1
|
Galiana J, Lasorne B. Excitation energy transfer and vibronic relaxation through light-harvesting dendrimer building blocks: A nonadiabatic perspective. J Chem Phys 2024; 160:104104. [PMID: 38465688 DOI: 10.1063/5.0193264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
The light-harvesting excitonic properties of poly(phenylene ethynylene) (PPE) extended dendrimers (tree-like π-conjugated macromolecules) involve a directional cascade of local excitation energy transfer (EET) processes occurring from the "leaves" (shortest branches) to the "trunk" (longest branch), which can be viewed from a vibronic perspective as a sequence of internal conversions occurring among a connected graph of nonadiabatically coupled locally excited electronic states via conical intersections. The smallest PPE building block that is able to exhibit EET, the asymmetrically meta-substituted PPE oligomer with one acetylenic bond on one side and two parallel ones on the other side (hence, 2-ring and 3-ring para-substituted pseudo-fragments), is a prototype and the focus of the present work. From linear-response time-dependent density functional theory electronic-structure calculations of the molecule as regards its first two nonadiabatically coupled, optically active, singlet excited states, we built a (1 + 2)-state-8-dimensional vibronic-coupling Hamiltonian model for running subsequent multiconfiguration time-dependent Hartree wavepacket relaxations and propagations, yielding both steady-state absorption and emission spectra as well as real-time dynamics. The EET process from the shortest branch to the longest one occurs quite efficiently (about 80% quantum yield) within the first 25 fs after light excitation and is mediated vibrationally through acetylenic and quinoidal bond-stretching modes together with a particular role given to the central-ring anti-quinoidal rock-bending mode. Electronic and vibrational energy relaxations, together with redistributions of quantum populations and coherences, are interpreted herein through the lens of a nonadiabatic perspective, showing some interesting segregation among the foremost photoactive degrees of freedom as regards spectroscopy and reactivity.
Collapse
|
2
|
Hoppe H, Manthe U. Eigenstate calculation in the state-averaged (multi-layer) multi-configurational time-dependent Hartree approach. J Chem Phys 2024; 160:034104. [PMID: 38230812 DOI: 10.1063/5.0188748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
A new approach for the calculation of eigenstates with the state-averaged (multi-layer) multi-configurational time-dependent Hartree (MCTDH) approach is presented. The approach is inspired by the recent work of Larsson [J. Chem. Phys. 151, 204102 (2019)]. It employs local optimization of the basis sets at each node of the multi-layer MCTDH tree and successive downward and upward sweeps to obtain a globally converged result. At the top node, the Hamiltonian represented in the basis of the single-particle functions (SPFs) of the first layer is diagonalized. Here p wavefunctions corresponding to the p lowest eigenvalues are computed by a block Lanczos approach. At all other nodes, a non-linear operator consisting of the respective mean-field Hamiltonian matrix and a projector onto the space spanned by the respective SPFs is considered. Here, the eigenstate corresponding to the lowest eigenvalue is computed using a short iterative Lanczos scheme. Two different examples are studied to illustrate the new approach: the calculation of the vibrational states of methyl and acetonitrile. The calculations for methyl employ the single-layer MCTDH approach, a general potential energy surface, and the correlation discrete variable representation. A five-layer MCTDH representation and a sum of product-type Hamiltonian are used in the acetonitrile calculations. Very fast convergence and order of magnitude reductions in the numerical effort compared to the previously used block relaxation scheme are found. Furthermore, a detailed comparison with the results of Avila and Carrington [J. Chem. Phys. 134, 054126 (2011)] for acetonitrile highlights the potential problems of convergence tests for high-dimensional systems.
