexed: 08/10/2023]
Abstract
Ultrafast optical microscopy, generally employed by incorporating ultrafast laser pulses into microscopes, can provide spatially resolved mechanistic insight into scientific problems ranging from hot carrier dynamics to biological imaging. This Review discusses the progress in different ultrafast microscopy techniques, with a focus on transient absorption and two-dimensional microscopy. We review the underlying principles of these techniques and discuss their respective advantages and applicability to different scientific questions. We also examine in detail how instrument parameters such as sensitivity, laser power, and temporal and spatial resolution must be addressed. Finally, we comment on future developments and emerging opportunities in the field of ultrafast microscopy.
Collapse
Affiliation(s)
- Niklas Gross
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Christopher T. Kuhs
- Army
Research Laboratory-South, U.S. Army DEVCOM, Houston, Texas 77005, United States
| | - Behnaz Ostovar
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wei-Yi Chiang
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Kelly S. Wilson
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tanner S. Volek
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary M. Faitz
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Claire C. Carlin
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Martin Gruebele
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sean T. Roberts
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Stephan Link
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F. Landes
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
16
|
Si S, Li Z, Xue L, Luo H. Synchrotron radiation stability with meV-level energy resolution: in situ characterization. APPLIED OPTICS 2023; 62:4793-4796. [PMID: 37707253 DOI: 10.1364/ao.492482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/04/2023] [Accepted: 05/21/2023] [Indexed: 09/15/2023]
Abstract
One of the most critical parameters in synchrotron radiation (SR) experiments is the stability of the photon energy, which is primarily affected by the stability of the light source and the optical elements in the beamline. Due to the characteristics of SR and the use of dispersive elements such as monochromators in the beamline, the change of the beam position is usually accompanied by the change of energy and flux, while most traditional beam monitoring methods are based on the direct or indirect measurement of total flux, and are therefore sensitive to the beam position only, having no energy resolution. In this paper, an in situ monitoring system has been designed to measure the short-term (jitter) and long-term (drift) characteristics of the energy variation in the SR beamline. The system consists of a double-crystal monochromator, an orthogonal analysis crystal, and an X-ray imaging detector, which could decouple the angle and energy spread of the photon beam based on the dispersion effect in Bragg diffraction. The time response and the energy resolution of the system could reach millisecond and millielectron volt level, respectively.
Collapse
|
17
|
Mattern M, von Reppert A, Zeuschner SP, Herzog M, Pudell JE, Bargheer M. Concepts and use cases for picosecond ultrasonics with x-rays. PHOTOACOUSTICS 2023; 31:100503. [PMID: 37275326 PMCID: PMC10238750 DOI: 10.1016/j.pacs.2023.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 06/07/2023]
Abstract
This review discusses picosecond ultrasonics experiments using ultrashort hard x-ray probe pulses to extract the transient strain response of laser-excited nanoscopic structures from Bragg-peak shifts. This method provides direct, layer-specific, and quantitative information on the picosecond strain response for structures down to few-nm thickness. We model the transient strain using the elastic wave equation and express the driving stress using Grüneisen parameters stating that the laser-induced stress is proportional to energy density changes in the microscopic subsystems of the solid, i.e., electrons, phonons and spins. The laser-driven strain response can thus serve as an ultrafast proxy for local energy-density and temperature changes, but we emphasize the importance of the nanoscale morphology for an accurate interpretation due to the Poisson effect. The presented experimental use cases encompass ultrathin and opaque metal-heterostructures, continuous and granular nanolayers as well as negative thermal expansion materials, that each pose a challenge to established all-optical techniques.
Collapse
Affiliation(s)
- Maximilian Mattern
- Institut für Physik & Astronomie, Universität Potsdam, 14476 Potsdam, Germany
| | | | - Steffen Peer Zeuschner
- Institut für Physik & Astronomie, Universität Potsdam, 14476 Potsdam, Germany
- Helmholtz Zentrum Berlin, 12489 Berlin, Germany
| | - Marc Herzog
- Institut für Physik & Astronomie, Universität Potsdam, 14476 Potsdam, Germany
| | - Jan-Etienne Pudell
- Institut für Physik & Astronomie, Universität Potsdam, 14476 Potsdam, Germany
- Helmholtz Zentrum Berlin, 12489 Berlin, Germany
- European XFEL, 22869 Schenefeld, Germany
| | - Matias Bargheer
- Institut für Physik & Astronomie, Universität Potsdam, 14476 Potsdam, Germany
- Helmholtz Zentrum Berlin, 12489 Berlin, Germany
| |
Collapse
|
18
|
Peculiarities of Scattering of Ultrashort Laser Pulses on DNA and RNA Trinucleotides. Int J Mol Sci 2022; 23:ijms232315417. [PMID: 36499759 PMCID: PMC9741197 DOI: 10.3390/ijms232315417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Currently, X-ray diffraction analysis (XRD) with high spatial and time resolution (TR-XRD) is based on the known theory of X-ray scattering, where the main parameter of USP-its duration-is not taken into account. In the present work, it is shown that, for scattering of attosecond USPs on DNA and RNA trinucleotides, the pulse length is the most important scattering parameter. The diffraction pattern changes considerably in comparison with the previously known scattering theory. The obtained results are extremely important in TR-XRD when using attosecond pulses to study trinucleotides of DNA and RNA, because with the previously known scattering theory, which does not take into account the duration of USP, one cannot correctly interpret, and therefore "decode", DNA and RNA structures.
