1
|
Carpenter M, Kopanke J, Lee J, Rodgers C, Reed K, Sherman TJ, Graham B, Cohnstaedt LW, Wilson WC, Stenglein M, Mayo C. Evaluating Temperature Effects on Bluetongue Virus Serotype 10 and 17 Coinfection in Culicoides sonorensis. Int J Mol Sci 2024; 25:3063. [PMID: 38474308 PMCID: PMC10932384 DOI: 10.3390/ijms25053063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Bluetongue virus (BTV) is a segmented, double-stranded RNA virus transmitted by Culicoides midges that infects ruminants. As global temperatures increase and geographical ranges of midges expand, there is increased potential for BTV outbreaks from incursions of novel serotypes into endemic regions. However, an understanding of the effect of temperature on reassortment is lacking. The objectives of this study were to compare how temperature affected Culicoides survival, virogenesis, and reassortment in Culicoides sonorensis coinfected with two BTV serotypes. Midges were fed blood meals containing BTV-10, BTV-17, or BTV serotype 10 and 17 and maintained at 20 °C, 25 °C, or 30 °C. Midge survival was assessed, and pools of midges were collected every other day to evaluate virogenesis of BTV via qRT-PCR. Additional pools of coinfected midges were collected for BTV plaque isolation. The genotypes of plaques were determined using next-generation sequencing. Warmer temperatures impacted traits related to vector competence in offsetting ways: BTV replicated faster in midges at warmer temperatures, but midges did not survive as long. Overall, plaques with BTV-17 genotype dominated, but BTV-10 was detected in some plaques, suggesting parental strain fitness may play a role in reassortment outcomes. Temperature adds an important dimension to host-pathogen interactions with implications for transmission and evolution.
Collapse
Affiliation(s)
- Molly Carpenter
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Jennifer Kopanke
- Department of Comparative Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Justin Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Case Rodgers
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Kirsten Reed
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Tyler J. Sherman
- Diagnostic Medicine Center, Colorado State University, 2450 Gillette Drive, Fort Collins, CO 80526, USA;
| | - Barbara Graham
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, The National Bio and Agro-Defense Facility, USDA Agricultural Research Service, P.O. Box 1807, Manhattan, KS 66505, USA; (L.W.C.); (W.C.W.)
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, The National Bio and Agro-Defense Facility, USDA Agricultural Research Service, P.O. Box 1807, Manhattan, KS 66505, USA; (L.W.C.); (W.C.W.)
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Christie Mayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| |
Collapse
|
2
|
Carpenter M, Kopanke J, Lee J, Rodgers C, Reed K, Sherman TJ, Graham B, Stenglein M, Mayo C. Assessing Reassortment between Bluetongue Virus Serotypes 10 and 17 at Different Coinfection Ratios in Culicoides sonorenesis. Viruses 2024; 16:240. [PMID: 38400016 PMCID: PMC10893243 DOI: 10.3390/v16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Bluetongue virus (BTV) is a segmented, double-stranded RNA orbivirus listed by the World Organization for Animal Health and transmitted by Culicoides biting midges. Segmented viruses can reassort, which facilitates rapid and important genotypic changes. Our study evaluated reassortment in Culicoides sonorensis midges coinfected with different ratios of BTV-10 and BTV-17. Midges were fed blood containing BTV-10, BTV-17, or a combination of both serotypes at 90:10, 75:25, 50:50, 25:75, or 10:90 ratios. Midges were collected every other day and tested for infection using pan BTV and cox1 (housekeeping gene) qRT-PCR. A curve was fit to the ∆Ct values (pan BTV Ct-cox1 Ct) for each experimental group. On day 10, the midges were processed for BTV plaque isolation. Genotypes of the plaques were determined by next-generation sequencing. Pairwise comparison of ∆Ct curves demonstrated no differences in viral RNA levels between coinfected treatment groups. Plaque genotyping indicated that most plaques fully aligned with one of the parental strains; however, reassortants were detected, and in the 75:25 pool, most plaques were reassortant. Reassortant prevalence may be maximized upon the occurrence of reassortant genotypes that can outcompete the parental genotypes. BTV reassortment and resulting biological consequences are important elements to understanding orbivirus emergence and evolution.