Collapse
Affiliation(s)
- Hannes Hoppe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
3
|
Gómez S, Spinlove E, Worth G. Benchmarking non-adiabatic quantum dynamics using the molecular Tully models. Phys Chem Chem Phys 2024; 26:1829-1844. [PMID: 38170796 DOI: 10.1039/d3cp03964a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
On-the-fly non-adiabatic dynamics methods are becoming more important as tools to characterise the time evolution of a system after absorbing light. These methods, which calculate quantities such as state energies, gradients and interstate couplings at every time step, circumvent the requirement for pre-computed potential energy surfaces. There are a number of different algorithms used, the most common being Tully Surface Hopping (TSH), but all are approximate solutions to the time-dependent Schrödinger equation and benchmarking is required to understand their accuracy and performance. For this, a common set of systems and observables are required to compare them. In this work, we validate the on-the-fly direct dynamics variational multi-configuration Gaussian (DD-vMCG) method using three molecular systems recently suggested by Ibele and Curchod as molecular versions of the Tully model systems used to test one-dimensional non-adiabatic behaviour [Ibele et al., Phys. Chem. Chem. Phys. 2020, 22, 15183-15196]. Parametrised linear vibronic potential energy surfaces for each of the systems were also tested and compared to on-the-fly results. The molecules, which we term the Ibele-Curchod models, are ethene, DMABN and fulvene and the authors used them to test and compare several versions of the Ab Initio Multiple Spawning (AIMS) method alongside TSH. The three systems present different deactivation pathways after excitation to their ππ* bright states. When comparing DD-vMCG to AIMS and TSH, we obtain crucial differences in some cases, for which an explanation is provided by the classical nature and the chosen initial conditions of the TSH simulations.
Collapse
Affiliation(s)
- Sandra Gómez
- Departamento de Química Física, Universidad de Salamanca, 37008, Spain
| | - Eryn Spinlove
- Faculty of Science and Engineering, Theoretical Chemistry - Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK.
| | - Graham Worth
- Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK.
| |
Collapse
|
4
|
Mirón GD, Semelak JA, Grisanti L, Rodriguez A, Conti I, Stella M, Velusamy J, Seriani N, Došlić N, Rivalta I, Garavelli M, Estrin DA, Kaminski Schierle GS, González Lebrero MC, Hassanali A, Morzan UN. The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter. Nat Commun 2023; 14:7325. [PMID: 37957206 PMCID: PMC10643446 DOI: 10.1038/s41467-023-42874-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive so far. In the present study, we identify a mechanism underlying this new type of fluorescence in different biological aggregates. By employing non-adiabatic ab initio molecular dynamics simulations combined with a data-driven approach, we characterize the typical ultrafast non-radiative relaxation pathways active in non-fluorescent peptides. We show that the key vibrational mode for the non-radiative decay towards the ground state is the carbonyl elongation. Non-aromatic fluorescence appears to emerge from blocking this mode with strong local interactions such as hydrogen bonds. While we cannot rule out the existence of alternative non-aromatic fluorescence mechanisms in other systems, we demonstrate that this carbonyl-lock mechanism for trapping the excited state leads to the fluorescence yield increase observed experimentally, and set the stage for design principles to realize novel non-invasive biocompatible probes with applications in bioimaging, sensing, and biophotonics.
Collapse
Affiliation(s)
- Gonzalo Díaz Mirón
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jonathan A Semelak
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luca Grisanti
- Division of Theoretical Physics, Ruder Bošković Institute, Zagreb, Croatia
| | - Alex Rodriguez
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Irene Conti
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Bologna, Italy
| | - Martina Stella
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | | | - Nicola Seriani
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Nadja Došlić
- Division of Theoretical Physics, Ruder Bošković Institute, Zagreb, Croatia
| | - Ivan Rivalta
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Bologna, Italy
- ENSL, CNRS, Lyon, France
| | - Marco Garavelli
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Bologna, Italy
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Mariano C González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ali Hassanali
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.
| | - Uriel N Morzan
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.