Collapse
|
19
|
Safca N, Stutman D, Anghel E, Negoita F, Ur CA. Experimental demonstration of ultrahigh sensitivity Talbot-Lau interferometer for low dose mammography. Phys Med Biol 2022; 67. [PMID: 36541499 DOI: 10.1088/1361-6560/aca514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Objective. Even though the techniques used for breast cancer identification have advanced over the years, current mammography based on x-rays absorption, the 'gold standard' screening test at present, still has some shortcomings as concerns sensitivity and specificity to early-stage cancers, due to poor differentiation between tumor and normal tissues, especially in the case of the dense breasts. We investigate a possible additional technique for breast cancer detection with higher sensitivity and low dose, x-ray phase-contrast or refraction-based imaging with ultrahigh angular sensitivity grating interferometers, having several meters length.Approach.Towards this goal, we built and tested on a mammography phantom, a table-top laboratory setup based on a 5.7 m long Talbot-Lau interferometer with angular sensitivity better than 1μrad. We used a high-power x-ray tungsten anode tube with a 400μm focal spot, operated at 40 kVp and 15 mA with a 2 mm aluminum filter.Main results.The results reported in our paper confirm the ultrahigh sensitivity and dose economy possible with our setup. The visibility of objects simulating cancerous formations is strongly increased in the refraction images over the attenuation ones, even at a low dose of 0.32 mGy. Notably, the smallest fiber of 400μm diameter and calcifications specs of 160μm in diameter are detected, even though the spatial resolution at the object of our magnification M ∼ 2 setup with a 400μm source spot is only ∼250μm.Significance.Our experiments on a mammography phantom illustrate the capabilities of the proposed technique and can open the way toward low-dose interferometric mammography.
Collapse
Affiliation(s)
- N Safca
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Bucharest-Magurele, Romania.,Engineering and Applications of Lasers and Accelerators Doctoral School (SDIALA), University POLITEHNICA of Bucharest, Bucharest, Romania
| | - D Stutman
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Bucharest-Magurele, Romania.,Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - E Anghel
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Bucharest-Magurele, Romania.,Department of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Romania
| | - F Negoita
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Bucharest-Magurele, Romania
| | - C A Ur
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Bucharest-Magurele, Romania.,Engineering and Applications of Lasers and Accelerators Doctoral School (SDIALA), University POLITEHNICA of Bucharest, Bucharest, Romania
| |
Collapse
|
20
|
A Comprehensive Review on Amplification of Laser Pulses via Stimulated Raman Scattering and Stimulated Brillouin Scattering in Plasmas. PLASMA 2022. [DOI: 10.3390/plasma5040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022] Open
Abstract
The demand for high-intensity lasers has grown ever since the invention of lasers in 1960, owing to their applications in the fields of inertial confinement fusion, plasma-based relativistic particle accelerators, complex X-ray and gamma-ray sources, and laboratory astrophysics. To create such high-intensity lasers, free-running lasers were either Q-switched or mode-locked to increase the peak power to the gigawatt range. Later, chirped pulse amplification was developed, allowing the generation of peak power up to 1012 W. However, the next generation of high-intensity lasers might not be able to be driven by the solid-state technology alone as they are already operating close to their damage thresholds. In this scenario, concepts of amplification based on plasmas has the potential to revolutionize the laser industry, as plasma is already a broken-down medium, and hence does not pose any problems related to the damage thresholds. On the other hand, there are many other aspects that need to be addressed before developing technologies based on plasma-based amplification, and they are being investigated via theoretical and numerical methods and supported by several experiments. In this report, we review the prospects of employing plasma as the medium of amplification by utilising stimulated scattering techniques, such as the stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) techniques, to modulate high-power laser pulses, which would possibly be the key to the next generation of high-power lasers. The 1980s saw the commencement of research in this field, and possibilities of obtaining high peak powers were verified theoretically with the help of numerical calculations and simulations. The extent of amplification by these stimulated scattering schemes are limited by a number of instabilities such as forward Raman scattering (FRS), filamentation, etc., and here, magnetised plasma played an important role in counteracting these parasitic effects. The current research combines all these factors to experimentally realise a large-scale plasma-based amplifier, which can impact the high-energy laser industry in the near future.
Collapse
|
21
|
Romanov AA, Silaev AA, Vvedenskii NV, Flegel AV, Frolov MV. Contribution of the collective electron dynamics to the polarization response of an atom subjected to intense IR and weak XUV pulses. OPTICS LETTERS 2022; 47:3147-3150. [PMID: 35776572 DOI: 10.1364/ol.460076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
We analyze the polarization response of a single Ne atom in an intense infrared (IR) laser field and weak extreme ultraviolet (XUV) isolated attosecond pulse (IAP). The analysis is based on the numerical solution of the time-dependent Kohn-Sham equations and the recently developed perturbation theory in the XUV field for an atom subjected to an intense IR field. In our numerical results, we observe a significant increase in the magnitude of the atomic polarization response at the frequencies near the carrier frequency of the IAP and associate it with XUV-induced collective dynamics contributing to the polarizability of Ne. The specific interference between IR- and XUV-induced channels is discussed, and its utilization for retrieving the phase of the generated harmonics in the IR field is suggested.
Collapse
|
22
|
Nascimento DR, Govind N. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods. Phys Chem Chem Phys 2022; 24:14680-14691. [PMID: 35699090 DOI: 10.1039/d2cp01132h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
The emergence of state-of-the-art X-ray light sources has paved the way for novel spectroscopies that take advantage of their atomic specificity to shed light on fundamental physical, chemical, and biological processes both in the static and time domains. The success of these experiments hinges on the ability to interpret and predict core-level spectra, which has opened avenues for theory to play a key role. Over the last two decades, linear-response time-dependent density functional theory (LR-TDDFT), despite various theoretical challenges, has become a computationally attractive and versatile framework to study excited-state spectra including X-ray spectroscopies. In this context, we focus our discussion on LR-TDDFT approaches for the computation of X-ray Near-Edge Structure (XANES), Valence-to-Core X-ray Emission (VtC-XES), and Resonant Inelastic X-ray Scattering (RIXS) spectroscopies in molecular systems with an emphasis on Gaussian basis set implementations. We illustrate these approaches with applications and provide a brief outlook of possible new directions.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA.