Collapse
Affiliation(s)
- Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Jennifer Kopanke
- Department of Comparative Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Justin Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Kirsten Reed
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Tyler J. Sherman
- Diagnostic Medicine Center, Colorado State University, Fort Collins, CO 80526, USA;
| | - Barbara Graham
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| |
Collapse
|
3
|
Mweya CN, Mboera LEG, Kimera SI. Climate Influence on Emerging Risk Areas for Rift Valley Fever Epidemics in Tanzania. Am J Trop Med Hyg 2017; 97:109-114. [PMID: 28719317 DOI: 10.4269/ajtmh.16-0444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rift Valley Fever (RVF) is a climate-related arboviral infection of animals and humans. Climate is thought to represent a threat toward emerging risk areas for RVF epidemics globally. The objective of this study was to evaluate influence of climate on distribution of suitable breeding habitats for Culex pipiens complex, potential mosquito vector responsible for transmission and distribution of disease epidemics risk areas in Tanzania. We used ecological niche models to estimate potential distribution of disease risk areas based on vectors and disease co-occurrence data approach. Climatic variables for the current and future scenarios were used as model inputs. Changes in mosquito vectors' habitat suitability in relation to disease risk areas were estimated. We used partial receiver operating characteristic and the area under the curves approach to evaluate model predictive performance and significance. Habitat suitability for Cx. pipiens complex indicated broad-scale potential for change and shift in the distribution of the vectors and disease for both 2020 and 2050 climatic scenarios. Risk areas indicated more intensification in the areas surrounding Lake Victoria and northeastern part of the country through 2050 climate scenario. Models show higher probability of emerging risk areas spreading toward the western parts of Tanzania from northeastern areas and decrease in the southern part of the country. Results presented here identified sites for consideration to guide surveillance and control interventions to reduce risk of RVF disease epidemics in Tanzania. A collaborative approach is recommended to develop and adapt climate-related disease control and prevention strategies.
Collapse
Affiliation(s)
- Clement N Mweya
- Tukuyu Research Centre, National Institute for Medical Research, Tukuyu, Tanzania
| | - Leonard E G Mboera
- Headquarters, National Institute for Medical Research, Dar es salaam, Tanzania
| | - Sharadhuli I Kimera
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
4
|
Bunyavirus-vector interactions. Viruses 2014; 6:4373-97. [PMID: 25402172 PMCID: PMC4246228 DOI: 10.3390/v6114373] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/23/2023] Open
Abstract
The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family.
Collapse
|
5
|
Mweya CN, Holst N, Mboera LEG, Kimera SI. Simulation modelling of population dynamics of mosquito vectors for rift valley Fever virus in a disease epidemic setting. PLoS One 2014; 9:e108430. [PMID: 25259792 PMCID: PMC4178157 DOI: 10.1371/journal.pone.0108430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/19/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Rift Valley Fever (RVF) is weather dependent arboviral infection of livestock and humans. Population dynamics of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics. METHODS/FINDINGS Time-varying distributed delays (TVDD) and multi-way functional response equations were implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity, water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML) files were used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district. CONCLUSION/SIGNIFICANCE Findings presented here provide new opportunities for weather-driven RVF epidemic simulation modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction, prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data in different settings.
