1
|
Murray CS, Karram M, Bass DJ, Doceti M, Becker D, Nunez JCB, Ratan A, Bergland AO. Balancing selection and the functional effects of shared polymorphism in cryptic Daphnia species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589693. [PMID: 38659826 PMCID: PMC11042267 DOI: 10.1101/2024.04.16.589693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The patterns of genetic variation within and between related taxa represent the genetic history of a species. Shared polymorphisms, loci with identical alleles across species, are of unique interest as they may represent cases of ancient selection maintaining functional variation post-speciation. In this study, we investigate the abundance of shared polymorphism in the Daphnia pulex species complex. We test whether shared mutations are consistent with the action of balancing selection or alternative hypotheses such as hybridization, incomplete lineage sorting, or convergent evolution. We analyzed over 2,000 genomes from North American and European D. pulex and several outgroup species to examine the prevalence and distribution of shared alleles between the focal species pair, North American and European D. pulex. We show that while North American and European D. pulex diverged over ten million years ago, they retained tens of thousands of shared alleles. We found that the number of shared polymorphisms between North American and European D. pulex cannot be explained by hybridization or incomplete lineage sorting alone. Instead, we show that most shared polymorphisms could be the product of convergent evolution, that a limited number appear to be old trans-specific polymorphisms, and that balancing selection is affecting young and ancient mutations alike. Finally, we provide evidence that a blue wavelength opsin gene with trans-specific polymorphisms has functional effects on behavior and fitness in the wild. Ultimately, our findings provide insights into the genetic basis of adaptation and the maintenance of genetic diversity between species.
Collapse
Affiliation(s)
- Connor S. Murray
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Madison Karram
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - David J. Bass
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Madison Doceti
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Dörthe Becker
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | | | - Aakrosh Ratan
- Center of Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Malinowski CR, Searle CL, Schaber J, Höök TO. Microplastics impact simple aquatic food web dynamics through reduced zooplankton feeding and potentially releasing algae from consumer control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166691. [PMID: 37659532 DOI: 10.1016/j.scitotenv.2023.166691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Concentrations of microplastics in aquatic environments continue to rise due to industrial production and pollution. While there are various concerns regarding potential deleterious effects of microplastics on ecosystems, several knowledge gaps remain, including the potential for microplastics to directly and indirectly affect biotic interactions and food web dynamics. We explored the effects of environmentally relevant microplastic concentrations on two co-exposed species of herbaceous freshwater crustaceous zooplankton, filter feeding Daphnia dentifera and selective phytoplankton grazers Arctodiaptomus dorsalis. Study organisms were exposed to different concentrations of microplastics (plastic polyethylene microspheres; low = 2.38 × 10-8 mg/L, medium = 0.023 mg/L, high = 162 mg/L), phytoplankton prey, and predator cues, simulating a simple freshwater food web. Microplastic uptake was greater by D. dentifera, but both species were characterized by decreased algal consumption in the highest microplastic concentration treatment. Importantly, aqueous chlorophyll-a concentrations at the conclusion of the experiment were greater for the high microplastic treatment than all controls and other microplastic treatments. Finally, a predator effect was only apparent for D. dentifera, with greater microplastic uptake in the presence of a predator. We conclude that microplastics may adversely impact the ability of zooplankton to feed on algae and potentially release algae from consumptive control by herbivorous zooplankton. SYNOPSIS: This research aimed to better understand the broader food web effects of environmentally relevant microplastic concentrations on aquatic communities.
Collapse
Affiliation(s)
- Christopher R Malinowski
- Purdue University, Department of Forestry and Natural Resources, 195 Marsteller St., West Lafayette, IN 47907, USA; Ocean First Institute, 51 Shoreland Drive, Key Largo, FL 33037, USA.
| | - Catherine L Searle
- Purdue University, Department of Biological Sciences, 915 W. State Street, West Lafayette, IN 47907, USA
| | - James Schaber
- Purdue University, Bindley Bioscience Center, 1275 3(rd) St., West Lafayette, IN 47906, USA
| | - Tomas O Höök
- Purdue University, Department of Forestry and Natural Resources, 195 Marsteller St., West Lafayette, IN 47907, USA; Illinois-Indiana Sea Grant College Program, 195 Marsteller St., West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Kotov AA, Taylor DJ. Daphnia japonica sp. nov. (Crustacea: Cladocera) an eastern Palearctic montane species with mitochondrial discordance. PeerJ 2022; 10:e14113. [PMID: 36213509 PMCID: PMC9541614 DOI: 10.7717/peerj.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/02/2022] [Indexed: 01/21/2023] Open
Abstract
The Daphnia longispina complex (Crustacea: Cladocera) contains several keystone freshwater species such as D. longispina O.F. Müller (D. rosea Sars is a junior synonym), D. galeata Sars, D. cucullata Sars, and D. dentifera Forbes. The complex is common throughout the Holarctic, but there are several geographic regions where local forms have been assigned to European species names based on a superficial morphological resemblance. Here we examine the species status of a form that was previously assigned to D. rosea from a montane bog pond on Honshu, Japan. We used two nuclear non-coding loci (nDNA), mitochondrial sequences (the ND2 protein-coding region) and morphology for evidence. The mitochondrial gene evidence supported the existence of a divergent lineage that is more closely related to D. galeata than to D. dentifera. However, morphology and the nuclear DNA data indicated a lineage that is most closely related to D. dentifera. As our evidence supported the existence of a cohesive divergent lineage, we described a new species, Daphnia japonica sp. nov. Recognition of local and subalpine diversity in this group is critical as ongoing anthropogenic disturbance has been associated with introductions, local extirpations, and hybridization.
Collapse
Affiliation(s)
- Alexey A. Kotov
- Laboratory of Aquatic Ecology and Invasions, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| | - Derek J. Taylor
- Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
4
|
Functional importance of the mandibular skeleto-muscular system in the bivalved arthropod Heterocypris incongruens (Crustacea, Ostracoda, Cyprididae). Naturwissenschaften 2022; 109:37. [DOI: 10.1007/s00114-022-01806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
|
5
|
Cunningham B, Harper B, Brander S, Harper S. Toxicity of micro and nano tire particles and leachate for model freshwater organisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128319. [PMID: 35236035 DOI: 10.1016/j.jhazmat.2022.128319] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental sampling has documented a diversity of microplastics, including high levels of black rubber- generally identified as tire debris. Though organisms have been shown to ingest tire particles (TPs), past research focused on toxicity of leachate alone, overlooking potential effects of particles. To address these gaps, we assessed the toxicity of micro (1-20 µm) and nano (<1 µm) TPs for two model organisms, embryonic Zebrafish Danio rerio and the crustacean Daphnia magna. To assess effects on development, Zebrafish embryos were exposed to concentrations of TPs or leachate ranging from 0 to 3.0 × 109 particles/ml and 0-100% respectively (n = 4). Greater mortality and sublethal malformations were observed following nano TP and leachate exposures as compared to micro TPs. Unique abnormalities between the exposures indicates that there is both chemical and particle-specific toxicity. We also observed D. magna mortality following a 48 h exposure of neonate to TPs or leachate, ranging from 0 to 3.3 × 109 particles/ml and 0-100% respectively (n = 3). Though, particle-enhancement of toxicity was observed for both Zebrafish and D. magna, overall sensitivity to TPs differed. It is important to identify differential toxicities across species to achieve an understanding of the environmental impacts of TPs and the chemicals they leach.
