1
|
Cohen IJ, Smith EJ, Clark GB, Turner DL, Ellison DH, Clare B, Regoli LH, Kollmann P, Gallagher DT, Holtzman GA, Likar JJ, Morizono T, Shannon M, Vodusek KS. Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS): A Dedicated Orbiter Mission Concept to Study Space Physics at Uranus. SPACE SCIENCE REVIEWS 2023; 219:65. [PMID: 37869526 PMCID: PMC10587260 DOI: 10.1007/s11214-023-01013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS) mission concept defines the feasibility and potential scope of a dedicated, standalone Heliophysics orbiter mission to study multiple space physics science objectives at Uranus. Uranus's complex and dynamic magnetosphere presents a unique laboratory to study magnetospheric physics as well as its coupling to the solar wind and the planet's atmosphere, satellites, and rings. From the planet's tilted and offset, rapidly-rotating non-dipolar magnetic field to its seasonally-extreme interactions with the solar wind to its unexpectedly intense electron radiation belts, Uranus hosts a range of outstanding and compelling mysteries relevant to the space physics community. While the exploration of planets other than Earth has largely fallen within the purview of NASA's Planetary Science Division, many targets, like Uranus, also hold immense scientific value and interest to NASA's Heliophysics Division. Exploring and understanding Uranus's magnetosphere is critical to make fundamental gains in magnetospheric physics and the understanding of potential exoplanetary systems and to test the validity of our knowledge of magnetospheric dynamics, moon-magnetosphere interactions, magnetosphere-ionosphere coupling, and solar wind-planetary coupling. The PERSEUS mission concept study, currently at Concept Maturity Level (CML) 4, comprises a feasible payload that provides closure to a range of space physics science objectives in a reliable and mature spacecraft and mission design architecture. The mission is able to close using only a single Mod-1 Next-Generation Radioisotope Thermoelectric Generator (NG-RTG) by leveraging a concept of operations that relies of a significant hibernation mode for a large portion of its 22-day orbit.
Collapse
Affiliation(s)
- Ian J Cohen
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Evan J Smith
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - George B Clark
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Drew L Turner
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Donald H Ellison
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Ben Clare
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Leonardo H Regoli
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Peter Kollmann
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | - G Allan Holtzman
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Justin J Likar
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Takeshi Morizono
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Matthew Shannon
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | |
Collapse
|
2
|
Modeling of texture quantification and image classification for change prediction due to COVID lockdown using Skysat and Planetscope imagery. ACTA ACUST UNITED AC 2021; 8:2767-2792. [PMID: 34458559 PMCID: PMC8384559 DOI: 10.1007/s40808-021-01258-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022]
Abstract
This research work models two methods together to provide maximum information about a study area. The quantification of image texture is performed using the “grey level co-occurrence matrix (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{GLCM}$$\end{document}GLCM)” technique. Image classification-based “object-based change detection (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{OBCD}$$\end{document}OBCD)” methods are used to visually represent the developed transformation in the study area. Pre-COVID and post-COVID (during lockdown) panchromatic images of Connaught Place, New Delhi, are investigated in this research work to develop a model for the study area. Texture classification of the study area is performed based on visual texture features for eight distances and four orientations. Six different image classification methodologies are used for mapping the study area. These methodologies are “Parallelepiped classification (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{PC}$$\end{document}PC),” “Minimum distance classification (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{MDC}$$\end{document}MDC),” “Maximum likelihood classification (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{MLC}$$\end{document}MLC),” “Spectral angle mapper (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{SAM}$$\end{document}SAM),” “Spectral information divergence (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{SID}$$\end{document}SID)” and “Support vector machine (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{SVM}$$\end{document}SVM).” \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{GLCM}$$\end{document}GLCM calculations have provided a pattern in texture features contrast, correlation, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{ASM}$$\end{document}ASM, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{IDM}$$\end{document}IDM. Maximum classification accuracy of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$83.68\%$$\end{document}83.68% and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$73.65\%$$\end{document}73.65% are obtained for pre-COVID and post-COVID image data through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{MLC}$$\end{document}MLC classification technique. Finally, a model is presented to analyze before and after COVID images to get complete information about the study area numerically and visually.
Collapse
|
3
|
Fletcher LN, Simon AA, Hofstadter MD, Arridge CS, Cohen IJ, Masters A, Mandt K, Coustenis A. Ice giant system exploration in the 2020s: an introduction. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190473. [PMID: 33161857 PMCID: PMC7658778 DOI: 10.1098/rsta.2019.0473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 05/04/2023]
Abstract
The international planetary science community met in London in January 2020, united in the goal of realizing the first dedicated robotic mission to the distant ice giants, Uranus and Neptune, as the only major class of solar system planet yet to be comprehensively explored. Ice-giant-sized worlds appear to be a common outcome of the planet formation process, and pose unique and extreme tests to our understanding of exotic water-rich planetary interiors, dynamic and frigid atmospheres, complex magnetospheric configurations, geologically-rich icy satellites (both natural and captured), and delicate planetary rings. This article introduces a special issue on ice giant system exploration at the start of the 2020s. We review the scientific potential and existing mission design concepts for an ambitious international partnership for exploring Uranus and/or Neptune in the coming decades. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- L. N. Fletcher
- School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - A. A. Simon
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - M. D. Hofstadter
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - C. S. Arridge
- Department of Physics, Lancaster University, Bailrigg, Lancaster LA1 4YB, UK
| | - Ian J. Cohen
- The Johns Hopkins University Applied Physics Laboratory, 11000 Johns Hopkins Road, Laurel, MD 20723, USA
| | - A. Masters
- The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - K. Mandt
- The Johns Hopkins University Applied Physics Laboratory, 11000 Johns Hopkins Road, Laurel, MD 20723, USA
| | - A. Coustenis
- LESIA – Paris Observatory, CNRS, Paris Science Letters Research University, Univ. Paris-Diderot, Meudon, France
| |
Collapse
|