Collapse
Affiliation(s)
- Clement N. Mweya
- National Institute for Medical Research, Tukuyu, Tanzania
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Niels Holst
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Sharadhuli I. Kimera
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
6
|
Silva SP, Dilcher M, Weber F, Hufert FT, Weidmann M, Cardoso JF, Carvalho VL, Chiang JO, Martins LC, Lima CPS, Da Silva DEA, Vianez-Júnior JLSG, Popov VL, Travassos da Rosa APA, Tesh RB, Vasconcelos PFC, Nunes MRT. Genetic and biological characterization of selected Changuinola viruses (Reoviridae, Orbivirus) from Brazil. J Gen Virol 2014; 95:2251-2259. [PMID: 24986085 DOI: 10.1099/vir.0.064691-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The genus Orbivirus of the family Reoviridae comprises 22 virus species including the Changuinola virus (CGLV) serogroup. The complete genome sequences of 13 CGLV serotypes isolated between 1961 and 1988 from distinct geographical areas of the Brazilian Amazon region were obtained. All viral sequences were obtained from single-passaged CGLV strains grown in Vero cells. CGLVs are the only orbiviruses known to be transmitted by phlebotomine sandflies. Ultrastructure and molecular analysis by electron microscopy and gel electrophoresis, respectively, revealed viral particles with typical orbivirus size and morphology, as well as the presence of a segmented genome with 10 segments. Full-length nucleotide sequencing of each of the ten RNA segments of the 13 CGLV serotypes provided basic information regarding the genome organization, encoded proteins and genetic traits. Segment 2 (encoding VP2) of the CGLV is uncommonly larger in comparison to those found in other orbiviruses and shows varying sizes even among different CGLV serotypes. Phylogenetic analysis support previous serological findings, which indicate that CGLV constitutes a separate serogroup within the genus Orbivirus. In addition, six out of 13 analysed CGLV serotypes showed reassortment of their genome segments.
Collapse
Affiliation(s)
- Sandro P Silva
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Meik Dilcher
- Department of Virology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Franziska Weber
- Department of Virology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Frank T Hufert
- Department of Virology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - Jedson F Cardoso
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Valéria L Carvalho
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Jannifer O Chiang
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Lívia C Martins
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Clayton P S Lima
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Daisy E A Da Silva
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - João L S G Vianez-Júnior
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Vsevolod L Popov
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amélia P A Travassos da Rosa
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert B Tesh
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pedro F C Vasconcelos
- Departamento de Patologia, Universidade do Estado do Pará, Belém, Brazil.,Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Márcio R T Nunes
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| |
Collapse
|
7
|
Xu J, Cherry S. Viruses and antiviral immunity in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:67-84. [PMID: 23680639 PMCID: PMC3826445 DOI: 10.1016/j.dci.2013.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 05/10/2023]
Abstract
Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
8
|
Briese T, Calisher CH, Higgs S. Viruses of the family Bunyaviridae: are all available isolates reassortants? Virology 2013; 446:207-16. [PMID: 24074583 DOI: 10.1016/j.virol.2013.07.030] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/11/2013] [Accepted: 07/24/2013] [Indexed: 01/27/2023]
Abstract
Viruses of the family Bunyaviridae (the bunyaviruses) possess three distinct linear, single-stranded, negative sense or ambisense RNA segments (large, medium, and small). Dual infections of arthropod and perhaps vertebrate and plant hosts provide substantial opportunity for segment reassortment and an increasingly recognized number of the nearly 300 viruses in this family have been shown to be reassortants. Reassortment of RNA segments (genetic shift) complements genetic drift (accumulation of point mutations) as a powerful mechanism underlying bunyavirus evolution. Here we consider the possibility, if not likelihood, that most if not all bunyaviruses currently recognized may represent reassortants, some of which may be reassortants of existing viruses, and some of which may be reassortants of extinct viruses. If this hypothesis is correct, then the roots of the family and genus trees of bunyaviruses as currently described (or ignored) are incomplete or incorrect.