Collapse
Affiliation(s)
- Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Bryan Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Susanne Brander
- Coastal Oregon Marine Experiment Station, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, United States
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
6
|
Yakovlev MA, Vanselow DJ, Ngu MS, Zaino CR, Katz SR, Ding Y, Parkinson D, Wang SY, Ang KC, La Riviere P, Cheng KC. A wide-field micro-computed tomography detector: micron resolution at half-centimetre scale. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:505-514. [PMID: 35254315 PMCID: PMC8900834 DOI: 10.1107/s160057752101287x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Ideal three-dimensional imaging of complex samples made up of micron-scale structures extending over mm to cm, such as biological tissues, requires both wide field of view and high resolution. For existing optics and detectors used for micro-CT (computed tomography) imaging, sub-micron pixel resolution can only be achieved for fields of view of <2 mm. This article presents a unique detector system with a 6 mm field-of-view image circle and 0.5 µm pixel size that can be used in micro-CT units utilizing both synchrotron and commercial X-ray sources. A resolution-test pattern with linear microstructures and whole adult Daphnia magna were imaged at beamline 8.3.2 of the Berkeley Advanced Light Source. Volumes of 10000 × 10000 × 7096 isotropic 0.5 µm voxels were reconstructed over a 5.0 mm × 3.5 mm field of view. Measurements in the projection domain confirmed a 0.90 µm measured spatial resolution that is largely Nyquist-limited. This unprecedented combination of field of view and resolution dramatically reduces the need for sectional scans and computational stitching for large samples, ultimately offering the means to elucidate changes in tissue and cellular morphology in the context of larger, whole, intact model organisms and specimens. This system is also anticipated to benefit micro-CT imaging in materials science, microelectronics, agricultural science and biomedical engineering.
Collapse
Affiliation(s)
- Maksim A. Yakovlev
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Biomedical Sciences PhD Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Daniel J. Vanselow
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Mee Siing Ngu
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Carolyn R. Zaino
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Spencer R. Katz
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Yifu Ding
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Dula Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Khai Chung Ang
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Penn State Zebrafish Functional Genomics Core, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | - Keith C. Cheng
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
7
|
Diel P, Rabus M, Laforsch C. Pricklier with the proper predator? Predator-induced small-scale changes of spinescence in Daphnia. Ecol Evol 2021; 11:17080-17090. [PMID: 34938494 PMCID: PMC8668761 DOI: 10.1002/ece3.8346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
Phenotypic plasticity in defensive traits is a common response of prey organisms to variable and unpredictable predation regimes and risks. Cladocerans of the genus Daphnia are keystone species in the food web of lentic freshwater bodies and are well known for their ability to express a large variety of inducible morphological defenses in response to invertebrate and vertebrate predator kairomones. The developed defenses render the daphnids less susceptible to predation. So far, primarily large-scale morphological defenses, like helmets, crests, and tail-spines, have been documented. However, less is known on whether the tiny spinules, rather inconspicuous traits which cover many Daphnia's dorsal and ventral carapace margins, respond to predator kairomones, as well. For this reason, we investigated two Daphnia species (D. magna and D. longicephala) concerning their predator kairomone-induced changes in dorsal and ventral spinules. Since these small, inconspicuous traits may only act as a defense against predatory invertebrates, with fine-structured catching apparatuses, and not against vertebrate predators, we exposed them to both, an invertebrate (Triops cancriformis or Notontecta maculata) and a vertebrate predator (Leucaspius delineatus). Our results show that the length of these spinules as well as spinules-covered areas vary, likely depending on the predator the prey is exposed to. We further present first indications of a Daphnia species-specific elongation of the spinules and an increase of the spinules-bearing areas. Although we cannot exclude that spinescence is altered because it is developmentally connected to changes in body shape in general, our results suggest that the inducible alterations to the spinule length and spinules-covered areas disclose another level of predator-induced changes in two common Daphnia species. The predator-induced changes on this level together with the large-scale and ultrastructural defensive traits may act as the overall morphological defense, adjusted to specific predator regimes in nature.
Collapse
Affiliation(s)
- Patricia Diel
- Department of Animal Ecology 1University of BayreuthBayreuthGermany
| | - Max Rabus
- Department of Animal Ecology 1University of BayreuthBayreuthGermany
| | | |
Collapse
|
8
|
Van Damme K, Cornetti L, Fields PD, Ebert D. Whole-Genome Phylogenetic Reconstruction as a Powerful Tool to Reveal Homoplasy and Ancient Rapid Radiation in Waterflea Evolution. Syst Biol 2021; 71:777-787. [PMID: 34850935 PMCID: PMC9203061 DOI: 10.1093/sysbio/syab094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022] Open
Abstract
Although phylogeny estimation is notoriously difficult in radiations that occurred several hundred million years ago, phylogenomic approaches offer new ways to examine relationships among ancient lineages and evaluate hypotheses that are key to evolutionary biology. Here, we reconstruct the deep-rooted relationships of one of the oldest living arthropod clades, the branchiopod crustaceans, using a kaleidoscopic approach. We use concatenation and coalescent tree-building methods to analyze a large multigene data set at the nucleotide and amino acid level and examine gene tree versus species tree discordance. We unequivocally resolve long-debated relationships among extant orders of the Cladocera, the waterfleas, an ecologically relevant zooplankton group in global aquatic and marine ecosystems that is famous for its model systems in ecology and evolution. To build the data set, we assembled eight de novo genomes of key taxa including representatives of all extant cladoceran orders and suborders. Our phylogenetic analysis focused on a BUSCO-based set of 823 conserved single-copy orthologs shared among 23 representative taxa spanning all living branchiopod orders, including 11 cladoceran families. Our analysis supports the monophyly of the Cladocera and reveals remarkable homoplasy in their body plans. We found large phylogenetic distances between lineages with similar ecological specializations, indicating independent evolution in major body plans, such as in the pelagic predatory orders Haplopoda and Onychopoda (the “Gymnomera”). In addition, we assessed rapid cladogenesis by estimating relative timings of divergence in major lineages using reliable fossil-calibrated priors on eight nodes in the branchiopod tree, suggesting a Paleozoic origin around 325 Ma for the cladoceran ancestor and an ancient rapid radiation around 252 Ma at the Perm/Triassic boundary. These findings raise new questions about the roles of homoplasy and rapid radiation in the diversification of the cladocerans and help examine trait evolution from a genomic perspective in a functionally well understood, ancient arthropod group. [Cladocera; Daphnia; evolution; homoplasy; molecular clock; phylogenomics; systematics; waterfleas.]
Collapse
Affiliation(s)
- Kay Van Damme
- Centre for Academic Heritage and Archives & Ghent University Botanical Garden, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.,Tvärminne Zoological Station (TZS), University of Helsinki, J.A. Palménin tie 260, Hanko, Finland
| | - Luca Cornetti
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| | - Peter D Fields
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| | - Dieter Ebert
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
9
|
Horstmann M, Tollrian R, Weiss LC. Thwarting predators? A three-dimensional perspective of morphological alterations in the freshwater crustacean Daphnia. PLoS One 2021; 16:e0254263. [PMID: 34234371 PMCID: PMC8263308 DOI: 10.1371/journal.pone.0254263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Predation is a major selective agent, so that many taxa evolved phenotypically plastic defensive mechanisms. Among them are many species of the microcrustacean genus Daphnia, which respond to an increased predation risk by developing inducible morphological alterations. Some of these features are obvious and easily recognized, e.g., crests in D. longicephala, while others are rather hidden, such as the bulkier shape of D. magna induced by the presence of the tadpole shrimp Triops. In this study we investigated the extraordinary diversity of morphological adaptations in the presence of predators with different foraging strategies in six predator-prey systems. For the first time we were able to analyze the unexposed and predator-exposed morphs comprehensively using three-dimensional scanning and reconstruction. We show that morphological changes are manifold in appearance between species and predators, and go beyond what has been known from previous 2D analyses. This further demonstrates the enormous trait flexibility of Daphnia. Interestingly, we found that among this variety some species share morphological strategies to counter a predator, while others use a different strategy against the same predator. Based on these intra- and interspecific comparisons, we discuss the mechanisms by which the respective defense might operate. These data therefore contribute to a deeper understanding of the inducible defenses' morphology as well as their diversified modes of operation in Daphnia, being a cornerstone for subsequent investigations, including the determination of costs associated with morphological change.
