1
|
Manna I, De Benedittis S, Porro D. A Comprehensive Examination of the Role of Epigenetic Factors in Multiple Sclerosis. Int J Mol Sci 2024; 25:8921. [PMID: 39201606 PMCID: PMC11355011 DOI: 10.3390/ijms25168921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
According to various research, the risk of multiple sclerosis (MS) is strongly influenced by genetic variations. Population, familial, and molecular studies provide strong empirical support for a polygenic pattern of inheritance, mainly due to relatively common allelic variants in the general population. The strongest MS susceptibility locus, which was unmistakably identified in tested populations, is the major histocompatibility complex on chromosome 6p21.3. However, the effect of a given predisposing variant remains modest, so there is the possibility that multiple gene-gene and/or gene-environment interactions could significantly increase the contribution of specific variants to the overall genetic risk. Furthermore, as is known, susceptibility genes can be subject to epigenetic modifications, which greatly increase the complexity of MS heritability. Investigating epigenetic and environmental factors can provide new opportunities for the molecular basis of the MS, which shows complicated pathogenesis. Although studies of epigenetic changes in MS only began in the last decade, a growing body of literature suggests that these may be involved in the development of MS. Here, we summarize recent studies regarding epigenetic changes related to MS initiation and progression. Furthermore, we discuss how current studies address important clinical questions and how future studies could be used in clinical practice.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Bioimaging and Complex Biological Systems (IBSBC), National Research Council (CNR), Section of Catanzaro, 88100 Catanzaro, Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR) Cosenza, 88100 Catanzaro, Italy
| | - Danilo Porro
- Institute of Bioimaging and Complex Biological Systems (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy
| |
Collapse
|
2
|
Bogale AT, Braun M, Bernhardt J, Zühlke D, Schiefelbein U, Bog M, Scheidegger C, Zengerer V, Becher D, Grube M, Riedel K, Bengtsson MM. The microbiome of the lichen Lobaria pulmonaria varies according to climate on a subcontinental scale. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13289. [PMID: 38923181 PMCID: PMC11194104 DOI: 10.1111/1758-2229.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
The Lobaria pulmonaria holobiont comprises algal, fungal, cyanobacterial and bacterial components. We investigated L. pulmonaria's bacterial microbiome in the adaptation of this ecologically sensitive lichen species to diverse climatic conditions. Our central hypothesis posited that microbiome composition and functionality aligns with subcontinental-scale (a stretch of ~1100 km) climatic parameters related to temperature and precipitation. We also tested the impact of short-term weather dynamics, sampling season and algal/fungal genotypes on microbiome variation. Metaproteomics provided insights into compositional and functional changes within the microbiome. Climatic variables explained 41.64% of microbiome variation, surpassing the combined influence of local weather and sampling season at 31.63%. Notably, annual mean temperature and temperature seasonality emerged as significant climatic drivers. Microbiome composition correlated with algal, not fungal genotype, suggesting similar environmental recruitment for the algal partner and microbiome. Differential abundance analyses revealed distinct protein compositions in Sub-Atlantic Lowland and Alpine regions, indicating differential microbiome responses to contrasting environmental/climatic conditions. Proteins involved in oxidative and cellular stress were notably different. Our findings highlight microbiome plasticity in adapting to stable climates, with limited responsiveness to short-term fluctuations, offering new insights into climate adaptation in lichen symbiosis.
Collapse
Affiliation(s)
| | - Maria Braun
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Jörg Bernhardt
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Daniela Zühlke
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Ulf Schiefelbein
- Landscape EcologyUniversity of Rostock, Botanical GardenRostockGermany
| | - Manuela Bog
- Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
| | - Christoph Scheidegger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Veronika Zengerer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Dörte Becher
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Martin Grube
- Karl‐Franzens‐Universität Graz, Institut für BiologieGrazAustria
| | - Katharina Riedel
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Mia M. Bengtsson
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| |
Collapse
|
3
|
Dunn KA, MacDonald E, MacDonald T, Kulkarni K. Bacterial heat shock protein genes during induction chemotherapy in pediatric patients with acute lymphoblastic leukemia. Future Oncol 2024; 20:17-23. [PMID: 38189148 DOI: 10.2217/fon-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Background: Heat shock proteins (HSP) protect cancer cells. Gastrointestinal bacteria contain HSP genes and can release extracellular vesicles which act as biological shuttles. Stress from treatment may result in a microbial community with more HSP genes, which could contribute to circulating HSP levels. Methods: The authors examined the abundance of five bacterial HSP genes pre-treatment and during induction in stool sequences from 30 pediatric acute lymphoblastic leukemia patients. Results: Decreased mean HTPG counts (p = 0.0024) pre-treatment versus induction were observed. During induction, HTPG, Shannon diversity and Bacteroidetes decreased (p = 7.5e-4; 1.1e-3; 8.6e-4), while DNAK and Firmicutes increased (p = 6.9e-3; 9.2e-4). Conclusion: Understanding microbial HSP gene community changes with treatment is the first step in determining if bacterial HSPs are important to the tumor microenvironment and leukemia treatment.