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| |
Collapse
|
23
|
Zhu Y, Herbert JM. High harmonic spectra computed using time-dependent Kohn-Sham theory with Gaussian orbitals and a complex absorbing potential. J Chem Phys 2022; 156:204123. [PMID: 35649850 DOI: 10.1063/5.0079910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
High harmonic spectra for H2 and H2 + are simulated by solving the time-dependent Kohn-Sham equation in the presence of a strong laser field using an atom-centered Gaussian representation of the density and a complex absorbing potential. The latter serves to mitigate artifacts associated with the finite extent of the basis functions, including spurious reflection of the outgoing electronic wave packet. Interference between the outgoing and reflected waves manifests as peak broadening in the spectrum as well as the appearance of spurious high-energy peaks after the harmonic progression has terminated. We demonstrate that well-resolved spectra can be obtained through the use of an atom-centered absorbing potential. As compared to grid-based algorithms, the present approach is more readily extensible to larger molecules.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Chemistry and Biochemistry, and Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, and Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
24
|
Makarov DN, Makarova KA, Kharlamova AA. Specificity of scattering of ultrashort laser pulses by molecules with polyatomic structure. Sci Rep 2022; 12:4976. [PMID: 35322132 PMCID: PMC8942989 DOI: 10.1038/s41598-022-09134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The theory of scattering of ultrashort laser pulses (USP) is the basis of diffraction analysis of matter using modern USP sources. At present, the peculiarities of interaction of USP with complex structures are not well developed. In general, the research focuses on the features of the interaction of USP with simple systems, these are atoms and simple molecules. Here we present a theory of scattering of ultrashort laser pulses on molecules with a multi-atomic structure, taking into account the specifics of the interaction of USP with such a substance. The simplicity of the obtained expressions allows them to be used in diffraction analysis. As an example, the scattering spectra of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are presented. It is shown that the theory developed here is more general in the scattering theory and passes into the previously known one if we consider the duration of the USP to be sufficiently long.
Collapse
Affiliation(s)
- D N Makarov
- Laboratory of Diagnostics of Carbon Materials and Spin-Optical Phenomena in Wide-Bandgap Semiconductors, Northern (Arctic) Federal University, Arkhangelsk, Russia, 163002.
| | - K A Makarova
- Laboratory of Diagnostics of Carbon Materials and Spin-Optical Phenomena in Wide-Bandgap Semiconductors, Northern (Arctic) Federal University, Arkhangelsk, Russia, 163002
| | - A A Kharlamova
- Laboratory of Diagnostics of Carbon Materials and Spin-Optical Phenomena in Wide-Bandgap Semiconductors, Northern (Arctic) Federal University, Arkhangelsk, Russia, 163002
| |
Collapse
|
25
|
Banerjee A, Coates MR, Kowalewski M, Wikmark H, Jay RM, Wernet P, Odelius M. Photoinduced bond oscillations in ironpentacarbonyl give delayed synchronous bursts of carbonmonoxide release. Nat Commun 2022; 13:1337. [PMID: 35288563 PMCID: PMC8921231 DOI: 10.1038/s41467-022-28997-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2021] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Early excited state dynamics in the photodissociation of transition metal carbonyls determines the chemical nature of short-lived catalytically active reaction intermediates. However, time-resolved experiments have not yet revealed mechanistic details in the sub-picosecond regime. Hence, in this study the photoexcitation of ironpentacarbonyl Fe(CO)5 is simulated with semi-classical excited state molecular dynamics. We find that the bright metal-to-ligand charge-transfer (MLCT) transition induces synchronous Fe-C oscillations in the trigonal bipyramidal complex leading to periodically reoccurring release of predominantly axial CO. Metaphorically the photoactivated Fe(CO)5 acts as a CO geyser, as a result of dynamics in the potential energy landscape of the axial Fe-C distances and non-adiabatic transitions between manifolds of bound MLCT and dissociative metal-centered (MC) excited states. The predominant release of axial CO ligands and delayed release of equatorial CO ligands are explained in a unified mechanism based on the σ*(Fe-C) anti-bonding character of the receiving orbital in the dissociative MC states. The photodissociation of transition metal carbonyls is involved in catalysis and synthetic processes. Here the authors, using semi-classical excited state molecular dynamics, observe details of the early stage dynamics in the photodissociation of Fe(CO)5, including synchronous bursts of CO at periodic intervals of 90 femtoseconds.
Collapse
|
26
|
Density functional tight binding approach utilized to study X-ray-induced transitions in solid materials. Sci Rep 2022; 12:1551. [PMID: 35091574 PMCID: PMC8799736 DOI: 10.1038/s41598-022-04775-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 01/17/2023] Open
Abstract
Intense X-ray pulses from free-electron lasers can trigger ultrafast electronic, structural and magnetic transitions in solid materials, within a material volume which can be precisely shaped through adjustment of X-ray beam parameters. This opens unique prospects for material processing with X rays. However, any fundamental and applicational studies are in need of computational tools, able to predict material response to X-ray radiation. Here we present a dedicated computational approach developed to study X-ray induced transitions in a broad range of solid materials, including those of high chemical complexity. The latter becomes possible due to the implementation of the versatile density functional tight binding code DFTB+ to follow band structure evolution in irradiated materials. The outstanding performance of the implementation is demonstrated with a comparative study of XUV induced graphitization in diamond.
Collapse
|
27
|
Enhanced Amplification of Attosecond Pulses in a Hydrogen-like Plasma-Based X-ray Laser Modulated by an Infrared Field at the Second Harmonic of Fundamental Frequency. PHOTONICS 2022. [DOI: 10.3390/photonics9020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
In a recent work (Antonov et al., Physical Review Letters 123, 243903 (2019)), it was shown that it is possible to amplify a train of attosecond pulses, which are produced from the radiation of high harmonics of the infrared field of the fundamental frequency, in the active medium of a plasma-based X-ray laser modulated by a replica of the infrared field of the same frequency. In this paper, we show that much higher amplification can be achieved using the second harmonic of the fundamental frequency for modulating of a hydrogen-like active medium. The physical reason for such enhanced amplification is the possibility to use all (even and odd) sidebands induced in the gain spectrum in the case of the modulating field of the doubled fundamental frequency, while only one set of sidebands (either even or odd) could participate in amplification in the case of the modulating field of the fundamental frequency due to the fact that the spectral components of the high-harmonic field are separated by twice the fundamental frequency. Using the plasma of hydrogen-like C5+ ions with an inverted transition wavelength of 3.38 nm in the water window as an example, it is shown that the use of a modulating field at a doubled fundamental frequency makes it possible to increase the intensity of amplified attosecond pulses by an order of magnitude in comparison with the previously studied case of a fundamental frequency modulating field.