Collapse
Affiliation(s)
- Thomas Briese
- Center for Infection and Immunity and Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
9
|
Coetzee P, Van Vuuren M, Stokstad M, Myrmel M, Venter EH. Bluetongue virus genetic and phenotypic diversity: towards identifying the molecular determinants that influence virulence and transmission potential. Vet Microbiol 2012; 161:1-12. [PMID: 22835527 DOI: 10.1016/j.vetmic.2012.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 12/23/2022]
Abstract
Bluetongue virus (BTV) is the prototype member of the Orbivirus genus in the family Reoviridae and is the aetiological agent of the arthropod transmitted disease bluetongue (BT) that affects both ruminant and camelid species. The disease is of significant global importance due to its economic impact and effect on animal welfare. Bluetongue virus, a dsRNA virus, evolves through a process of quasispecies evolution that is driven by genetic drift and shift as well as intragenic recombination. Quasispecies evolution coupled with founder effect and evolutionary selective pressures has over time led to the establishment of genetically distinct strains of the virus in different epidemiological systems throughout the world. Bluetongue virus field strains may differ substantially from each other with regards to their phenotypic properties (i.e. virulence and/or transmission potential). The intrinsic molecular determinants that influence the phenotype of BTV have not clearly been characterized. It is currently unclear what contribution each of the viral genome segments have in determining the phenotypic properties of the virus and it is also unknown how genetic variability in the individual viral genes and their functional domains relate to differences in phenotype. In order to understand how genetic variation in particular viral genes could potentially influence the phenotypic properties of the virus; a closer understanding of the BTV virion, its encoded proteins and the evolutionary mechanisms that shape the diversity of the virus is required. This review provides a synopsis of these issues and highlights some of the studies that have been conducted on BTV and the closely related African horse sickness virus (AHSV) that have contributed to ongoing attempts to identify the molecular determinants that influence the virus' phenotype. Different strategies that can be used to generate BTV mutants in vitro and methods through which the causality between particular genetic modifications and changes in phenotype may be determined are also described. Finally examples are highlighted where a clear understanding of the molecular determinants that influence the phenotype of the virus may have contributed to risk assessment and mitigation strategies during recent outbreaks of BT in Europe.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | | | | | | | | |
Collapse
|
10
|
Nunes MRT, Travassos da Rosa APA, Weaver SC, Tesh RB, Vasconcelos PFC. Molecular epidemiology of group C viruses (Bunyaviridae, Orthobunyavirus) isolated in the Americas. J Virol 2005; 79:10561-70. [PMID: 16051848 PMCID: PMC1182628 DOI: 10.1128/jvi.79.16.10561-10570.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, no molecular studies on group C viruses (Bunyaviridae, Orthobunyavirus) have been published. We determined the complete small RNA (SRNA) segment and partial medium RNA segment nucleotide sequences for 13 group C members. The full-length SRNA sequences ranged from 915 to 926 nucleotides in length, and revealed similar organization in comparison with other orthobunyaviruses. Based on the 705 nucleotides of the N gene, group C members were distributed into three major phylogenetic groups, with the exception of Madrid virus, which was placed outside of these three groups. Analysis of the Caraparu virus strain BeH 5546 revealed that it has an SRNA sequence nearly identical to that of Oriboca virus and is a natural reassortant virus. In addition, analysis of 345 nucleotides of the Gn gene for eight group C viruses and for strain BeH 5546 revealed a different phylogenetic topology, suggesting a reassortment pattern among them. These findings represent the first evidence for natural reassortment among the group C viruses, which include several human pathogens. Furthermore, our genetic data corroborate previous relationships determined using serologic assays (complement fixation, hemagglutination inhibition, and neutralization tests) and suggest that a combination of informative molecular, serological, and ecological data is a helpful tool to understand the molecular epidemiology of arboviruses.
Collapse
Affiliation(s)
- Marcio R T Nunes
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ave. Almirante Barroso, 492, CEP 66090-000, Belém, Para, Brazil
| | | | | | | | | |
Collapse
|
11
|
Gerrard SR, Li L, Barrett AD, Nichol ST. Ngari virus is a Bunyamwera virus reassortant that can be associated with large outbreaks of hemorrhagic fever in Africa. J Virol 2004; 78:8922-6. [PMID: 15280501 PMCID: PMC479050 DOI: 10.1128/jvi.78.16.8922-8926.2004] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 06/07/2004] [Indexed: 11/20/2022] Open
Abstract
Two isolates of a virus of the genus Orthobunyavirus (family Bunyaviridae) were obtained from hemorrhagic fever cases during a large disease outbreak in East Africa in 1997 and 1998. Sequence analysis of regions of the three genomic RNA segments of the virus (provisionally referred to as Garissa virus) suggested that it was a genetic reassortant virus with S and L segments derived from Bunyamwera virus but an M segment from an unidentified virus of the genus Orthobunyavirus. While high genetic diversity (52%) was revealed by analysis of virus M segment nucleotide sequences obtained from 21 members of the genus Orthobunyavirus, the Garissa and Ngari virus M segments were almost identical. Surprisingly, the Ngari virus L and S segments showed high sequence identity with those of Bunyamwera virus, showing that Garissa virus is an isolate of Ngari virus, which in turn is a Bunyamwera virus reassortant. Ngari virus should be considered when investigating hemorrhagic fever outbreaks throughout sub-Saharan Africa.
