1
|
Padilla Perez DJ, de Carvalho JE, Navas CA. Effects of food intake and hydration state on behavioral thermoregulation and locomotor activity in the tropidurid lizard Tropidurus catalanensis. J Exp Biol 2021; 224:224/6/jeb242199. [PMID: 33753559 DOI: 10.1242/jeb.242199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Abstract
Theoretical models predict that lizards adjust their body temperature through behavioral thermoregulation as a function of food availability. However, behavioral thermoregulation is also governed by interactions among physiological and ecological factors other than food availability, such as hydration state, and sometimes it can even conflict with the locomotor activity of animals. Here, we aimed to investigate the role of food intake and hydration state on behavioral thermoregulation and voluntary locomotor activity in the lizard Tropidurus catalanensis We hypothesized that food intake can influence behavioral thermoregulation via an interaction with hydration state. We also hypothesized that lizards should endeavor to spend as little time as possible to reach their preferred body temperature to defend other physiological and/or ecological functions. We collected lizards in the field and brought them to the laboratory to measure the preferred temperature selected in a thermal gradient and the total distance traveled by them in fed and unfed conditions and with variable hydration state. Our results showed that food consumption was the most important predictor of preferred temperature. In contrast, either the hydration state alone or its interaction with food consumption did not have important effects on the lizards' thermal preference. Also, we found that the total distance traveled by lizards was not affected by food intake and was barely affected by the hydration state. We provide an experimental approach and a robust analysis of the factors that influence behavioral thermoregulation and locomotor activity in a tropical lizard.
Collapse
Affiliation(s)
- Dylan J Padilla Perez
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo (UNIFESP) - Diadema Campus, Rua Prof. Artur Riedel, 275, CEP 09972-270 Diadema, São Paulo, Brazil .,School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jose E de Carvalho
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo (UNIFESP) - Diadema Campus, Rua Prof. Artur Riedel, 275, CEP 09972-270 Diadema, São Paulo, Brazil
| | - Carlos A Navas
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo (UNIFESP) - Diadema Campus, Rua Prof. Artur Riedel, 275, CEP 09972-270 Diadema, São Paulo, Brazil.,Department of Physiology, Biosciences Institute, University of São Paulo, Rua do Matão, Travessa 14, CEP 05508-900 São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Rozen‐Rechels D, Dupoué A, Lourdais O, Chamaillé‐Jammes S, Meylan S, Clobert J, Le Galliard J. When water interacts with temperature: Ecological and evolutionary implications of thermo-hydroregulation in terrestrial ectotherms. Ecol Evol 2019; 9:10029-10043. [PMID: 31534711 PMCID: PMC6745666 DOI: 10.1002/ece3.5440] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
The regulation of body temperature (thermoregulation) and of water balance (defined here as hydroregulation) are key processes underlying ecological and evolutionary responses to climate fluctuations in wild animal populations. In terrestrial (or semiterrestrial) ectotherms, thermoregulation and hydroregulation closely interact and combined temperature and water constraints should directly influence individual performances. Although comparative physiologists traditionally investigate jointly water and temperature regulation, the ecological and evolutionary implications of these coupled processes have so far mostly been studied independently. Here, we revisit the concept of thermo-hydroregulation to address the functional integration of body temperature and water balance regulation in terrestrial ectotherms. We demonstrate how thermo-hydroregulation provides a framework to investigate functional adaptations to joint environmental variation in temperature and water availability, and potential physiological and/or behavioral conflicts between thermoregulation and hydroregulation. We extend the classical cost-benefit model of thermoregulation in ectotherms to highlight the adaptive evolution of optimal thermo-hydroregulation strategies. Critical gaps in the parameterization of this conceptual optimality model and guidelines for future empirical research are discussed. We show that studies of thermo-hydroregulation refine our mechanistic understanding of physiological and behavioral plasticity, and of the fundamental niche of the species. This is illustrated with relevant and recent examples of space use and dispersal, resource-based trade-offs, and life-history tactics in insects, amphibians, and nonavian reptiles.