Collapse
|
28
|
Makarov D, Kharlamova A. Scattering of X-ray Ultrashort Pulses by Complex Polyatomic Structures. Int J Mol Sci 2021; 23:ijms23010163. [PMID: 35008584 PMCID: PMC8745671 DOI: 10.3390/ijms23010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 02/02/2023] Open
Abstract
The scattering of X-ray ultrashort pulses (USPs) is an important aspect of the diffraction analysis of matter using modern USP sources. The theoretical basis, which considers the specifics of the interaction of ultrashort pulses with complex polyatomic structures, is currently not well developed. In general, research is focused on the specifics of the interaction of ultrashort pulses with simple systems—these are atoms and simple molecules. In this work, a theory of scattering of X-ray ultrashort pulses by complex polyatomic structures is developed, considering the specifics of the interaction of ultrashort pulses with such a substance. The obtained expressions have a rather simple analytical form, which allows them to be used in diffraction analysis. As an example, it is shown that the obtained expressions can be used to study the structures of deoxyribonucleic (DNA) and ribonucleic (RNA) acids.
Collapse
|
29
|
Appi E, Papadopoulou CC, Mapa JL, Jusko C, Mosel P, Schoenberg A, Stock J, Feigl T, Ališauskas S, Lang T, Heyl CM, Manschwetus B, Brachmanski M, Braune M, Lindenblatt H, Trost F, Meister S, Schoch P, Trabattoni A, Calegari F, Treusch R, Moshammer R, Hartl I, Morgner U, Kovacev M. Synchronized beamline at FLASH2 based on high-order harmonic generation for two-color dynamics studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:123004. [PMID: 34972439 DOI: 10.1063/5.0063225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/13/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
We present the design, integration, and operation of the novel vacuum ultraviolet (VUV) beamline installed at the free-electron laser (FEL) FLASH. The VUV source is based on high-order harmonic generation (HHG) in gas and is driven by an optical laser system synchronized with the timing structure of the FEL. Ultrashort pulses in the spectral range from 10 to 40 eV are coupled with the FEL in the beamline FL26, which features a reaction microscope (REMI) permanent endstation for time-resolved studies of ultrafast dynamics in atomic and molecular targets. The connection of the high-pressure gas HHG source to the ultra-high vacuum FEL beamline requires a compact and reliable system, able to encounter the challenging vacuum requirements and coupling conditions. First commissioning results show the successful operation of the beamline, reaching a VUV focused beam size of about 20 µm at the REMI endstation. Proof-of-principle photo-electron momentum measurements in argon indicate the source capabilities for future two-color pump-probe experiments.
Collapse
Affiliation(s)
- E Appi
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| | | | - J L Mapa
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| | - C Jusko
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| | - P Mosel
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| | | | - J Stock
- Carl Zeiss AG, Oberkochen 73446, Germany
| | - T Feigl
- optiX fab GmbH, Jena 07745, Germany
| | | | - T Lang
- DESY, Hamburg 22607, Germany
| | | | | | | | | | - H Lindenblatt
- Max-Planck-Institut für Kernphysik, Heidelberg 69117, Germany
| | - F Trost
- Max-Planck-Institut für Kernphysik, Heidelberg 69117, Germany
| | - S Meister
- Max-Planck-Institut für Kernphysik, Heidelberg 69117, Germany
| | - P Schoch
- Institut für Umweltphysik, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | - A Trabattoni
- Center for Free-Electron Laser Science CFEL, DESY, Hamburg 22607, Germany
| | - F Calegari
- Center for Free-Electron Laser Science CFEL, DESY, Hamburg 22607, Germany
| | | | - R Moshammer
- Max-Planck-Institut für Kernphysik, Heidelberg 69117, Germany
| | - I Hartl
- DESY, Hamburg 22607, Germany
| | - U Morgner
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| | - M Kovacev
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover 30167, Germany
| |
Collapse
|
30
|
Vadilonga S, Zizak I, Roshchupkin D, Emelin E, Leitenberger W, Rössle M, Erko A. Piezo-modulated active grating for selecting X-ray pulses separated by one nanosecond. OPTICS EXPRESS 2021; 29:34962-34976. [PMID: 34808943 DOI: 10.1364/oe.438570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
We present a novel method of temporal modulation of X-ray radiation for time resolved experiments. To control the intensity of the X-ray beam, the Bragg reflection of a piezoelectric crystal is modified using comb-shaped electrodes deposited on the crystal surface. Voltage applied to the electrodes induces a periodic deformation of the crystal that acts as a diffraction grating, splitting the original Bragg reflection into several satellites. A pulse of X-rays can be created by rapidly switching the voltage on and off. In our prototype device the duty cycle was limited to ∼1 ns by the driving electronics. The prototype can be used to generate X-ray pulses from a continuous source. It can also be electrically correlated to a synchrotron light source and be activated to transmit only selected synchrotron pulses. Since the device operates in a non-resonant mode, different activation patterns and pulse durations can be achieved.
Collapse
|
31
|
|
32
|
Lohse LM, Vassholz M, Salditt T. On incoherent diffractive imaging. Acta Crystallogr A Found Adv 2021; 77:480-496. [PMID: 34473101 PMCID: PMC8477639 DOI: 10.1107/s2053273321007300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2021] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Incoherent diffractive imaging (IDI) promises structural analysis with atomic resolution based on intensity interferometry of pulsed X-ray fluorescence emission. However, its experimental realization is still pending and a comprehensive theory of contrast formation has not been established to date. Explicit expressions are derived for the equal-pulse two-point intensity correlations, as the principal measured quantity of IDI, with full control of the prefactors, based on a simple model of stochastic fluorescence emission. The model considers the photon detection statistics, the finite temporal coherence of the individual emissions, as well as the geometry of the scattering volume. The implications are interpreted in view of the most relevant quantities, including the fluorescence lifetime, the excitation pulse, as well as the extent of the scattering volume and pixel size. Importantly, the spatiotemporal overlap between any two emissions in the sample can be identified as a crucial factor limiting the contrast and its dependency on the sample size can be derived. The paper gives rigorous estimates for the optimum sample size, the maximum photon yield and the expected signal-to-noise ratio under optimal conditions. Based on these estimates, the feasibility of IDI experiments for plausible experimental parameters is discussed. It is shown in particular that the mean number of photons per detector pixel which can be achieved with X-ray fluorescence is severely limited and as a consequence imposes restrictive constraints on possible applications.