Collapse
Affiliation(s)
- Sonja R Gerrard
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The California serogroup viruses are mosquito viruses that cause human infections on five continents. They are maintained and amplified in nature by a wide variety of mosquito vectors and mammalian hosts; they thrive in a remarkably wide variety of microclimates (eg, tropical, coastal temperate marshland, lowland river valleys, alpine valleys and highlands, high boreal deserts, and arctic steppes). In 1993, California serogroup viruses caused 71% of all cases of arboviral illness in the United States, principally La Crosse encephalitis. The 30 to 180 annual cases of La Crosse encephalitis represent 8% to 30% of all cases of encephalitis, rendering this illness the most common and important endemic mosquito-borne illness in the USA. Subclinical or mild infections are much more common. Methods and results acquired from intense study of California serogroup viruses have been applied, with benefit, to the study of the ecology and pathogenesis of many more serious human arboviral illnesses. The evolutionary potential of viruses, with particular reference to the development of more virulent strains, has been studied more closely in the California serogroup viruses than in almost any other agent of human disease.
Collapse
Affiliation(s)
- R S Rust
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, MA 02114, USA
| | | | | | | | | |
Collapse
|
13
|
Rodriguez LL, Owens JH, Peters CJ, Nichol ST. Genetic reassortment among viruses causing hantavirus pulmonary syndrome. Virology 1998; 242:99-106. [PMID: 9501041 DOI: 10.1006/viro.1997.8990] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to determine the frequency and characteristics of reassortment among viruses causing hantavirus pulmonary syndrome (HPS), mixed infections were initiated in tissue culture by using two closely related strains of Sin Nombre virus, CC107 (from eastern California) and NMR11 (from New Mexico), which share the same species of rodent host in nature, the deer mouse (Peromyscus maniculatus). Potential reassortant virus plaques were screened by multiplex RT-PCR, using primers specific for individual genome segments of each strain. Reassortant viruses involving the M and S segments and, to a lesser extent, the L segment were detected in 8.5% of 294 progeny plaques tested. In addition, approximately 30% of the progeny virus plaques appeared to contain S or M segments originating from both parental virus strains, i.e., they were diploid. Most of these diploid virus genotypes were not stable, becoming either reassortant or parental virus strains upon plaque-to-plaque virus passage. In contrast to the results above, only one virus reassortant and four diploids were observed among 163 progeny virus plaques from mixed infections between Sin Nombre virus NMR11 and the genetically more distant Black Creek Canal virus, an HPS-causing virus from Florida, which has the cotton rat (Sigmodon hispidus) as its natural host.
Collapse
Affiliation(s)
- L L Rodriguez
- Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | |
Collapse
|
14
|
Chandler LJ, Hogge G, Endres M, Jacoby DR, Nathanson N, Beaty BJ. Reassortment of La Crosse and Tahyna bunyaviruses in Aedes triseriatus mosquitoes. Virus Res 1991; 20:181-91. [PMID: 1950171 DOI: 10.1016/0168-1702(91)90108-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Experiments were conducted to determine if La Crosse (LAC) and Tahyna (TAH) viruses reassort in Aedes triseriatus mosquitoes and to determine the genotypic frequencies of viruses selected by in vivo vector interactions. A molecular hybridization technique was used to analyze progeny viruses. Probes specific for the La Crosse L, M and S segments (pLAC4.16: LAC L RNA; pLAC4.27: LAC M RNA; pLAC4C-26: LAC S RNA) were used to determine the parental origin of the progeny RNA segments. Following infection with a mixture of LAC and TAH viruses, mosquitoes were held for 23 days extrinsic incubation, then assayed for reassortment. Individual progeny viruses were isolated by plaque assay and propagated in BHK-21 cells. Cytoplasmic RNA was extracted from the cells, blotted in triplicate to Nytran, and each blot was hybridized with 32P-labelled pLAC4.16, pLAC4.27 or pLAC4C-26 to determine the parental origin of each RNA segment. High frequency reassortment occurred in these mosquitoes. All of the expected genotypes resulting from a cross of LAC and TAH were obtained from these mosquitoes. Genotypic frequencies of 708 virus isolates from 39 mosquitoes were: LLL, 150 (21%); LLT, 71 (10%); LTL, 39 (5.5%); LTT, 109 (15%); TTT, 259 (36%); TTL, 16 (2.2%); TLT, 55 (7.8%); TLL, 9 (1.2%).