Collapse
Affiliation(s)
- Martin Horstmann
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
| | - Linda C. Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Szabelak A, Bownik A. Behavioral and physiological responses of Daphnia magna to salicylic acid. CHEMOSPHERE 2021; 270:128660. [PMID: 33268096 DOI: 10.1016/j.chemosphere.2020.128660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA), a metabolite of acetylsalicylic acid is a monohydroxybenzoic acid a common non-steroidal analgesic and anti-inflammatory drug (NSAID) frequently detected in various aquatic ecosystems at concentrations up to 19.50 μg L-1 in surface waters near livestock farms and 59.6 μg L-1 in wastewaters. Little is known on the effects of short-term exposure of freshwater crustaceans to salicylic acid. Therefore, the aim of our study was to determine the effects of SA at concentrations of 5 μg L-1, 500 μg L-1, 5 mg L-1, 50 mg L-1 and 500 mg L-1 on the behavior (swimming speed, swimming height, distance travelled) and physiological endpoints (heart rate, mandible movement) of Daphnia magna exposed for 24 h, 48 h and 72 h. The results showed that SA inhibited the swimming speed, swimming height and distance travelled, heart rate and mandible movement at 5 mg L-1, 50 mg L-1 and 500 mg L-1 when compared to the control. On the other hand, SA at 5 μg L-1 and 500 μg L-1 transiently increased swimming speed and distance travelled after 24 h of the exposure, except for swimming height. Behavioral and physiological disturbances were observed much earlier than lethality. Our study showed SA at environmental levels may be an ecotoxicological agent imparing behavior and physiology of freshwater crustaceans.
Collapse
Affiliation(s)
- Aleksandra Szabelak
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| |
Collapse
|
11
|
Yan N, Tsim SMJ, He X, Tang BZ, Wang WX. Direct Visualization and Quantification of Maternal Transfer of Silver Nanoparticles in Zooplankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10763-10771. [PMID: 32786596 DOI: 10.1021/acs.est.0c03228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The immense application of silver nanoparticles (AgNPs) in biomedical fields is likely to increase the exposure of humans. However, little is known about whether these nanoparticles can be maternally transferred, especially regarding their biodistribution in the younger generation, maternal transfer efficiency, and toxic effects. In the present study, maternal transfer of AgNPs in model zooplankton (Daphnia magna) was for the first time visualized and quantified. We found that AgNPs were transferred from mother to offspring and mainly accumulated in the lipids due to the strong colocalization with lipid droplets, which were the major energy sources of Daphnia embryos. In contrast, Ag+ was irregularly distributed in different sites, probably due to the mobility and reactivity of Ag+. The maternal transfer efficiency quantified by the radiolabeling methodology was 2.37 ± 0.25 and 6.05 ± 0.89% for 110mAgNPs and 110mAg, respectively. Furthermore, AgNPs and Ag+ significantly inhibited the reproduction capability of F0 and F1 generations, but such maternal toxic effect inhibition was only found within the first two broods of F0 and F1 generations. Our bioimaging findings demonstrated that AgNPs could be maternally transferred to the next generation; thus, it is critical to produce AgNPs with lower toxic effects, higher delivery efficacy, and more precise targeting.
Collapse
Affiliation(s)
- Neng Yan
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Hong Kong, China
| | - Synn Man Jennifer Tsim
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Hong Kong, China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon LG5313, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon LG5313, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
12
|
Sigvardt ZMS, Worsaae K, Savatenalinton S, Kerbl A, Olesen J. Transitions in functional morphology from "large branchiopods" to Cladocera: Video and confocal microscopic studies of Cyclestheria hislopi (Cyclestherida) and Sida crystallina (Cladocera: Ctenopoda). J Morphol 2020; 281:1241-1259. [PMID: 32815589 DOI: 10.1002/jmor.21244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 11/11/2022]
Abstract
Great diversity is found in morphology and functionality of arthropod appendages, both along the body axis of individual animals and between different life-cycle stages. Despite many branchiopod crustaceans being well known for displaying a relatively simple arrangement of many serially post-maxillary appendages (trunk limbs), this taxon also shows an often unappreciated large variation in appendage morphology. Diplostracan branchiopods exhibit generally a division of labor into locomotory antennae and feeding/filtratory post-maxillary appendages (trunk limbs). We here study the functionality and morphology of the swimming antennae and feeding appendages in clam shrimps and cladocerans and analyze the findings in an evolutionary context (e.g., possible progenetic origin of Cladocera). We focus on Cyclestheria hislopi (Cyclestherida), sister species to Cladocera and exhibiting many "large" branchiopod characters (e.g., many serially similar appendages), and Sida crystallina (Cladocera, Ctenopoda), which likely exhibits plesiomorphic cladoceran traits (e.g., six pairs of serially similar appendages). We combine (semi-)high-speed recordings of behavior with confocal laser scanning microscopy analyses of musculature to infer functionality and homologies of locomotory and filtratory appendages in the two groups. Our morphological study shows that the musculature in all trunk limbs (irrespective of limb size) of both C. hislopi and S. crystallina comprises overall similar muscle groups in largely corresponding arrangements. Some differences between C. hislopi and S. crystallina, such as fewer trunk limbs and antennal segments in the latter, may reflect a progenetic origin of Cladocera. Other differences seem related to the appearance of a specialized type of swimming and feeding in Cladocera, where the anterior locomotory system (antennae) and the posterior feeding system (trunk limbs) have become fully separated functionally from each other. This separation is likely one explanation for the omnipresence of cladocerans, which have conquered both freshwater and marine free water masses and a number of other habitats.
Collapse
Affiliation(s)
- Zandra M S Sigvardt
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Alexandra Kerbl
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Olesen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Ferrão-Filho ADS, da Silva DAC. Saxitoxin-producing Raphidiopsis raciborskii (cyanobacteria) inhibits swimming and physiological parameters in Daphnia similis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135751. [PMID: 31831237 DOI: 10.1016/j.scitotenv.2019.135751] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/16/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
In this study we tested the effects of a neurotoxic strain of the cyanobacterium Raphidiopsis raciborskii (CYRF-01) on the swimming activity and physiological parameters of Daphnia similis such as movements of the antennae, thoracic limbs, post-abdominal claw and heart rate. An acute assay was performed to test the effect on swimming activity, exposing newborns (<24 h) to different concentrations of live cells and observing the number of immobilized animals over a period of 48 h. For testing the effects on physiological parameters adult females (10-15 days) were exposed in a flow-through system and recorded with a digital camera. Results showed rapid effect of the strain CYRF on all parameters. Animals started to be immobilized in the first 30 min exposure and showed complete paralysis after 2 h in 500 μg L-1 and after 24 h in the other concentrations. Physiological parameters accompanied the same response pattern with effects starting after 30 min and some recovery at the end of 6 h exposure. Antennae stopped moving after 2-3 h at 250-500 μg L-1, explaining the paralysis of the swimming activity in Daphnia. Thoracic limbs movements were significantly inhibited after 30 min in all concentrations, staying at lower levels than control through the experiment. Post-abdominal claw movement were completely ceased after 30 min and remained stopped until the end of the trial. Heart rate showed a tendency to decrease abruptly in the first 30 min exposure in all concentrations, but showed significant lower values than control only at 500 μg L-1, between 3 and 4 h exposure, and a recovery at the end of 6 h. In conclusion, results show that neurotoxic cyanobacteria can impose severe constrains on the physiology of daphniids, which can have consequences to the oxygen uptake, swimming and feeding behavior and to the overall fitness of those organisms.