Collapse
Affiliation(s)
- David Rozen‐Rechels
- Sorbonne Université, UPEC, CNRS, IRD INRAInstitut d'Écologie et des Sciences de l'Environnement, IEESParisFrance
| | - Andréaz Dupoué
- UMR 5321 CNRS-Université Toulouse III Paul SabatierStation d'Écologie Théorique et ExpérimentaleMoulisFrance
| | - Olivier Lourdais
- UMR 7372 CNRS-ULRCentre d'Études Biologiques de ChizéVilliers en BoisFrance
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Simon Chamaillé‐Jammes
- CNRS, Univ Montpellier, EPHE, IRD, Univ Paul Valéry Montpellier 3Centre d'Écologie Fonctionnelle et ÉvolutiveMontpellierFrance
| | - Sandrine Meylan
- Sorbonne Université, UPEC, CNRS, IRD INRAInstitut d'Écologie et des Sciences de l'Environnement, IEESParisFrance
- Sorbonne UniversitéESPE de ParisParisFrance
| | - Jean Clobert
- UMR 5321 CNRS-Université Toulouse III Paul SabatierStation d'Écologie Théorique et ExpérimentaleMoulisFrance
| | - Jean‐François Le Galliard
- Sorbonne Université, UPEC, CNRS, IRD INRAInstitut d'Écologie et des Sciences de l'Environnement, IEESParisFrance
- École normale supérieure, CNRS, UMS 3194Centre de recherche en écologie expérimentale et prédictive (CEREEP‐Ecotron IleDeFrance), Département de biologiePSL Research UniversitySaint‐Pierre‐lès‐NemoursFrance
| |
Collapse
|
3
|
Fast I, Hewel C, Wester L, Schumacher J, Gebert D, Zischler H, Berger C, Rosenkranz D. Temperature-responsive miRNAs in Drosophila orchestrate adaptation to different ambient temperatures. RNA (NEW YORK, N.Y.) 2017; 23:1352-1364. [PMID: 28630141 PMCID: PMC5558905 DOI: 10.1261/rna.061119.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/06/2017] [Indexed: 06/14/2023]
Abstract
The majority of Drosophila genes are expressed in a temperature-dependent manner, but the way in which small RNAs may contribute to this effect is completely unknown as we currently lack an idea of how small RNA transcriptomes change as a function of temperature. Applying high-throughput sequencing techniques complemented by quantitative real-time PCR experiments, we demonstrate that altered ambient temperature induces drastic but reversible changes in sequence composition and total abundance of both miRNA and piRNA populations. Further, mRNA sequencing reveals that the expression of miRNAs and their predicted target transcripts correlates inversely, suggesting that temperature-responsive miRNAs drive adaptation to different ambient temperatures on the transcriptome level. Finally, we demonstrate that shifts in temperature affect both primary and secondary piRNA pools, and the observed aberrations are consistent with altered expression levels of the involved Piwi-pathway factors. We further reason that enhanced ping-pong processing at 29°C is driven by dissolved RNA secondary structures at higher temperatures, uncovering target sites that are not accessible at low temperatures. Together, our results show that small RNAs are an important part of epigenetic regulatory mechanisms that ensure homeostasis and adaptation under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Isabel Fast
- Institute of Organismic and Molecular Evolutionary Biology, Anthropology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Charlotte Hewel
- Institute of Organismic and Molecular Evolutionary Biology, Anthropology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Laura Wester
- Institute of Organismic and Molecular Evolutionary Biology, Anthropology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Julia Schumacher
- Institute of Organismic and Molecular Evolutionary Biology, Anthropology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Daniel Gebert
- Institute of Organismic and Molecular Evolutionary Biology, Anthropology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Hans Zischler
- Institute of Organismic and Molecular Evolutionary Biology, Anthropology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Christian Berger
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - David Rosenkranz
- Institute of Organismic and Molecular Evolutionary Biology, Anthropology, Johannes Gutenberg University, 55099 Mainz, Germany
| |
Collapse
|
4
|
Elliott GD, Wang S, Fuller BJ. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017; 76:74-91. [DOI: 10.1016/j.cryobiol.2017.04.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 04/07/2017] [Accepted: 04/16/2017] [Indexed: 02/08/2023]
|
5
|
Ginn BR. The thermodynamics of protein aggregation reactions may underpin the enhanced metabolic efficiency associated with heterosis, some balancing selection, and the evolution of ploidy levels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 126:1-21. [PMID: 28185903 DOI: 10.1016/j.pbiomolbio.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/24/2017] [Indexed: 01/04/2023]
Abstract
Identifying the physical basis of heterosis (or "hybrid vigor") has remained elusive despite over a hundred years of research on the subject. The three main theories of heterosis are dominance theory, overdominance theory, and epistasis theory. Kacser and Burns (1981) identified the molecular basis of dominance, which has greatly enhanced our understanding of its importance to heterosis. This paper aims to explain how overdominance, and some features of epistasis, can similarly emerge from the molecular dynamics of proteins. Possessing multiple alleles at a gene locus results in the synthesis of different allozymes at reduced concentrations. This in turn reduces the rate at which each allozyme forms soluble oligomers, which are toxic and must be degraded, because allozymes co-aggregate at low efficiencies. The model developed in this paper can explain how heterozygosity impacts the metabolic efficiency of an organism. It can also explain why the viabilities of some inbred lines seem to decline rapidly at high inbreeding coefficients (F > 0.5), which may provide a physical basis for truncation selection for heterozygosity. Finally, the model has implications for the ploidy level of organisms. It can explain why polyploids are frequently found in environments where severe physical stresses promote the formation of soluble oligomers. The model can also explain why complex organisms, which need to synthesize aggregation-prone proteins that contain intrinsically unstructured regions (IURs) and multiple domains because they facilitate complex protein interaction networks (PINs), tend to be diploid while haploidy tends to be restricted to relatively simple organisms.