| |
Collapse
|
5
|
Garashchuk S, Stetzler J, Rassolov V. Factorized Electron-Nuclear Dynamics with an Effective Complex Potential. J Chem Theory Comput 2023; 19:1393-1408. [PMID: 36795898 DOI: 10.1021/acs.jctc.2c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We present a quantum dynamics approach for molecular systems based on wave function factorization into components describing the light and heavy particles, such as electrons and nuclei. The dynamics of the nuclear subsystem can be viewed as motion of the trajectories defined in the nuclear subspace, evolving according to the average nuclear momentum of the full wave function. The probability density flow between the nuclear and electronic subsystems is facilitated by the imaginary potential, derived to ensure a physically meaningful normalization of the electronic wave function for each configuration of the nuclei, and conservation of the probability density associated with each trajectory in the Lagrangian frame of reference. The imaginary potential, defined in the nuclear subspace, depends on the momentum variance in the nuclear coordinates averaged over the electronic component of the wave function. An effective real potential, driving the dynamics of the nuclear subsystem, is defined to minimize motion of the electronic wave function in the nuclear degrees of freedom. Illustration and the analysis of the formalism are given for a two-dimensional model system of vibrationally nonadiabatic dynamics.
Collapse
Affiliation(s)
- Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Julian Stetzler
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Vitaly Rassolov
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
6
|
Travnikova O, Piteša T, Ponzi A, Sapunar M, Squibb RJ, Richter R, Finetti P, Di Fraia M, De Fanis A, Mahne N, Manfredda M, Zhaunerchyk V, Marchenko T, Guillemin R, Journel L, Prince KC, Callegari C, Simon M, Feifel R, Decleva P, Došlić N, Piancastelli MN. Photochemical Ring-Opening Reaction of 1,3-Cyclohexadiene: Identifying the True Reactive State. J Am Chem Soc 2022; 144:21878-21886. [PMID: 36444673 PMCID: PMC9732879 DOI: 10.1021/jacs.2c06296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photochemically induced ring-opening isomerization reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer. Here, in a joint experimental and computational effort, we demonstrate that the evolution of the excitation-deexcitation process is much more complex than that usually described. In particular, we show that an initially high-lying electronic state smoothly decreasing in energy along the reaction path plays a key role in the ring-opening reaction.
Collapse
Affiliation(s)
- Oksana Travnikova
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | | | - Aurora Ponzi
- Institut
Rud̵er Bošković, ZagrebHR-10000, Croatia
| | | | | | | | | | | | | | - Nicola Mahne
- IOM-CNR, S.S. 14 km 163.5 in Area Science
Park, Trieste34149, Italy
| | | | - Vitali Zhaunerchyk
- Department
of Physics, University of Gothenburg, GothenburgSE-412 96, Sweden
| | - Tatiana Marchenko
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Renaud Guillemin
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Loic Journel
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | | | | | - Marc Simon
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Raimund Feifel
- Department
of Physics, University of Gothenburg, GothenburgSE-412 96, Sweden
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, TriesteI-34127, Italy
| | - Nad̵a Došlić
- Institut
Rud̵er Bošković, ZagrebHR-10000, Croatia,
| | - Maria Novella Piancastelli
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France,Department
of Physics and Astronomy, Uppsala University, UppsalaSE-751 20, Sweden,
| |
Collapse
|
7
|
He X, Wu B, Rivlin T, Liu J, Pollak E. Transition Path Flight Times and Nonadiabatic Electronic Transitions. J Phys Chem Lett 2022; 13:6966-6974. [PMID: 35877977 PMCID: PMC9358656 DOI: 10.1021/acs.jpclett.2c01425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Transition path flight times are studied for scattering on two electronic surfaces with a single crossing. These flight times reveal nontrivial quantum effects such as resonance lifetimes and nonclassical passage times and reveal that nonadiabatic effects often increase flight times. The flight times are computed using numerically exact time propagation and compared with results obtained from the Fewest Switches Surface Hopping (FSSH) method. Comparison of the two methods shows that the FSSH method is reliable for transition path times only when the scattering is classically allowed on the relevant adiabatic surfaces. However, where quantum effects such as tunneling and resonances dominate, the FSSH method is not adequate to accurately predict the correct times and transition probabilities. These results highlight limitations in methods which do not account for quantum interference effects, and suggest that measuring flight times is important for obtaining insights from the time-domain into quantum effects in nonadiabatic scattering.