Collapse
Affiliation(s)
- Aloysio da S Ferrão-Filho
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil.
| | - Diego Amparo C da Silva
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| |
Collapse
|
14
|
Kotov AA, Zharov AA, Chernova OF, Neretina AN, Gololobova MA, Trofimova SS, Zinovyev EV, Izyumova EI, Zanina OG, Kirillova IV, Shidlovskiy FK. Crustacea (Branchiopoda) among Organic Remains from Mammoth Hair. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019080065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Taylor DJ, Connelly SJ, Kotov AA. The Intercontinental phylogeography of neustonic daphniids. Sci Rep 2020; 10:1818. [PMID: 32020006 PMCID: PMC7000678 DOI: 10.1038/s41598-020-58743-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Organisms that live at the freshwater surface layer (the neuston) occupy a high energy habitat that is threatened by human activities. Daphniids of the genera Scapholeberis and Megafenestra are adapted to the neuston but are poorly studied for biogeography and diversity. Here we assess the global phylogeography of neustonic daphniids. We obtained 402 new multigene sequences from the 12S rRNA, 16S rRNA, and tRNA (val) regions of the mitochondrial genomes of daphniids from 186 global sites. We assessed the intercontinental origins and boundaries of mitochondrial lineages and the relative rates of evolution in neustonic and planktonic daphniids. We identified 17 divergent lineages in the neustonic daphniids that were associated with biogeographic regions. Six of these lineages had intercontinental ranges – four of these were Transberingian. Patagonian populations of Scapholeberis rammneri were monophyletic and nested within a closely related clade of western North American haplotypes, suggesting an introduction from the Western Nearctic to South America. The Eastern Palearctic was more diverse than other regions, containing eight of the major lineages detected in the Scapholeberinae. The Genus Scapholeberis had high levels of divergence compared to non-neustonic daphniids. Neustonic daphniids have more divergent biogeographic lineages than previously appreciated.
Collapse
Affiliation(s)
- Derek J Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA.
| | - Sandra J Connelly
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Alexey A Kotov
- A. N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, 119071, Moscow, Russia
| |
Collapse
|
16
|
Bownik A. Physiological endpoints in daphnid acute toxicity tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134400. [PMID: 31689654 DOI: 10.1016/j.scitotenv.2019.134400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Daphnids are freshwater crustaceans used in toxicity tests. Although lethality and immobilisation are the most commonly used endpoints in those tests, more sensitive parameters are required for determination of sublethal acute effects of toxicants. The use of various physiological endpoints in daphnids is considered as a low-cost and simple alternative that meets the 3R's rule (Replacement, Reduction, Refinement) criteria. However, currently there is no review-based evaluation of their applicability in toxicity testing. This paper presents the results on the most commonly determined physiological parameters of Daphnia in ecotoxicological studies and human drug testing, such as feeding activity, thoracic limb movement, heart rate, cardiac area, respiratory activity, compound eye, mandible movements and post-abdominal claw contractions. Furthermore, their applicability as promising endpoints in the assessment of water quality or drug testing is discussed.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland.
| |
Collapse
|
17
|
Izquierdo-López A, Caron JB. Correction to 'A possible case of inverted lifestyle in a new bivalved arthropod from the Burgess Shale'. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192111. [PMID: 32218985 PMCID: PMC7029943 DOI: 10.1098/rsos.192111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
[This corrects the article DOI: 10.1098/rsos.191350.].
Collapse
|
18
|
Influence of Eichhornia crassipes (Mart) Solms on a Tropical Microcrustacean Community Based on Taxonomic and Functional Trait Diversity. WATER 2019. [DOI: 10.3390/w11112423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Macrophytes are important structural attributes of freshwater ponds and wetlands, affecting zooplankton community composition. One of the best-known macrophytes in the world is Eichhornia crassipes, which, due to its high reproductive rate, can quickly occupy large areas of aquatic environments. However, there have been few assessments of the direct effect of this macrophyte, in the absence of predators, for tropical zooplankton communities. The aim of this study was to evaluate the influence of E. crassipes on microcrustacean community structure using species and functional diversity, the latter providing an important tool to evaluate the response to changes in resource availability along an environment gradient. We also evaluated which functional traits were favored when the structural niche offered by submerged parts of the macrophytes was present. We conducted a 30 day mesocosm experiment (117 m3) with and without the presence of floating macrophytes (Eichhornia crassipes) inserted along one edge of the mesocosms. Treatment effects on microcrustacean density and community structure using taxonomic and functional classification approaches were assessed. There was a positive association between macrophyte presence and microcrustacean diversity for both diversity types, showing that the presence of macrophytes enhanced the niche availability for the microcrustacean community, likely through changes to resource diversity through habitat structure provision. In the presence of macrophytes, the abundance of species with the following feeding traits increased: burrowing, benthic habitat preference, and herbivore–detritivore and omnivore–carnivore trophic groups. Results showed that the species capable of using the niche offered by submerged macrophyte structures had benthic traits, enabling their co-existence with species possessing primarily pelagic traits. Using a functional approach, our study demonstrated that Eichhornia crassipes can structure microcrustacean communities and promote diversity, likely via increased habitat diversity, which enables the co-existence of species possessing different adaptations to acquiring resources available in the environment.
Collapse
|
19
|
Izquierdo-López A, Caron JB. A possible case of inverted lifestyle in a new bivalved arthropod from the Burgess Shale. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191350. [PMID: 31827867 PMCID: PMC6894550 DOI: 10.1098/rsos.191350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The origin of the arthropod carapace, an enlargement of cephalic tergites, can be traced back to the Cambrian period. However, its disparity and evolution are still not fully understood. Here, we describe a new 'bivalved' arthropod, Fibulacaris nereidis gen. et sp. nov., based on 102 specimens from the middle Cambrian (Wuliuan Stage) Burgess Shale, Marble Canyon area in British Columbia's Kootenay National Park, Canada. The laterally compressed carapace covers most of the body. It is fused dorsally and merges anteriorly into a conspicuous postero-ventrally recurved rostrum as long as the carapace and positioned between a pair of backwards-facing pedunculate eyes. The body is homonomous, with approximately 40 weakly sclerotized segments bearing biramous legs with elongate endopods, and ends in a pair of small flap-like caudal rami. Fibulacaris nereidis is interpreted as a suspension feeder possibly swimming inverted, in a potential case of convergence with some branchiopods. A Bayesian phylogenetic analysis places it within a group closely related to the extinct Hymenocarina. Fibulacaris nereidis is unique in its carapace morphology and overall widens the ecological disparity of Cambrian arthropods and suggests that the evolution of a 'bivalved' carapace and an upside-down lifestyle may have occurred early in stem-group crustaceans.
Collapse
Affiliation(s)
- Alejandro Izquierdo-López
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, CanadaM5S 3B2
| | - Jean-Bernard Caron
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, CanadaM5S 3B2
- Department of Natural History (Palaeobiology Section), Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, CanadaM5S 2C6
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, CanadaM5S 3B1
| |
Collapse
|
20
|
Cornetti L, Fields PD, Van Damme K, Ebert D. A fossil-calibrated phylogenomic analysis of Daphnia and the Daphniidae. Mol Phylogenet Evol 2019; 137:250-262. [DOI: 10.1016/j.ympev.2019.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022]
|
21
|
Canniff PM, Hoang TC. Microplastic ingestion by Daphnia magna and its enhancement on algal growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:500-507. [PMID: 29579661 DOI: 10.1016/j.scitotenv.2018.03.176] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 05/22/2023]
Abstract
The rapid increase in plastic use over the last few decades has resulted in plastic pollution in freshwater and marine ecosystems. However, more attention has been paid to plastic pollution in marine ecosystems than to freshwater ecosystems. This research determined microplastic ingestion by Daphnia magna and the potential effect of microplastics on the organism's survival and reproduction. The study also examined the potential of microplastics to enhance algal growth in support of understanding effects of microplastic ingestion on the organism. When exposed to 25, 50, and 100mg/L fluorescent green polyethylene microbeads at size of 63-75μm, D. magna ingested significant amount of plastic microbeads. The number of ingested beads increased with increasing particle concentration and exposure time. However, no significant effect on survival and reproduction was observed although the gut of D. magna was filled with plastic microbeads. In the algal experiment, Raphidocelis subcapitata grew more in the exposure media with the present of plastic microbeads than without plastic microbeads. This result suggests that plastic microbeads could serve as substrates for R. subcapitata to grow. Raphidocelis subcapitata then could be transferred to the organism's gut and provided energy for survival and reproduction. Results of the present study add to the literature of microplastic ingestion by aquatic organisms. Caution should be taken when interpreting hazards of microplastics based on ingestion, such as the measurement unit and the presence of algae in the environment.