Collapse
Affiliation(s)
- B R Ginn
- University of Georgia, GA 30602, United States.
| |
Collapse
|
6
|
Kim SM, Park H, Choi JI. Cloning and Characterization of Cold-Adapted α-Amylase from Antarctic Arthrobacter agilis. Appl Biochem Biotechnol 2016; 181:1048-1059. [PMID: 27714640 DOI: 10.1007/s12010-016-2267-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
In this study, the gene encoding an α-amylase from a psychrophilic Arthrobacter agilis PAMC 27388 strain was cloned into a pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3). The recombinant α-amylase with a molecular mass of about 80 kDa was purified by using Ni2+-NTA affinity chromatography. This recombinant α-amylase exhibited optimal activity at pH 3.0 and 30 °C and was highly stable at varying temperatures (30-60 °C) and within the pH range of 4.0-8.0. Furthermore, α-amylase activity was enhanced in the presence of FeCl3 (1 mM) and β-mercaptoethanol (5 mM), while CoCl2 (1 mM), ammonium persulfate (5 mM), SDS (10 %), Triton X-100 (10 %), and urea (1 %) inhibited the enzymatic activity. Importantly, the presence of Ca2+ ions and phenylmethylsulfonyl fluoride (PMSF) did not affect enzymatic activity. Thin layer chromatography (TLC) analysis showed that recombinant A. agilis α-amylase hydrolyzed starch, maltotetraose, and maltotriose, producing maltose as the major end product. These results make recombinant A. agilis α-amylase an attractive potential candidate for industrial applications in the textile, paper, detergent, and pharmaceutical industries.
Collapse
Affiliation(s)
- Su-Mi Kim
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyun Park
- Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
7
|
Timling I, Taylor DL. Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2012.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Abstract
Following isolation and purification, it is often necessary to store proteins and peptides for extended periods of time before performing detailed biophysical, enzymatic, and structural proteomics. Therefore, it is essential that the pure target protein maintain its original biological (or functional) behavior over an extended period of storage which may range from weeks to years. Protein pharmaceuticals must remain viable following extensive shipping and storage, and they must remain devoid of all possible inactivation processes. The shelf life of a protein depends on both the intrinsic nature of the protein and the storage conditions. Proteins (especially enzymes) must be stored at an appropriate temperature and pH range and frequently in the presence of concentrated (approximately 1 M) glycerol, sucrose, or a similar substance, for the proteins to retain activity and prevent aggregation. This article discusses the major causes of protein inactivation and describes a range of measures that can be adopted to maintain the stability and solubility of proteins.