Collapse
Affiliation(s)
- L J Chandler
- Department of Microbiology, Colorado State University, Fort Collins 80523
| | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- L Kingsford
- Department of Microbiology, California State University, Long Beach 90840
| |
Collapse
|
16
|
|
17
|
Ward VK, Marriott AC, el-Ghorr AA, Nuttall PA. Coding strategy of the S RNA segment of Dugbe virus (Nairovirus; Bunyaviridae). Virology 1990; 175:518-24. [PMID: 2327076 DOI: 10.1016/0042-6822(90)90436-u] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The S RNA segment of Dugbe (DUG) virus (Nairovirus; Bunyaviridae) was sequenced from three overlapping cDNA clones and by primer extension. The S RNA is 1712 nucleotides in length and contains one large open reading frame (ORF) of 1326 nucleotides coding for a 49.4-kDa protein on viral complementary (vc) RNA. This protein in size corresponds to the DUG nucleocapsid (N) protein (P. Cash, 1985, J. Gen. Virol. 66, 141-148). The 49.4-kDa product was expressed as a fusion protein with beta-galactosidase in Escherichia coli cells and confirmed as DUG N protein by Western blotting with DUG N-specific monoclonal antibody. An additional ORF of 150 nucleotides coding for a possible 5.9-kDa protein is present in the +1 reading frame, 3' to the N protein ORF on vcRNA. DUG S segment mRNA was found to be essentially full length. No evidence was obtained for the existence of a smaller mRNA species that could code for a 5.9-kDa protein. Comparisons of the DUG S RNA sequence and predicted N protein amino acid sequence, with the respective sequences of snowshoe hare, La Crosse (bunyaviruses), Punta Toro, Sandfly fever Sicilian (phleboviruses), and Hantaan (hantavirus) viruses, failed to detect any sequence similarity, although the genomic structure of DUG S RNA is similar to that of the S RNA segment of Hantaan (HTN) virus.
Collapse
Affiliation(s)
- V K Ward
- NERC Institute of Virology and Environmental Microbiology, Oxford, United Kingdom
| | | | | | | |
Collapse
|
18
|
Huguenot C, van den Dobbelsteen G, de Haan P, Wagemakers CA, Drost GA, Osterhaus AD, Peters D. Detection of tomato spotted wilt virus using monoclonal antibodies and riboprobes. Arch Virol 1990; 110:47-62. [PMID: 1689996 DOI: 10.1007/bf01310702] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The immunoreactivity of a panel of monoclonal antibodies raised to tomato spotted wilt virus (TSWV) was examined in enzyme-linked immunosorbent assays (ELISA) and dot immunobinding assays (DIBA) procedures. MAbs 6.12.15 and 2.9 were specific for the nucleocapsid protein of TSWV. The sensitivity of the two immunoassays was compared with that of a dot-blot hybridization technique using riboprobes (RNA transcripts) to TSWV M RNA. Using deproteinized plant extracts or purified virus preparations, as little as 1 pg RNA could be detected. Although an ELISA using MAb 6.12.15, a DIBA procedure using MAb 3.22.6 and the dot-blot hybridization, detected several TSWV isolates in different host species equally well, the ELISA was most precise and most suitable for routine diagnosis in the field.
Collapse
Affiliation(s)
- C Huguenot
- Department of Virology, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|