Collapse
Affiliation(s)
- Patrick M Canniff
- Institute of Environmental Sustainability, Loyola University Chicago, 1032 W Sheridan Road, Chicago, IL 606606, United States
| | - Tham C Hoang
- Institute of Environmental Sustainability, Loyola University Chicago, 1032 W Sheridan Road, Chicago, IL 606606, United States.
| |
Collapse
|
22
|
Spanier KI, Jansen M, Decaestecker E, Hulselmans G, Becker D, Colbourne JK, Orsini L, De Meester L, Aerts S. Conserved Transcription Factors Steer Growth-Related Genomic Programs in Daphnia. Genome Biol Evol 2017; 9:1821-1842. [PMID: 28854641 PMCID: PMC5569996 DOI: 10.1093/gbe/evx127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
Ecological genomics aims to understand the functional association between environmental gradients and the genes underlying adaptive traits. Many genes that are identified by genome-wide screening in ecologically relevant species lack functional annotations. Although gene functions can be inferred from sequence homology, such approaches have limited power. Here, we introduce ecological regulatory genomics by presenting an ontology-free gene prioritization method. Specifically, our method combines transcriptome profiling with high-throughput cis-regulatory sequence analysis in the water fleas Daphnia pulex and Daphnia magna. It screens coexpressed genes for overrepresented DNA motifs that serve as transcription factor binding sites, thereby providing insight into conserved transcription factors and gene regulatory networks shaping the expression profile. We first validated our method, called Daphnia-cisTarget, on a D. pulex heat shock data set, which revealed a network driven by the heat shock factor. Next, we performed RNA-Seq in D. magna exposed to the cyanobacterium Microcystis aeruginosa. Daphnia-cisTarget identified coregulated gene networks that associate with the moulting cycle and potentially regulate life history changes in growth rate and age at maturity. These networks are predicted to be regulated by evolutionary conserved transcription factors such as the homologues of Drosophila Shavenbaby and Grainyhead, nuclear receptors, and a GATA family member. In conclusion, our approach allows prioritising candidate genes in Daphnia without bias towards prior knowledge about functional gene annotation and represents an important step towards exploring the molecular mechanisms of ecological responses in organisms with poorly annotated genomes.
Collapse
Affiliation(s)
- Katina I. Spanier
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Belgium
- Department of Human Genetics, Laboratory of Computational Biology, KU Leuven, Belgium
- VIB Center for Brain and Disease Research, KU Leuven, Belgium
| | - Mieke Jansen
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Belgium
| | - Ellen Decaestecker
- Department of Biology, Laboratory of Aquatic Biology, Science and Technology, KU Leuven Campus Kulak, Kortrjik, Belgium
| | - Gert Hulselmans
- Department of Human Genetics, Laboratory of Computational Biology, KU Leuven, Belgium
- VIB Center for Brain and Disease Research, KU Leuven, Belgium
| | - Dörthe Becker
- Environmental Genomics Group, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, United Kingdom
| | - John K. Colbourne
- Environmental Genomics Group, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, United Kingdom
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, United Kingdom
| | - Luc De Meester
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Belgium
| | - Stein Aerts
- Department of Human Genetics, Laboratory of Computational Biology, KU Leuven, Belgium
- VIB Center for Brain and Disease Research, KU Leuven, Belgium
| |
Collapse
|
23
|
Tan LY, Huang B, Xu S, Wei ZB, Yang LY, Miao AJ. TiO2 Nanoparticle Uptake by the Water Flea Daphnia magna via Different Routes is Calcium-Dependent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7799-7807. [PMID: 27359244 DOI: 10.1021/acs.est.6b01645] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Calcium plays versatile roles in aquatic ecosystems. In this study, we investigated its effects on the uptake of polyacrylate-coated TiO2 nanoparticles (PAA-TiO2-NPs) by the water flea (cladoceran) Daphnia magna. Particle distribution in these daphnids was also visualized using synchrotron radiation-based micro X-ray fluorescence spectroscopy, transmission electron microscopy, and scanning electron microscopy. At low ambient Ca concentrations in the experimental medium ([Ca]dis), PAA-TiO2-NPs were well dispersed and distributed throughout the daphnid; the particle concentration was highest in the abdominal zone and the gut, as a result of endocytosis and passive drinking of the nanoparticles, respectively. Further, Ca induced PAA-TiO2-NP uptake as a result of the increased Ca influx. At a high [Ca]dis, the PAA-TiO2-NPs formed micrometer-sized aggregates that were ingested by D. magna and concentrated only in its gut, independent of the Ca influx. Our results demonstrated the multiple effects of Ca on nanoparticle bioaccumulation. Specifically, well-dispersed nanoparticles were taken up by D. magna through endocytosis and passive drinking whereas the uptake of micrometer-sized aggregates relied on active ingestion.
Collapse
Affiliation(s)
- Ling-Yan Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| | - Bin Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| | - Shen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| | - Zhong-Bo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| | - Liu-Yan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
24
|
Arbore R, Andras JP, Routtu J, Ebert D. Ecological genetics of sediment browsing behaviour in a planktonic crustacean. J Evol Biol 2016; 29:1999-2009. [PMID: 27329766 DOI: 10.1111/jeb.12923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/30/2016] [Accepted: 06/15/2016] [Indexed: 02/03/2023]
Abstract
Zooplankton can display complex habitat selection behaviours that influence the way they interact with their environments. Some species, although primarily pelagic, can exploit sediment-borne particles as a food source or use sediments as a refuge from pelagic predation. However, this strategy may increase the exposure to other risks such as benthic predation and infection from sediment-borne parasite transmission stages. The evolution of habitat selection behaviour in these species is thus expected to be influenced by multiple and possibly contrasting selective forces. Here, we study the browsing behaviour of the water flea Daphnia magna on bottom sediments. First, we demonstrated genetic variation for sediment browsing among D. magna genotypes from natural populations sampled across a broad geographic range. Next, we used an F2 recombinant panel to perform a QTL analysis and identified three regions in the D. magna genome contributing to variation in browsing behaviour. We also analysed the correlation between our data and previously published data on the phototactic behaviour of genotypes from the same F2 panel. Clonal means of the two behavioral traits were not correlated, suggesting that they may evolve independently. Browsing behaviour is likely to be a relevant component of habitat selection in D. magna, and its study may help to incorporate the interactions with the sediment into eco-evolutionary models of this key freshwater species.