Collapse
Affiliation(s)
- Leon M Lohse
- Institut für Röntgenphysik, Universität Göttingen, Germany
| | - Malte Vassholz
- Institut für Röntgenphysik, Universität Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Germany
| |
Collapse
|
33
|
Epifanovsky E, Gilbert ATB, Feng X, Lee J, Mao Y, Mardirossian N, Pokhilko P, White AF, Coons MP, Dempwolff AL, Gan Z, Hait D, Horn PR, Jacobson LD, Kaliman I, Kussmann J, Lange AW, Lao KU, Levine DS, Liu J, McKenzie SC, Morrison AF, Nanda KD, Plasser F, Rehn DR, Vidal ML, You ZQ, Zhu Y, Alam B, Albrecht BJ, Aldossary A, Alguire E, Andersen JH, Athavale V, Barton D, Begam K, Behn A, Bellonzi N, Bernard YA, Berquist EJ, Burton HGA, Carreras A, Carter-Fenk K, Chakraborty R, Chien AD, Closser KD, Cofer-Shabica V, Dasgupta S, de Wergifosse M, Deng J, Diedenhofen M, Do H, Ehlert S, Fang PT, Fatehi S, Feng Q, Friedhoff T, Gayvert J, Ge Q, Gidofalvi G, Goldey M, Gomes J, González-Espinoza CE, Gulania S, Gunina AO, Hanson-Heine MWD, Harbach PHP, Hauser A, Herbst MF, Hernández Vera M, Hodecker M, Holden ZC, Houck S, Huang X, Hui K, Huynh BC, Ivanov M, Jász Á, Ji H, Jiang H, Kaduk B, Kähler S, Khistyaev K, Kim J, Kis G, Klunzinger P, Koczor-Benda Z, Koh JH, Kosenkov D, Koulias L, Kowalczyk T, Krauter CM, Kue K, Kunitsa A, Kus T, Ladjánszki I, Landau A, Lawler KV, Lefrancois D, Lehtola S, Li RR, Li YP, Liang J, Liebenthal M, Lin HH, Lin YS, Liu F, Liu KY, Loipersberger M, Luenser A, Manjanath A, Manohar P, Mansoor E, Manzer SF, Mao SP, Marenich AV, Markovich T, Mason S, Maurer SA, McLaughlin PF, Menger MFSJ, Mewes JM, Mewes SA, Morgante P, Mullinax JW, Oosterbaan KJ, Paran G, Paul AC, Paul SK, Pavošević F, Pei Z, Prager S, Proynov EI, Rák Á, Ramos-Cordoba E, Rana B, Rask AE, Rettig A, Richard RM, Rob F, Rossomme E, Scheele T, Scheurer M, Schneider M, Sergueev N, Sharada SM, Skomorowski W, Small DW, Stein CJ, Su YC, Sundstrom EJ, Tao Z, Thirman J, Tornai GJ, Tsuchimochi T, Tubman NM, Veccham SP, Vydrov O, Wenzel J, Witte J, Yamada A, Yao K, Yeganeh S, Yost SR, Zech A, Zhang IY, Zhang X, Zhang Y, Zuev D, Aspuru-Guzik A, Bell AT, Besley NA, Bravaya KB, Brooks BR, Casanova D, Chai JD, Coriani S, Cramer CJ, Cserey G, DePrince AE, DiStasio RA, Dreuw A, Dunietz BD, Furlani TR, Goddard WA, Hammes-Schiffer S, Head-Gordon T, Hehre WJ, Hsu CP, Jagau TC, Jung Y, Klamt A, Kong J, Lambrecht DS, Liang W, Mayhall NJ, McCurdy CW, Neaton JB, Ochsenfeld C, Parkhill JA, Peverati R, Rassolov VA, Shao Y, Slipchenko LV, Stauch T, Steele RP, Subotnik JE, Thom AJW, Tkatchenko A, Truhlar DG, Van Voorhis T, Wesolowski TA, Whaley KB, Woodcock HL, Zimmerman PM, Faraji S, Gill PMW, Head-Gordon M, Herbert JM, Krylov AI. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J Chem Phys 2021; 155:084801. [PMID: 34470363 PMCID: PMC9984241 DOI: 10.1063/5.0055522] [Citation(s) in RCA: 584] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.
Collapse
Affiliation(s)
- Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | | | | | - Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Yuezhi Mao
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Pavel Pokhilko
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Alec F. White
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Marc P. Coons
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Adrian L. Dempwolff
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Zhengting Gan
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Diptarka Hait
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Paul R. Horn
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Leif D. Jacobson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | - Jörg Kussmann
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - Adrian W. Lange
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Daniel S. Levine
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Simon C. McKenzie
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | - Kaushik D. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | - Dirk R. Rehn
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Marta L. Vidal
- Department of Chemistry, Technical University of Denmark, Kemitorvet Bldg. 207, DK-2800 Kgs Lyngby, Denmark
| | | | - Ying Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Bushra Alam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin J. Albrecht
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | - Ethan Alguire
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Josefine H. Andersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet Bldg. 207, DK-2800 Kgs Lyngby, Denmark
| | - Vishikh Athavale
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dennis Barton
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Khadiza Begam
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
| | - Andrew Behn
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Nicole Bellonzi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yves A. Bernard
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | - Hugh G. A. Burton
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Abel Carreras
- Donostia International Physics Center, 20080 Donostia, Euskadi, Spain
| | - Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | - Alan D. Chien
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Vale Cofer-Shabica
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Marc de Wergifosse
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Jia Deng
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | - Hainam Do
- School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Po-Tung Fang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | | | - Qingguo Feng
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44240, USA
| | - Triet Friedhoff
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - James Gayvert
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Qinghui Ge
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258, USA
| | - Matthew Goldey
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Joe Gomes
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Sahil Gulania
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Anastasia O. Gunina
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | - Phillip H. P. Harbach
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Hauser
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria
| | | | - Mario Hernández Vera
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - Manuel Hodecker
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Zachary C. Holden
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shannon Houck
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Xunkun Huang
- Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Kerwin Hui
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Bang C. Huynh
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Maxim Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Ádám Jász
- Stream Novation Ltd., Práter utca 50/a, H-1083 Budapest, Hungary
| | - Hyunjun Ji
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Benjamin Kaduk
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sven Kähler
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Kirill Khistyaev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Jaehoon Kim
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gergely Kis
- Stream Novation Ltd., Práter utca 50/a, H-1083 Budapest, Hungary
| | | | - Zsuzsanna Koczor-Benda
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - Joong Hoon Koh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Dimitri Kosenkov
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Laura Koulias
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | | | - Caroline M. Krauter
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Karl Kue
- Institute of Chemistry, Academia Sinica, 128, Academia Road Section 2, Nangang District, Taipei 11529, Taiwan
| | - Alexander Kunitsa
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Thomas Kus
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | - Arie Landau
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Keith V. Lawler
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel Lefrancois
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | | | - Run R. Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Yi-Pei Li
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jiashu Liang
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Marcus Liebenthal
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Hung-Hsuan Lin
- Institute of Chemistry, Academia Sinica, 128, Academia Road Section 2, Nangang District, Taipei 11529, Taiwan