Collapse
|
9
|
Budke C, Heggemann C, Koch M, Sewald N, Koop T. Ice Recrystallization Kinetics in the Presence of Synthetic Antifreeze Glycoprotein Analogues Using the Framework of LSW Theory. J Phys Chem B 2009; 113:2865-73. [DOI: 10.1021/jp805726e] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. Budke
- Department of Chemistry, Physical Chemistry, Bielefeld University, Bielefeld, Germany, and Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| | - C. Heggemann
- Department of Chemistry, Physical Chemistry, Bielefeld University, Bielefeld, Germany, and Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| | - M. Koch
- Department of Chemistry, Physical Chemistry, Bielefeld University, Bielefeld, Germany, and Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| | - N. Sewald
- Department of Chemistry, Physical Chemistry, Bielefeld University, Bielefeld, Germany, and Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| | - T. Koop
- Department of Chemistry, Physical Chemistry, Bielefeld University, Bielefeld, Germany, and Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
10
|
Koop T, Zobrist B. Parameterizations for ice nucleation in biological and atmospheric systems. Phys Chem Chem Phys 2009; 11:10839-50. [DOI: 10.1039/b914289d] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
|
12
|
Smith T, Wharton DA, Marshall CJ. Cold tolerance of an Antarctic nematode that survives intracellular freezing: comparisons with other nematode species. J Comp Physiol B 2007; 178:93-100. [PMID: 17712562 DOI: 10.1007/s00360-007-0202-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/24/2007] [Accepted: 08/01/2007] [Indexed: 11/30/2022]
Abstract
Panagrolaimus davidi is an Antarctic nematode with very high levels of cold tolerance. Its survival was compared with that of some other nematodes (P. rigidus, Rhabditophanes sp., Steinernema carpocapsae, Panagrellus redivivus and Ditylenchus dipsaci) in both unacclimated samples and those acclimated at 5 degrees C. Levels of recrystallization inhibition in homogenates were also compared, using the splat-cooling assay. The survival of P. davidi after the freezing of samples was notably higher than that of the other species tested, suggesting that its survival ability is atypical compared to other nematodes. In general, acclimation improved survival. Levels of recrystallization inhibition were not associated with survival but such a relationship may exist for those species that are freezing tolerant.
Collapse
Affiliation(s)
- T Smith
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
13
|
Budke C, Koop T. Ice Recrystallization Inhibition and Molecular Recognition of Ice Faces by Poly(vinyl alcohol). Chemphyschem 2006; 7:2601-6. [PMID: 17109452 DOI: 10.1002/cphc.200600533] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of poly(vinyl alcohol) (PVA) on the Ostwald ripening of polycrystalline ice samples are studied. At -6 degrees C, ice recrystallization in sucrose solutions is inhibited at PVA concentrations down to 0.005 mg mL(-1), with a recrystallization inhibition constant of 48.9 mL mg(-1). Ice growth-habit experiments reveal molecular recognition of the arrangement of water molecules in the ice by PVA molecules, and indicate that PVA molecules adsorb to the primary and secondary prism faces of hexagonal ice, Ih. Based on these observations, together with an analysis of the O-atom pattern in ice and the conformation of OH groups in PVA, an adsorption model is proposed. We suggest that PVA segments adsorb to the primary and secondary prism faces of ice parallel to the c axis with a linear misfit parameter of only 2.7 %, most likely via multiple hydrogen bonds. The proposed adsorption mechanism is discussed in the light of recent thermal hysteresis and scanning tunneling microscopy experiments.
Collapse
Affiliation(s)
- Carsten Budke
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | |
Collapse
|
14
|
Margesin R, Neuner G, Storey KB. Cold-loving microbes, plants, and animals--fundamental and applied aspects. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2006; 94:77-99. [PMID: 17039344 DOI: 10.1007/s00114-006-0162-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 08/11/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Microorganisms, plants, and animals have successfully colonized cold environments, which represent the majority of the biosphere on Earth. They have evolved special mechanisms to overcome the life-endangering influence of low temperature and to survive freezing. Cold adaptation includes a complex range of structural and functional adaptations at the level of all cellular constituents, such as membranes, proteins, metabolic activity, and mechanisms to avoid the destructive effect of intracellular ice formation. These strategies offer multiple biotechnological applications of cold-adapted organisms and/or their products in various fields. In this review, we describe the mechanisms of microorganisms, plants, and animals to cope with the cold and the resulting biotechnological perspectives.
Collapse
Affiliation(s)
- R Margesin
- Institute of Microbiology, Leopold Franzens University, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | | | | |
Collapse
|
15
|
Soina VS, Mulyukin AL, Demkina EV, Vorobyova EA, El-Registan GI. The structure of resting bacterial populations in soil and subsoil permafrost. ASTROBIOLOGY 2004; 4:345-358. [PMID: 15383239 DOI: 10.1089/ast.2004.4.345] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The structure of individual cells in microbial populations in situ of the Arctic and Antarctic permafrost was studied by scanning and transmission electron microscopy methods and compared with that of cyst-like resting forms generated under special conditions by the non-spore-forming bacteria Arthrobacter and Micrococcus isolated from the permafrost. Electron microscopy examination of microorganisms in situ revealed several types of bacterial cells having no signs of damage, including "dwarf" curved forms similar to nanoforms. Intact bacterial cells in situ and frozen cultures of the permafrost isolates differed from vegetative cells by thickened cell walls, the altered structure of cytoplasm, and the compact nucleoid, and were similar in these features to cyst-like resting forms of non-spore-forming "permafrost" bacterial strains of Arthrobacter and Micrococcus spp. Cyst-like cells, being resistant to adverse external factors, are regarded as being responsible for survival of the non-spore-formers under prolonged exposure to subzero temperatures and can be a target to search for living microorganisms in natural environments both on the Earth and on extraterrestrial bodies.