Collapse
Affiliation(s)
- R Arbore
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland.
| | - J P Andras
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland.,Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - J Routtu
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland.,Department of Molecular Ecology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - D Ebert
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Kruppert S, Horstmann M, Weiss LC, Schaber CF, Gorb SN, Tollrian R. Push or Pull? The light-weight architecture of the Daphnia pulex carapace is adapted to withstand tension, not compression. J Morphol 2016; 277:1320-8. [PMID: 27418246 DOI: 10.1002/jmor.20577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/02/2016] [Accepted: 06/25/2016] [Indexed: 11/07/2022]
Abstract
Daphnia (Crustacea, Cladocera) are well known for their ability to form morphological adaptations to defend against predators. In addition to spines and helmets, the carapace itself is a protective structure encapsulating the main body, but not the head. It is formed by a double layer of the integument interconnected by small pillars and hemolymphatic space in between. A second function of the carapace is respiration, which is performed through its proximal integument. The interconnecting pillars were previously described as providing higher mechanical stability against compressive forces. Following this hypothesis, we analyzed the carapace structure of D. pulex using histochemistry in combination with light and electron microscopy. We found the distal integument of the carapace to be significantly thicker than the proximal. The pillars appear fibrous with slim waists and broad, sometimes branched bases where they meet the integument layers. The fibrous structure and the slim-waisted shape of the pillars indicate a high capacity for withstanding tensile rather than compressive forces. In conclusion they are more ligaments than pillars. Therefore, we measured the hemolymphatic gauge pressure in D. longicephala and indeed found the hemocoel to have a pressure above ambient. Our results offer a new mechanistic explanation of the high rigidity of the daphniid carapace, which is probably the result of a light-weight construction consisting of two integuments bound together by ligaments and inflated by a hydrostatic hyper-pressure in the hemocoel. J. Morphol. 277:1320-1328, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sebastian Kruppert
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany.
| | - Martin Horstmann
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Linda C Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Clemens F Schaber
- Department of Functional Morphology and Biomechanics, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 9, Kiel, 24118, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 9, Kiel, 24118, Germany
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| |
Collapse
|
26
|
Flössner D, Fryer G. An Early Cretaceous anomopod (Crustacea: Branchiopoda) preserved in amber that reveals an unexpected venture during the evolution of the order. J NAT HIST 2016. [DOI: 10.1080/00222933.2015.1134693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Geoffrey Fryer
- Freshwater Biological Association [Retd], Stonehouse, UK
| |
Collapse
|
27
|
Kim HJ, Koedrith P, Seo YR. Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism. Int J Mol Sci 2015; 16:12261-87. [PMID: 26035755 PMCID: PMC4490443 DOI: 10.3390/ijms160612261] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 01/02/2023] Open
Abstract
Due to the rapid advent in genomics technologies and attention to ecological risk assessment, the term “ecotoxicogenomics” has recently emerged to describe integration of omics studies (i.e., transcriptomics, proteomics, metabolomics, and epigenomics) into ecotoxicological fields. Ecotoxicogenomics is defined as study of an entire set of genes or proteins expression in ecological organisms to provide insight on environmental toxicity, offering benefit in ecological risk assessment. Indeed, Daphnia is a model species to study aquatic environmental toxicity designated in the Organization for Economic Co-operation and Development’s toxicity test guideline and to investigate expression patterns using ecotoxicology-oriented genomics tools. Our main purpose is to demonstrate the potential utility of gene expression profiling in ecotoxicology by identifying novel biomarkers and relevant modes of toxicity in Daphnia magna. These approaches enable us to address adverse phenotypic outcomes linked to particular gene function(s) and mechanistic understanding of aquatic ecotoxicology as well as exploration of useful biomarkers. Furthermore, key challenges that currently face aquatic ecotoxicology (e.g., predicting toxicant responses among a broad spectrum of phytogenetic groups, predicting impact of temporal exposure on toxicant responses) necessitate the parallel use of other model organisms, both aquatic and terrestrial. By investigating gene expression profiling in an environmentally important organism, this provides viable support for the utility of ecotoxicogenomics.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
- Department of Life Science, Dongguk University Biomedi Campus 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
| | - Preeyaporn Koedrith
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
- Faculty of Environment and Resource Studies, Mahidol University, 999 Phuttamonthon 4 Rd., Phuttamonthon District, Nakhon Pathom 73170, Thailand.
| | - Young Rok Seo
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
- Department of Life Science, Dongguk University Biomedi Campus 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
| |
Collapse
|
28
|
Bownik A, Stępniewska Z, Skowroński T. Effects of ectoine on behavioural, physiological and biochemical parameters of Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol 2015; 168:2-10. [PMID: 25460046 DOI: 10.1016/j.cbpc.2014.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 11/20/2022]
Abstract
Ectoine (ECT) is a compatible solute produced by soil, marine and freshwater bacteria in response to stressful factors. The purpose of our study was to determine the possible toxic influence of ECT on Daphnia magna. We determined the following endpoints: survival rate during exposure and recovery, swimming performance, heart rate, thoracic limb movement determined by image analysis, haemoglobin level by ELISA assay, catalase and nitric oxide species (NOx) by spectrophotometric methods. The results showed 80% survival of daphnids exposed to 50mg/L of ECT after 24h and 10% after 90h, however lower concentrations of ECT were well tolerated. A concentration-dependent reduction of swimming velocity was noted at 24 and 48h of the exposure. ECT (at 2.5 and 4mg/L) induced an increase of heart rate and thoracic limb movement (at 2.5, 4 and 20mg/L) after 24h. After 10h of the exposure to ECT daphnids showed a concentration-dependent increase of haemoglobin level synthesized and accumulated in the epipodite epithelia. After 24h we noted a concentration-dependent decrease of haemoglobin level and its lowest value was found after 48h of the exposure. ECT at a concentration of 20 and 25mg/L slightly stimulated catalase activity after 24h. NOx level was also increased after 10h of the exposure to 20 and 25mg/L of ECT reaching maximal activity after 24h. Our results suggest that ECT possesses some modulatory potential on the behaviour, physiology and biochemical parameters in daphnids.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Physiology and Ecotoxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland.
| | - Zofia Stępniewska
- Department of Biochemistry Environmental Chemistry, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland
| | - Tadeusz Skowroński
- Department of Physiology and Ecotoxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland
| |
Collapse
|
29
|
Bacterial epibionts of Daphnia: a potential route for the transfer of dissolved organic carbon in freshwater food webs. ISME JOURNAL 2014; 8:1808-19. [PMID: 24694716 DOI: 10.1038/ismej.2014.39] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 11/09/2022]
Abstract
The identification of interacting species and elucidation of their mode of interaction may be crucial to understand ecosystem-level processes. We analysed the activity and identity of bacterial epibionts in cultures of Daphnia galeata and of natural daphnid populations. Epibiotic bacteria incorporated considerable amounts of dissolved organic carbon (DOC), as estimated via uptake of tritiated leucine: three times more tracer was consumed by microbes on a single Daphnia than in 1 ml of lake water. However, there was virtually no incorporation if daphnids were anaesthetised, suggesting that their filtration activity was essential for this process. Microbial DOC uptake could predominantly be assigned to microbes that were located on the filter combs of daphnids, where the passage of water would ensure a continuously high DOC supply. Most of these bacteria were Betaproteobacteria from the genus Limnohabitans. Specifically, we identified a monophyletic cluster harbouring Limnohabitans planktonicus that encompassed sequence types from D. galeata cultures, from the gut of Daphnia magna and from daphnids of Lake Zurich. Our results suggest that the epibiotic growth of bacteria related to Limnohabitans on Daphnia spp. may be a widespread and rather common phenomenon. Moreover, most of the observed DOC flux to Daphnia in fact does not seem to be associated with the crustacean biomass itself but with its epibiotic microflora. The unexplored physical association of daphnids with heterotrophic bacteria may have considerable implications for our understanding of carbon transfer in freshwater food webs, that is, a trophic 'shortcut' between microbial DOC uptake and predation by fish.