| | - You-Sheng Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Fenglai Liu
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | | | | | - Arne Luenser
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - Aaditya Manjanath
- Institute of Chemistry, Academia Sinica, 128, Academia Road Section 2, Nangang District, Taipei 11529, Taiwan
| | - Prashant Manohar
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Erum Mansoor
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Sam F. Manzer
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Shan-Ping Mao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | | | - Thomas Markovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Stephen Mason
- School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Simon A. Maurer
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - Peter F. McLaughlin
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | | | - Jan-Michael Mewes
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Stefanie A. Mewes
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Pierpaolo Morgante
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | - J. Wayne Mullinax
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | | | | | - Alexander C. Paul
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Suranjan K. Paul
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Fabijan Pavošević
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Zheng Pei
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Stefan Prager
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Emil I. Proynov
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Ádám Rák
- Stream Novation Ltd., Práter utca 50/a, H-1083 Budapest, Hungary
| | - Eloy Ramos-Cordoba
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alan E. Rask
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Adam Rettig
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Ryan M. Richard
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Fazle Rob
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Elliot Rossomme
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Tarek Scheele
- Institute for Physical and Theoretical Chemistry, University of Bremen, Bremen, Germany
| | - Maximilian Scheurer
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Matthias Schneider
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Nickolai Sergueev
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44240, USA
| | - Shaama M. Sharada
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Wojciech Skomorowski
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - David W. Small
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Christopher J. Stein
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Yu-Chuan Su
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Eric J. Sundstrom
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Zhen Tao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jonathan Thirman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Gábor J. Tornai
- Stream Novation Ltd., Práter utca 50/a, H-1083 Budapest, Hungary
| | - Takashi Tsuchimochi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Norm M. Tubman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Oleg Vydrov
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jan Wenzel
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Jon Witte
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Atsushi Yamada
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44240, USA
| | - Kun Yao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Sina Yeganeh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Shane R. Yost
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alexander Zech
- Department of Physical Chemistry, University of Geneva, 30, Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Igor Ying Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xing Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yu Zhang
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Dmitry Zuev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Alexis T. Bell
- Department of Chemical Engineering, University of California, Berkeley, California 94720, USA
| | - Nicholas A. Besley
- School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Ksenia B. Bravaya
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Bernard R. Brooks
- Laboratory of Computational Biophysics, National Institute of Health, Bethesda, Maryland 20892, USA
| | - David Casanova
- Donostia International Physics Center, 20080 Donostia, Euskadi, Spain
| | | | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Bldg. 207, DK-2800 Kgs Lyngby, Denmark
| | | | | | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Robert A. DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44240, USA
| | - Thomas R. Furlani
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, USA
| | | | - Teresa Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | - Yousung Jung
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Andreas Klamt
- COSMOlogic GmbH & Co. KG, Imbacher Weg 46, D-51379 Leverkusen, Germany
| | - Jing Kong
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Daniel S. Lambrecht
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | - C. William McCurdy
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Jeffrey B. Neaton
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 7, D-81377 München, Germany
| | - John A. Parkhill
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Roberto Peverati
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | - Vitaly A. Rassolov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | - Ryan P. Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Donald G. Truhlar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, University of Geneva, 30, Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - K. Birgitta Whaley
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, University of Groningen, 9774AG Groningen, The Netherlands
| | | | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA,Author to whom correspondence should be addressed:
| |
Collapse
|
34
|
Jana S, Muralidhar S, Åkerman J, Schüßler-Langeheine C, Pontius N. Using the photoinduced L 3 resonance shift in Fe and Ni as time reference for ultrafast experiments at low flux soft x-ray sources. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:044304. [PMID: 34395721 PMCID: PMC8357444 DOI: 10.1063/4.0000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
We study the optical-pump induced ultrafast transient change of x-ray absorption at L 3 absorption resonances of the transition metals Ni and Fe in the Fe0.5Ni0.5 alloy. We find the effect for both elements to occur simultaneously on a femtosecond timescale. This effect may hence be used as a handy cross correlation scheme, providing a time-zero reference for ultrafast optical-pump soft x-ray-probe measurement. The method benefits from a relatively simple experimental setup as the sample itself acts as time-reference tool. In particular, this technique works with low flux ultrafast soft x-ray sources. The measurements are compared to the cross correlation method introduced in an earlier publication.
Collapse
Affiliation(s)
- Somnath Jana
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Shreyas Muralidhar
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Johan Åkerman
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | | | - Niko Pontius
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| |
Collapse
|
35
|
Suzuki T. Spiers Memorial Lecture: Introduction to ultrafast spectroscopy and imaging of photochemical reactions. Faraday Discuss 2021; 228:11-38. [PMID: 33876168 DOI: 10.1039/d1fd00015b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
A brief overview is presented on ultrafast spectroscopy and imaging of photochemical reactions by highlighting several experimental studies reported in the last five years. A particular focus is placed on new experiments performed using high-order harmonic generation, X-ray free electron lasers, and relativistic electron beams. Exploration of fundamental chemical reaction dynamics using these advanced experimental methodologies is in an early stage, and exciting new research opportunities await in this rapidly expanding and advancing research field. At the same time, there is no experimental methodology that provides all aspects of the electronic and structural dynamics in a single experiment, and investigations using different methodologies with various perspectives need to be considered in a comprehensive manner.