Collapse
Affiliation(s)
- Vera S Soina
- Soil Science Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
16
|
Sinclair BJ, Vernon P, Jaco Klok C, Chown SL. Insects at low temperatures: an ecological perspective. Trends Ecol Evol 2003. [DOI: 10.1016/s0169-5347(03)00014-4] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Rabus R, Brüchert V, Amann J, Könneke M. Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol 2002; 42:409-17. [DOI: 10.1111/j.1574-6941.2002.tb01030.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Kunugi S, Tanaka N. Cold denaturation of proteins under high pressure. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:329-44. [PMID: 11983406 DOI: 10.1016/s0167-4838(01)00354-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The advantageous usage of the high pressure technique in studies of cold denaturation of proteins is reviewed, with a brief explanation of the theoretical background of this universal phenomenon. Various experimental results are presented and discussed, explaining the plausible image of the cold denatured state of proteins. In order to understand more clearly this phenomenon and protein structure transition in general, several studies on model polymer systems are also reviewed.
Collapse
Affiliation(s)
- Shigeru Kunugi
- Laboratory for Biopolymer Chemistry, Department of Polymer Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto, Japan.
| | | |
Collapse
|
19
|
Mindock CA, Petrova MA, Hollingswort RI. Re-evaluation of osmotic effects as a general adaptative strategy for bacteria in sub-freezing conditions. Biophys Chem 2001; 89:13-24. [PMID: 11246742 DOI: 10.1016/s0301-4622(00)00214-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We studied the molecular mechanisms of adaptation of a Siberian psychrophilic bacterial strain. Upon adaptation to 4 degreesC from 24 degreesC, the major changes observed were in the membrane and cell surface chemistry. There was no evidence for the formation of so-called 'compatible metabolites' that are thought to be responsible for the survival at very low to sub-freezing temperatures. The membrane fatty acids were shorter with an increased amount of unsaturation in the 4 degreesC cells compared to the 24 degreesC cells. The absence of a significant amount of phosphorylation in the membrane lipids at 4 degreesC compared to the levels at 24 degreesC was another significant difference. At 4 degreesC, the cell size was reduced in volume by a factor of approximately 14 compared to its size at 24 degreesC. The polar polysaccharide capsular layer was also significantly reduced. There were no significant changes in the protein profiles indicating that antifreeze proteins were not being produced. The results obtained here are consistent with observations and established theories and principles on and about the behavior of water in confined spaces. These indicate that ordering effects, surface charge and polarity are the key determinants of the freezing point and the type of ice structure that will be formed when water is confined to an area of the size of a bacterial cell.
Collapse
Affiliation(s)
- C A Mindock
- Department of Biochemistry, Michigan State University, East Lansing 48824-1319, USA
| | | | | |
Collapse
|
20
|
Abstract
Notwithstanding great advances in the engineering and structural analysis of globular proteins, relatively limited success has been achieved with membrane proteins--due largely to their intrinsic high insolubility and the concomitant difficulty in obtaining crystals. Progress with de novo synthesis of model membrane-interactive peptides presents an opportunity to construct simpler peptides with definable structures, and permits one to approach an understanding of the properties of the membrane proteins themselves. In the present article, we review how our laboratory and others have used peptide approaches to assess the detailed interactions of peptides with membranes, and primary folding at membrane surfaces and in membranes. Structural studies of model peptides identified the existence of a "threshold hydrophobicity," which controls spontaneous peptide insertion into membranes. Related studies of the relative helicity of peptides in organic media such as n-butanol indicate that the helical propensity of individual residues--not simply their hydrophobicity--may dictate the conformations of peptides in membranes. The overall experimental results provide fundamental guidelines for membrane protein engineering.