Collapse
|
30
|
Castilho MCDA, Wisniewski C, Santos-Wisniewski MJD. Life cycle of Scapholeberis armata freyi Dumont & Pensaert, 1983 (Cladocera, Daphnidae). BIOTA NEOTROPICA 2012. [DOI: 10.1590/s1676-06032012000400005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knowledge of the life cycle of zooplankton species can provide information for a better understanding of the role of each species in the community and basic data for secondary production investigations. In this study, some life-cycle traits were measured for Scapholeberis armata freyi Dumont & Pensaert, 1983 (Cladocera, Daphnidae), maintained under controlled conditions in laboratory cultures. Experiments were carried out in incubators at a temperature of 23.0 ºC, photoperiod of 12 hours light/dark, and food supply (algal suspension of the chlorophycean Pseudokirchneriela subcapitata at 10(5) cells.mL-1 and mixed suspension of yeast, and fish ration added per organism, at equal proportions) that were kept constant. Observations were made once or twice a day to record individual growth, age and size of primipara, as well as fecundity and longevity. S. armata freyi achieved a maximum size of 827 µm, while the primiparous instar measured 542 µm on average, at an age of 5.86 days. The mean fecundity was 8 eggs.female-1 and the mean of total number of eggs produced by a female was 47.58. Embryonic development time was 1.9 days and the maximum longevity found was 31 days. In this study, the life cycle parameters of S. armata freyi presented are close to those found in other species of Daphnidae, under the same culture conditions of temperature and photoperiod. However, the longevity was greater than other species that received algae as food only. The quality and quantity of food are factors that control secondary production in aquatic ecosystems and an increase of food availability increases longevity and egg production. Thus the greater longevity and egg production observed for S. armata freyi can influence its secondary production.
Collapse
|
31
|
Altshuler I, Demiri B, Xu S, Constantin A, Yan ND, Cristescu ME. An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integr Comp Biol 2011; 51:623-33. [PMID: 21873644 DOI: 10.1093/icb/icr103] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The increased overexploitation of freshwater ecosystems and their extended watersheds often generates a cascade of anthropogenic stressors (e.g., acidification, eutrophication, metal contamination, Ca decline, changes in the physical environment, introduction of invasive species, over-harvesting of resources). The combined effect of these stressors is particularly difficult to study, requiring a coordinated multi-disciplinary effort and insights from various sub-disciplines of biology, including ecology, evolution, toxicology, and genetics. It also would benefit from a well-developed and broadly accepted model systems. The freshwater crustacean Daphnia is an excellent model organism for studying multiple stressors because it has been a chosen focus of study in all four of these fields. Daphnia is a widespread keystone species in most freshwater ecosystems, where it is routinely exposed to a multitude of anthropogenic and natural stressors. It has a fully sequenced genome, a well-understood life history and ecology, and a huge library of responses to toxicity. To make the case for its value as a model species, we consider the joint and separate effects of natural and three anthropogenic stressors-climatic change, calcium decline, and metal contaminants on daphniids. We propose that integrative approaches marrying various subfields of biology can advance our understanding of the combined effects of stressors. Such approaches can involve the measuring of multiple responses at several levels of biological organization from molecules to natural populations. For example, novel interdisciplinary approaches such as transcriptome profiling and mutation accumulation experiments can offer insights into how multiple stressors influence gene transcription and mutation rates across genomes, and, thus, help determine the causal mechanism between environmental stressors and population/community effects as well as long-term evolutionary patterns.
Collapse
Affiliation(s)
- Ianina Altshuler
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Yamada S, Matzke-Karasz R. Skeleto-musculature of the mandible and its function in podocopid ostracodes exemplified by Loxoconcha pulchra (Cytheroidea: Loxoconchidae) and Fabaeformiscandona tyrolensis (Cypridoidea: Candonidae). J Morphol 2011; 272:1342-52. [PMID: 21688298 DOI: 10.1002/jmor.10988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/18/2011] [Accepted: 04/25/2011] [Indexed: 11/10/2022]
Abstract
A new anatomical interpretation of the skeleto-musculature of the mandible in podocopid ostracodes is proposed based on ultrastructural observations of Loxoconcha pulchra Ishizaki, 1968 and Fabaeformiscandona tyrolensis (Löffler, 1963). Attachment cells with their numerous microfibers anchor the sclerotized lamella cuticle (chitinous rod) to the outer lamella cuticle via intracuticular fibers. A pan-shaped structure develops at the attachment area in the outer lamella cuticle and is responsible for the mandibular scar. The sclerotized lamella cuticle is continuous with the dorsal apex of the mandibular coxa, which touches the fulcral point directly without intermediate epidermis. The calcification of the fulcral point starts immediately after ecdysis and this rapid calcification suggests that the fulcral point must play a significant role in functional morphology of podocopid ostracodes. After 3D-reconstruction of the set of mandibular extrinsic muscles in a podocopid ostracode, we suggest that the fulcral point is a key character for carapace opening by transmitting the force from the mandibular coxa to the valve and at the same time functions as the stable fulcrum for mandibular movement during mastication.
Collapse
Affiliation(s)
- Shinnosuke Yamada
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 München, Germany.
| | | |
Collapse
|
33
|
Kotov AA. Revision of thehirsuticornis‐like species ofMacrothrixBaird, 1843 (Cladocera: Anomopoda: Macrothricidae) from Subantarctic and temperate regions of the southern hemisphere. J NAT HIST 2010. [DOI: 10.1080/00222930701689937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Jüttner F, Watson SB, von Elert E, Köster O. β-Cyclocitral, a Grazer Defence Signal Unique to the Cyanobacterium Microcystis. J Chem Ecol 2010; 36:1387-97. [DOI: 10.1007/s10886-010-9877-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 10/05/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
35
|
Moenickes S, Richter O, Pirow R. Approaching the evolutionary advantage of ancillary types of haemoglobin in Daphnia magna by simulation of oxygen supply. J Exp Biol 2010; 213:408-17. [DOI: 10.1242/jeb.031914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SUMMARY
The planktonic crustacean Daphnia magna synthesizes haemoglobin (Hb) macromolecules of variant subunit composition and oxygen affinity. This is one of the strategies by which the animals cope with variations in environmental conditions such as ambient oxygen tension. The enrichment of high-affinity Hb molecules in the haemolymph of hypoxia-exposed animals is thought to reduce Hb synthesis costs due to an enhanced transport efficiency of these molecules in comparison to the low-affinity Hb molecules. How great this economic advantage is, and under which conditions this benefit disappears, is still not fully understood. Here we implemented a rigorously simplified model of the daphnid body and described the transport of oxygen from the environment via the haemolymph to the tissues in terms of the convection–diffusion–reaction equation. The model was validated by comparing various model predictions with experimental data. A sensitivity analysis was used to evaluate the influence of parameter uncertainties on the model predictions. Cost–benefit analysis revealed in which way at the system's level the increase in Hb oxygen affinity improves the oxygen loading at the respiratory surfaces and impairs the release of oxygen to the tissues. The benefit arising from the improved oxygen loading exceeds the disadvantage of impaired unloading only under conditions where the ambient oxygen tension is critically low and the Hb concentration is high. The low-affinity Hb, on the other hand, provides an advantage given that the Hb concentration is low and the ambient oxygen tension is well above the critical level. Computer-aided modelling and simulation therefore provide valuable mechanistic insights into the driving forces that could have shaped the evolution of globin genes in daphnids.