Collapse
Affiliation(s)
- Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
36
|
Kurahashi N, Thürmer S, Liu SY, Yamamoto YI, Karashima S, Bhattacharya A, Ogi Y, Horio T, Suzuki T. Design and characterization of a magnetic bottle electron spectrometer for time-resolved extreme UV and X-ray photoemission spectroscopy of liquid microjets. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:034303. [PMID: 34131579 PMCID: PMC8195612 DOI: 10.1063/4.0000107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
We describe a magnetic bottle time-of-flight electron spectrometer designed for time-resolved photoemission spectroscopy of a liquid microjet using extreme UV and X-ray radiation. The spectrometer can be easily reconfigured depending on experimental requirements and the energy range of interest. To improve the energy resolution at high electron kinetic energy, a retarding potential can be applied either via a stack of electrodes or retarding mesh grids, and a flight-tube extension can be attached to increase the flight time. A gated electron detector was developed to reject intense parasitic signal from light scattered off the surface of the cylindrically shaped liquid microjet. This detector features a two-stage multiplication with a microchannel plate plus a fast-response scintillator followed by an image-intensified photon detector. The performance of the spectrometer was tested at SPring-8 and SACLA, and time-resolved photoelectron spectra were measured for an ultrafast charge transfer to solvent reaction in an aqueous NaI solution with a 200 nm UV pump pulses from a table-top ultrafast laser and the 5.5 keV hard X-ray probe pulses from SACLA.
Collapse
Affiliation(s)
- Naoya Kurahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Stephan Thürmer
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Suet Yi Liu
- Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2–1 Hirosawa, Wako 351-0198, Japan
| | - Yo-ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Atanu Bhattacharya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Yoshihiro Ogi
- Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2–1 Hirosawa, Wako 351-0198, Japan
| | - Takuya Horio
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | | |
Collapse
|
37
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
38
|
Kaneyasu T, Hikosaka Y, Fujimoto M, Iwayama H, Katoh M. Electron Wave Packet Interference in Atomic Inner-Shell Excitation. PHYSICAL REVIEW LETTERS 2021; 126:113202. [PMID: 33798343 DOI: 10.1103/physrevlett.126.113202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/27/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
We report the observation of quantum interference between electron wave packets launched from the inner-shell 4d orbital of the Xe atom. Using pairs of femtosecond radiation wave packets from a synchrotron light source, we obtain time-domain interferograms for the inner-shell excitations. This approach enables the experimental verification and control of the quantum interference between the electron wave packets. Furthermore, the femtosecond Auger decay of the inner-shell excited state is tracked. To the best of our knowledge, this is the first observation of wave packet interference in an atomic inner-shell process, and also the first time-resolved experiment on few-femtosecond Auger decay using a synchrotron light source.
Collapse
Affiliation(s)
- T Kaneyasu
- SAGA Light Source, Tosu 841-0005, Japan
- Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Y Hikosaka
- Institute of Liberal Arts and Sciences, University of Toyama, Toyama 930-0194, Japan
| | - M Fujimoto
- Institute for Molecular Science, Okazaki 444-8585, Japan
- Sokendai (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - H Iwayama
- Institute for Molecular Science, Okazaki 444-8585, Japan
- Sokendai (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - M Katoh
- Institute for Molecular Science, Okazaki 444-8585, Japan
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
| |
Collapse
|
39
|
Besley NA. Modeling of the spectroscopy of core electrons with density functional theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1527] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nicholas A. Besley
- School of Chemistry, University of Nottingham University Park Nottingham UK
| |
Collapse
|
40
|
Koç A, Hauf C, Woerner M, von Grafensteın L, Ueberschaer D, Bock M, Griebner U, Elsaesser T. Compact high-flux hard X-ray source driven by femtosecond mid-infrared pulses at a 1 kHz repetition rate. OPTICS LETTERS 2021; 46:210-213. [PMID: 33448990 DOI: 10.1364/ol.409522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/08/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
A novel, to the best of our knowledge, table-top hard X-ray source driven by femtosecond mid-infrared pulses provides 8 keV pulses at a 1 kHz repetition rate with an unprecedented flux of up to 1.5×1012 X-ray photons/s. Sub-100 fs pulses at a center wavelength of 5 µm and multi-millijoule energy are generated in a four-stage optical parametric chirped-pulse amplifier and focused onto a thin Cu tape target. Electrons are extracted from the target and accelerated in a vacuum up to 100 keV kinetic energy during the optical cycle; the electrons generate a highly stable K α photon flux from the target in a transmission geometry.
Collapse
|
41
|
Grebing C, Müller M, Buldt J, Stark H, Limpert J. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell. OPTICS LETTERS 2020; 45:6250-6253. [PMID: 33186962 DOI: 10.1364/ol.408998] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/01/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate the reliable generation of 1-mJ, 31-fs pulses with an average power of 1 kW by post-compression of 200-fs pulses from a coherently combined Yb:fiber laser system in an argon-filled Herriott-type multi-pass cell with an overall compression efficiency of 96%. We also analyze the output beam, revealing essentially no spatiospectral couplings or beam quality loss.
Collapse
|
42
|
Klas R, Eschen W, Kirsche A, Rothhardt J, Limpert J. Generation of coherent broadband high photon flux continua in the XUV with a sub-two-cycle fiber laser. OPTICS EXPRESS 2020; 28:6188-6196. [PMID: 32225873 DOI: 10.1364/oe.28.006188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/26/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
High harmonic sources can provide ultrashort pulses of coherent radiation in the XUV and X-ray spectral region. In this paper we utilize a sub-two-cycle femtosecond fiber laser to efficiently generate a broadband continuum of high-order harmonics between 70 eV and 120 eV. The average power delivered by this source ranges from > 0.2 µW/eV at 80 eV to >0.03 µW/eV at 120 eV. At 92 eV (13.5 nm wavelength), we measured a coherent record-high average power of 0.1 µW/eV, which corresponds to 7 · 109 ph/s/eV, with a long-term stability of 0.8% rms deviation over a 20 min time period. The presented approach is average power scalable and promises up to 1011 ph/s/eV in the near future. With additional carrier-envelop phase control even isolated attosecond pulses can be expected from such sources. The combination of high flux, high photon energy and ultrashort (sub-) fs duration will enable photon-hungry time-resolved and multidimensional studies.