Collapse
Affiliation(s)
- L P Liu
- Division of Biochemistry Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
21
|
Jaenicke R. Stability and folding of domain proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:155-241. [PMID: 10097615 DOI: 10.1016/s0079-6107(98)00032-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| |
Collapse
|
22
|
Franklin CE. Studies of evolutionary temperature adaptation: muscle function and locomotor performance in Antarctic fish. Clin Exp Pharmacol Physiol 1998; 25:753-6. [PMID: 9750970 DOI: 10.1111/j.1440-1681.1998.tb02291.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
1. Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3. In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degree C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N. coriiceps at 0 degree C. 4. It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish. Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.
Collapse
Affiliation(s)
- C E Franklin
- Department of Zoology, University of Queensland, Brisbane, Australia.
| |
Collapse
|
23
|
Jaenicke R. Protein stability and molecular adaptation to extreme conditions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:715-28. [PMID: 1765088 DOI: 10.1111/j.1432-1033.1991.tb16426.x] [Citation(s) in RCA: 420] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteins, due to the delicate balance of stabilizing and destabilizing interactions, are only marginally stable. Adaptation to extreme environments tends to shift the 'mesophilic' characteristics of proteins to the respective extremes of temperature, hydrostatic pressure, pH and salinity, such that, under the mutual physiological conditions, the molecular properties are similar regarding overall topology, flexibility and solvation. Enhanced intrinsic stability requires only minute local structural changes so that general strategies of stabilization cannot be established. Apart from mutative changes of amino-acid sequences, extrinsic factors (or cellular components) may be involved in 'extremophilic adaptation'. The molecular basis of acidophilic, alkalophilic and barophilic adaptation is still obscure. Mechanisms of enhanced thermal stability involve improved packing density, as well as specific local interactions. In halophiles, water and salt binding of the intrinsically stable protein inventory is accomplished by favoring acidic over basic amino acid residues and decreased hydrophobicity. General limits of viability are: (a) the susceptibility of the covalent structure of the polypeptide chain toward hydrolysis or hydrothermal degradation; (b) the competition of extreme solvent parameters with the weak electrostatic and hydrophobic interactions involved in protein stabilization; (c) perturbations of the folding and assembly of proteins; and (d) 'dislocation' of biochemical pathways due to effects of extreme conditions on the intricate network of metabolic reactions.
Collapse
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Federal Republic of Germany
| |
Collapse
|
24
|
Astl G, Mayer E. Alkali cation effect on carbonyl-hemoglobin's and -myoglobin's conformer populations when exposed to freeze-concentration of their phosphate-buffered aqueous solutions. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1080:155-9. [PMID: 1932091 DOI: 10.1016/0167-4838(91)90143-n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Freeze-concentrated aqueous phosphate-buffered (pH 6.8) solutions of carbonyl-hemoglobin (HbCO) and -myoglobin (MbCO) were investigated by Fourier-transform infrared spectroscopy for the effect of alkali cation on the population of conformers. When using sodium phosphates as buffer components, HbCO was transformed from conformer III (at approximately 1951 cm-1) which is the dominant form at ambient temperatures, into conformer IV (at buffer concentration at a given temperature. The conformational changes started slightly below the temperature where ice began to crystallize and the remaining solution became freeze-concentrated, and they were reversible for HbCO. For MbCO in 0.5 M sodium phosphate buffer solution, however, they were irreversible and MbCO denatured completely. When potassium phosphate salts were used for preparing the buffer at the same pH of 6.8, little or no transformation of conformer III into conformer IV was observed. The conformational changes induced by sodium salts are attributed to a decrease in pH and it is shown by infrared spectroscopy that during freeze concentration drastic changes in composition of the two buffer components H2PO4-/HPO(2)4- occur, the acid component increasing strongly relative to the base component. Supersaturation is also important because change from conformer III to IV requires a minimum concentration of sodium salts: whereas 0.1 M sodium phosphate buffer concentration shows a strong effect, 0.03 M concentration does not and therefore behaves like a potassium phosphate buffer.
Collapse
Affiliation(s)
- G Astl
- Institut für Anorganische und Analytische Chemie, Universität Innsbruck, Austria
| | | |
Collapse
|
25
|
Wiemken A. Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek 1990; 58:209-17. [PMID: 2256682 DOI: 10.1007/bf00548935] [Citation(s) in RCA: 334] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trehalose and glycogen are generally regarded as the two main reserve carbohydrates in yeast. However, several lines of evidence suggest that trehalose does not primarily function as a reserve but as a highly efficient protecting agent to maintain structural integrity of the cytoplasm under environmental stress conditions.
Collapse
Affiliation(s)
- A Wiemken
- Department of Botany, University of Basel, Switzerland
| |
Collapse
|