Collapse
Affiliation(s)
- S. Moenickes
- Institute of Geoecology, Technical University of Braunschweig, Germany
| | - O. Richter
- Institute of Geoecology, Technical University of Braunschweig, Germany
| | - R. Pirow
- Institute of Zoophysiology, University of Münster, Germany
| |
Collapse
|
36
|
FRYER GEOFFREY, BOXSHALL GEOFFREY. The feeding mechanisms ofLynceus(Crustacea: Branchiopoda: Laevicaudata), with special reference toL. simiaefaciesHarding. Zool J Linn Soc 2009. [DOI: 10.1111/j.1096-3642.2008.00455.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
OLESEN JØRGEN. A phylogenetic analysis of the Conchostraca and Cladocera (Crustacea, Branchiopoda, Diplostraca). Zool J Linn Soc 2008. [DOI: 10.1111/j.1096-3642.1998.tb02161.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Fryer G. Jacob Christian Schäffer FRS, a versatile eighteenth-century naturalist, and his remarkable pioneering researches on microscopic crustaceans. NOTES AND RECORDS OF THE ROYAL SOCIETY OF LONDON 2008; 62:167-185. [PMID: 19069000 DOI: 10.1098/rsnr.2007.0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Jacob Christian Schäffer was the first to appreciate the morphological complexity of the microscopic crustacean Daphnia. His investigations, published in 1755, provide an excellent example of the difficulties facing those who, for the first time, attempted to elucidate the structure of extremely complicated animals of small size, of which there were no familiar counterparts. Nevertheless he not only revealed many hitherto unsuspected anatomical features but attempted, with some success, to explain their function. Most notably he showed that Daphnia produces a current of water that draws suspended particles into its complex food-handling machinery. An earlier suggestion of how it feeds was completely erroneous and misleading. A pioneer of the comparative method, Schäffer provided an excellent example of how it helped him to understand, if not entirely to resolve, a complicated mechanism. That reproduction can be either parthenogenetic or sexual presented problems that were not resolved for more than another century. Unaware that males exist, and on the basis of seemingly sound, but misleading, observations, he concluded that Daphnia is a hermaphrodite.
Collapse
Affiliation(s)
- Geoffrey Fryer
- Institute of Environmental and Natural Sciences, University of Lancaster, Bailrigg, Lancaster LA41 4YQ, UK
| |
Collapse
|
39
|
|
40
|
Richter S, Olesen J, Wheeler WC. Phylogeny of Branchiopoda (Crustacea) based on a combined analysis of morphological data and six molecular loci. Cladistics 2007; 23:301-336. [DOI: 10.1111/j.1096-0031.2007.00148.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
Elmoor-Loureiro LMA. Phytophilous cladocerans (Crustacea, Anomopoda and Ctenopoda) from Paranã River Valley, Goiás, Brazil. ACTA ACUST UNITED AC 2007. [DOI: 10.1590/s0101-81752007000200012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A rapid assessment survey identified 39 phytophilous cladocerans species from littoral zones of rivers, permanent and temporary lagoons, and swamps of the Paranã River Valley, Goiás, Brazil, 22 are registered for the first time in Central Brazil. Aspects of the taxonomy of some of these species are discussed. Cluster analysis (UPGMA) revealed two phytophilous cladoceran assemblages, characterized by higher or lower richness and relative abundance of species of the families Daphniidae and Moinidae (filter feeders), in comparison with the dominant families Chydoridae and Macrothricidae (scraper feeders).
Collapse
|
42
|
Eads BD, Andrews J, Colbourne JK. Ecological genomics in Daphnia: stress responses and environmental sex determination. Heredity (Edinb) 2007; 100:184-90. [PMID: 17519967 DOI: 10.1038/sj.hdy.6800999] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ecological genomics is the study of adaptation of natural populations to their environment, and therefore seeks to link organism and population level processes through an understanding of genome organization and function. The planktonic microcrustacean Daphnia, which has long been an important system for ecology, is now being used as a genomic model as well. Here we review recent progress in selected areas of Daphnia genomics research. Production of parthenogenetic male offspring occurs through environmental cues, which clearly involves endocrine regulation and has also been studied as a toxicological response to juvenoid hormone analog insecticides. Recent progress has uncovered a putative juvenoid cis-response element, which together with microarray analysis will stimulate further research into nuclear hormone receptors and their associated transcriptional regulatory networks. Ecotoxicological studies indicate that mRNA profiling is a sensitive and specific research tool with promising applications in environmental monitoring and for uncovering conserved cellular processes. Rapid progress is expected to continue in these and other areas, as genomic tools for Daphnia become widely available to investigators.
Collapse
Affiliation(s)
- B D Eads
- Center for Genomics and Bioinformatics, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405-3700, USA.
| | | | | |
Collapse
|
43
|
Vanoverbeke J, De Gelas K, De Meester L. Habitat size and the genetic structure of a cyclical parthenogen, Daphnia magna. Heredity (Edinb) 2007; 98:419-26. [PMID: 17392708 DOI: 10.1038/sj.hdy.6800958] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In populations of a cyclical parthenogen, the diversity of clonal lineages, derived from sexually produced eggs, declines during the parthenogenetic phase. Even though Daphnia magna populations from small ponds may harbour millions of individuals, we show that observed clonal and allelic diversity in populations from such small water bodies are lower than in populations from larger water bodies. Populations from small water bodies also show significant fluctuations in allele frequencies among years and a stronger among-population genetic differentiation than populations inhabiting larger water bodies. Persistent founder effects can only explain part of these results. Our data link the population genetic structure of cyclical parthenogens to the size of the habitat and suggest that genetic drift is a more prominent feature of populations inhabiting small water bodies than previously thought.
Collapse
Affiliation(s)
- J Vanoverbeke
- Laboratory of Aquatic Ecology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
44
|
COLBOURNE JK, WILSON CC, HEBERT PDN. The systematics of AustralianDaphniaandDaphniopsis(Crustacea: Cladocera): a shared phylogenetic history transformed by habitat-specific rates of evolution. Biol J Linn Soc Lond 2006. [DOI: 10.1111/j.1095-8312.2006.00687.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
|
46
|
ISHIDA S, KOTOV AA, TAYLOR DJ. A new divergent lineage of Daphnia (Cladocera: Anomopoda) and its morphological and genetical differentiation from Daphnia curvirostris Eylmann, 1887. Zool J Linn Soc 2006. [DOI: 10.1111/j.1096-3642.2006.00214.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Schmidt K, Steinberg CE, Staaks GBO. Influence of a Xenobiotic Mixture (PCB and TBT) Compared to Single Substances on Swimming Behavior or Reproduction ofDaphnia magna. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/aheh.200400579] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Dartnall HJG, Hollwedel W, Paggi JCD. The freshwater fauna of Macquarie Island, including a redescription of the endemic water-flea Daphnia gelida (Brady) (Anomopoda: Crustacea). Polar Biol 2005. [DOI: 10.1007/s00300-005-0016-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Paul RJ, Zeis B, Lamkemeyer T, Seidl M, Pirow R. Control of oxygen transport in the microcrustacean Daphnia: regulation of haemoglobin expression as central mechanism of adaptation to different oxygen and temperature conditions. ACTA ACUST UNITED AC 2004; 182:259-75. [PMID: 15491405 DOI: 10.1111/j.1365-201x.2004.01362.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pathway for oxygen, the control of oxygen transport and the role of haemoglobin expression for the physiological adaptation to different oxygen and temperature conditions were studied in the ecological model organism Daphnia magna. Ventilation of the inner walls of the carapace as the main gas exchange area as well as of the embryos in the brood pouch are controlled, oxygen-dependent processes. The P(O2)-dependent increase of heart rate as well as perfusion rate during short-term, progressive hypoxia improves the circulatory oxygen transport within the body. The regulation of haemoglobin (Hb) expression is the central mechanism for a medium-term adaptation to hypoxia. Genetic control elements and oxygen conditions near the two Hb synthesis sites (fat cells, epipodite epithelial cells) determine, which types of Hb subunits and, accordingly, hetero-multimeric Hb macromolecules are produced. One synthesis site may respond mainly to internal, the other one to external oxygen conditions. Depending on environmental condition, either higher quantities of macromolecules of unchanged functionality (P50) or increasing amounts of macromolecules with higher oxygen affinity are synthesized. The Hb subunit DmHbA is probably of considerable importance for this functional change. The physiological benefits of haemoglobin in Daphnia are discussed. Physiological adaptation of Daphnia to different temperatures is also related to the control of oxygen transport processes with the regulation of haemoglobin expression again as a central mechanism.
Collapse
Affiliation(s)
- R J Paul
- Institut für Zoophysiologie, Westfälische Wilhelms-Universität, Hindenburgplatz 55, Münster, Germany
| | | | | | | | | |
Collapse
|
50
|
|