Collapse
|
43
|
Afshari M, Krumey P, Menn D, Nicoul M, Brinks F, Tarasevitch A, Sokolowski-Tinten K. Time-resolved diffraction with an optimized short pulse laser plasma X-ray source. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:014301. [PMID: 31934600 PMCID: PMC6941949 DOI: 10.1063/1.5126316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/01/2019] [Accepted: 12/16/2019] [Indexed: 06/07/2023]
Abstract
We present a setup for time-resolved X-ray diffraction based on a short pulse, laser-driven plasma X-ray source. The employed modular design provides high flexibility to adapt the setup to the specific requirements (e.g., X-ray optics and sample environment) of particular applications. The configuration discussed here has been optimized toward high angular/momentum resolution and uses K α -radiation (4.51 keV) from a Ti wire-target in combination with a toroidally bent crystal for collection, monochromatization, and focusing of the emitted radiation. 2 × 10 5 Ti-K α1 photons per pulse with10 - 4 relative bandwidth are delivered to the sample at a repetition rate of 10 Hz. This allows for the high dynamic range (104) measurements of transient changes in the rocking curves of materials as for example induced by laser-triggered strain waves.
Collapse
Affiliation(s)
- M Afshari
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
| | - P Krumey
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
| | - D Menn
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
| | - M Nicoul
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
| | - F Brinks
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
| | - A Tarasevitch
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
| | - K Sokolowski-Tinten
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
| |
Collapse
|
44
|
Antonov VA, Han KC, Akhmedzhanov TR, Scully M, Kocharovskaya O. Attosecond Pulse Amplification in a Plasma-Based X-Ray Laser Dressed by an Infrared Laser Field. PHYSICAL REVIEW LETTERS 2019; 123:243903. [PMID: 31922815 DOI: 10.1103/physrevlett.123.243903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/15/2019] [Indexed: 06/10/2023]
Abstract
High-harmonic generation (HHG) of laser radiation has led to attosecond pulse formation which offers unprecedented temporal resolution in observing and controlling electron and nuclear dynamics. But the energy of attosecond pulses remains quite small, especially for photon energies exceeding 100 eV, which limits their practical applications. We propose a method for amplification of attosecond pulses in the active medium of a plasma-based x-ray laser dressed by a replica of the laser field used for HHG. The experimental implementation is suggested in hydrogenlike C5+ x-ray laser at 3.4 nm wavelength in the "water window" range.
Collapse
Affiliation(s)
- V A Antonov
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - K Ch Han
- Department of Physics and Astronomy and Institute for Quantum Studies and Engineering, Texas A&M University, College Station, Texas 77843-4242, USA
| | - T R Akhmedzhanov
- Department of Physics and Astronomy and Institute for Quantum Studies and Engineering, Texas A&M University, College Station, Texas 77843-4242, USA
| | - Marlan Scully
- Department of Physics and Astronomy and Institute for Quantum Studies and Engineering, Texas A&M University, College Station, Texas 77843-4242, USA
| | - Olga Kocharovskaya
- Department of Physics and Astronomy and Institute for Quantum Studies and Engineering, Texas A&M University, College Station, Texas 77843-4242, USA
| |
Collapse
|
45
|
Maiuri M, Garavelli M, Cerullo G. Ultrafast Spectroscopy: State of the Art and Open Challenges. J Am Chem Soc 2019; 142:3-15. [DOI: 10.1021/jacs.9b10533] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
46
|
Di Mitri S, Barletta W, Bianco A, Cudin I, Diviacco B, Raimondi L, Spampinati S, Spezzani C, Masciovecchio C. Laser-slicing at a low-emittance storage ring. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1523-1538. [PMID: 31490140 DOI: 10.1107/s1600577519009901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/26/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Laser-slicing at a diffraction-limited storage ring light source in the soft X-ray region is investigated with theoretical and numerical modelling. It turns out that the slicing efficiency is favoured by the ultra-low beam emittance, and that slicing can be implemented without interference to the standard multi-bunch operation. Spatial and spectral separation of the sub-picosecond radiation pulse from a hundreds of picosecond-long background is achieved by virtue of 1:1 imaging of the radiation source. The spectral separation is enhanced when the radiator is a transverse gradient undulator. The proposed configuration applied to the Elettra 2.0 six-bend achromatic lattice envisages total slicing efficiency as high as 10-7, one order of magnitude larger than the demonstrated state-of-the-art, at the expense of pulse durations as long as 0.4 ps FWHM and average laser power as high as ∼40 W.
Collapse
Affiliation(s)
- Simone Di Mitri
- Elettra - Sincrotrone Trieste SCpA, Basovizza, 34149 Trieste, Italy
| | - William Barletta
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Bianco
- Elettra - Sincrotrone Trieste SCpA, Basovizza, 34149 Trieste, Italy
| | - Ivan Cudin
- Elettra - Sincrotrone Trieste SCpA, Basovizza, 34149 Trieste, Italy
| | - Bruno Diviacco
- Elettra - Sincrotrone Trieste SCpA, Basovizza, 34149 Trieste, Italy
| | - Lorenzo Raimondi
- Elettra - Sincrotrone Trieste SCpA, Basovizza, 34149 Trieste, Italy
| | | | - Carlo Spezzani
- Elettra - Sincrotrone Trieste SCpA, Basovizza, 34149 Trieste, Italy
| | | |
Collapse
|
47
|
Marangos JP. The measurement of ultrafast electronic and structural dynamics with X-rays. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170481. [PMID: 30929630 PMCID: PMC6452056 DOI: 10.1098/rsta.2017.0481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Accepted: 02/04/2019] [Indexed: 05/17/2023]
Abstract
In this theme issue, leading researchers discuss recent work on the measurement of ultrafast electronic and structural dynamics in matter using a new generation of short duration X-ray photon sources. These photon sources, based upon high harmonic generation from lasers and X-ray free-electron lasers, look set to have a high impact on ultrafast science. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
|