Collapse
Affiliation(s)
- Xin He
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Baihua Wu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tom Rivlin
- Chemical
and Biological Physics Department, Weizmann
Institute of Science, 76100 Rehovot, Israel
| | - Jian Liu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Eli Pollak
- Chemical
and Biological Physics Department, Weizmann
Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
8
|
Coonjobeeharry J, Spinlove KE, Sanz Sanz C, Sapunar M, Došlić N, Worth GA. Mixed-quantum-classical or fully-quantized dynamics? A unified code to compare methods. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200386. [PMID: 35341308 DOI: 10.1098/rsta.2020.0386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 06/14/2023]
Abstract
Three methods for non-adiabatic dynamics are compared to highlight their capabilities. Multi-configurational time-dependent Hartree is a full grid-based solution to the time-dependent Schrödinger equation, variational multi-configurational Gaussian (vMCG) uses a less flexible but unrestricted Gaussian wavepacket basis, and trajectory surface hopping (TSH) replaces the nuclear wavepacket with a swarm of classical trajectories. Calculations with all methods using a model Hamiltonian were performed. The vMCG and TSH were also then run in a direct dynamics mode, with the potential energy surfaces calculated on-the-fly using quantum chemistry calculations. All dynamics calculations used the Quantics package, with the TSH calculations using a new interface to a surface hopping code. A novel approach to calculate adiabatic populations from grid-based quantum dynamics using a time-dependent discrete variable representation is presented, allowing a proper comparison of methods. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.
Collapse
Affiliation(s)
- J Coonjobeeharry
- Department of Chemistry, University College London, 20, Gordon St., London WC1H 0AJ, UK
| | - K E Spinlove
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747AG, Netherlands
| | - C Sanz Sanz
- Department of Applied Physical Chemistry, Faculty of Science, Autonoma University Madrid, Campus Cantoblanco, Madrid 28049, Spain
| | - M Sapunar
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 1000, Croatia
| | - N Došlić
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 1000, Croatia
| | - G A Worth
- Department of Chemistry, University College London, 20, Gordon St., London WC1H 0AJ, UK
| |
Collapse
|
9
|
Agostini F, Curchod BFE. Chemistry without the Born-Oppenheimer approximation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200375. [PMID: 35341309 PMCID: PMC8958276 DOI: 10.1098/rsta.2020.0375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 05/20/2023]
Affiliation(s)
- Federica Agostini
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Basile F. E. Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
10
|
Gómez S, Soysal EN, Worth GA. Micro-Solvated DMABN: Excited State Quantum Dynamics and Dual Fluorescence Spectra. Molecules 2021; 26:7247. [PMID: 34885829 PMCID: PMC8658867 DOI: 10.3390/molecules26237247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/04/2022] Open
Abstract
In this work, we report a complete analysis by theoretical and spectroscopic methods of the short-time behaviour of 4-(dimethylamino)benzonitrile (DMABN) in the gas phase as well as in cyclohexane, tetrahydrofuran, acetonitrile, and water solution, after excitation to the La state. The spectroscopic properties of DMABN were investigated experimentally using UV absorption and fluorescence emission spectroscopy. The computational study was developed at different electronic structure levels and using the Polarisable Continuum Model (PCM) and explicit solvent molecules to reproduce the solvent environment. Additionally, excited state quantum dynamics simulations in the diabatic picture using the direct dynamics variational multiconfigurational Gaussian (DD-vMCG) method were performed, the largest quantum dynamics "on-the-fly" simulations performed with this method until now. The comparison with fully converged multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) dynamics on parametrised linear vibronic coupling (LVC) potentials show very similar population decays and evolution of the nuclear wavepacket. The ring C=C stretching and three methyl tilting modes are identified as the responsible motions for the internal conversion from the La to the Lb states. No major differences are observed in the ultrafast initial decay in different solvents, but we show that this effect depends strongly on the level of electronic structure used.
Collapse
Affiliation(s)
- Sandra Gómez
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK;
| | | | - Graham A. Worth
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK;
| |
Collapse
|