Collapse
Affiliation(s)
- Katherine A Dunn
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - Emma MacDonald
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
| | - Tamara MacDonald
- Department of Pharmacy, IWK Health, Halifax, NS, Canada
- Faculty of Health Professions, Dalhousie University, Halifax, NS, Canada
| | - Ketan Kulkarni
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
| |
Collapse
|
4
|
Barrera-Rojas J, Gurubel-Tun KJ, Ríos-Castro E, López-Méndez MC, Sulbarán-Rangel B. An Initial Proteomic Analysis of Biogas-Related Metabolism of Euryarchaeota Consortia in Sediments from the Santiago River, México. Microorganisms 2023; 11:1640. [PMID: 37512813 PMCID: PMC10384328 DOI: 10.3390/microorganisms11071640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
In this paper, sediments from the Santiago River were characterized to look for an alternative source of inoculum for biogas production. A proteomic analysis of methane-processing archaea present in these sediments was carried out. The Euryarchaeota superkingdom of archaea is responsible for methane production and methane assimilation in the environment. The Santiago River is a major river in México with great pollution and exceeded recovery capacity. Its sediments could contain nutrients and the anaerobic conditions for optimal growth of Euryarchaeota consortia. Batch bioreactor experiments were performed, and a proteomic analysis was conducted with current database information. The maximum biogas production was 266 NmL·L-1·g VS-1, with 33.34% of methane, and for proteomics, 3206 proteins were detected from 303 species of 69 genera. Most of them are metabolically versatile members of the genera Methanosarcina and Methanosarcinales, both with 934 and 260 proteins, respectively. These results showed a diverse euryarcheotic species with high potential to methane production. Although related proteins were found and could be feeding this metabolism through the methanol and acetyl-CoA pathways, the quality obtained from the biogas suggests that this metabolism is not the main one in carbon use, possibly the sum of several conditions including growth conditions and the pollution present in these sediments.
Collapse
Affiliation(s)
- Jesús Barrera-Rojas
- Department of Water and Energy, Campus Tonalá, University of Guadalajara, Tonalá 45425, Mexico
| | - Kelly Joel Gurubel-Tun
- Department of Water and Energy, Campus Tonalá, University of Guadalajara, Tonalá 45425, Mexico
| | - Emmanuel Ríos-Castro
- Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y Estudios Avanzados del IPN, Ciudad de México 07000, Mexico
| | - María Cristina López-Méndez
- Wetlands and Environmental Sustainability Laboratory, Division of Graduate Studies and Research, Tecnológico Nacional de México/ITS de Misantla, Veracruz 93850, Mexico
| | - Belkis Sulbarán-Rangel
- Department of Water and Energy, Campus Tonalá, University of Guadalajara, Tonalá 45425, Mexico
| |
Collapse
|
5
|
Adur MK, Seibert JT, Romoser MR, Bidne KL, Baumgard LH, Keating AF, Ross JW. Porcine endometrial heat shock proteins are differentially influenced by pregnancy status, heat stress, and altrenogest supplementation during the peri-implantation period. J Anim Sci 2022; 100:6620802. [PMID: 35772767 PMCID: PMC9246672 DOI: 10.1093/jas/skac129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Heat stress (HS) deleteriously affects multiple components of porcine reproduction and is causal to seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. Postpubertal gilts (n = 42) were artificially inseminated during behavioral estrus (n = 28) or were kept cyclic (n = 14), and randomly assigned to thermal neutral (TN; 21 ± 1 °C) or diurnal HS (35 ± 1 °C for 12 h/31.6 ± 1 °C for 12 h) conditions from day 3 to 12 postestrus (dpe). Seven of the inseminated gilts from each thermal treatment group received ALT (15 mg/d) during this period. Using quantitative PCR, transcript abundance of HSP family A (Hsp70) member 1A (HSPA1A, P = 0.001) and member 6 (HSPA6, P < 0.001), and HSP family B (small) member 8 (HSB8, P = 0.001) were increased while HSP family D (Hsp60) member 1 (HSPD1, P = 0.01) was decreased in the endometrium of pregnant gilts compared to the cyclic gilts. Protein abundance of HSPA1A decreased (P = 0.03) in pregnant gilt endometrium due to HS, while HSP family B (small) member 1 (HSPB1) increased (P = 0.01) due to HS. Oral ALT supplementation during HS reduced the transcript abundance of HSP90α family class B member 1 (HSP90AB1, P = 0.04); but HS increased HSP90AB1 (P = 0.001), HSPA1A (P = 0.02), and HSPA6 (P = 0.04) transcript abundance irrespective of ALT. ALT supplementation decreased HSP90α family class A member 1 (HSP90AA1, P = 0.001) protein abundance, irrespective of thermal environment, whereas ALT only decreased HSPA6 (P = 0.02) protein abundance in TN gilts. These results indicate a notable shift of HSP in the porcine endometrium during the peri-implantation period in response to pregnancy status and heat stress.
Collapse
Affiliation(s)
- Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Matthew R Romoser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Eaton KM, Hallaj A, Stoeckel JA, Bernal MA. Ocean Warming Leads to Increases in Aerobic Demand and Changes to Gene Expression in the Pinfish (Lagodon rhomboides). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.809375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic climate change is causing increases in the frequency, intensity, and duration of marine heatwaves (MHWs). These short-term warming events can last for days to weeks and can produce severe disruptions in marine ecosystems, as many aquatic species are poikilotherms that depend on the conditions of the environment for physiological processes. It is crucial to investigate the effects of these thermal fluctuations on species that play a disproportionate ecological role in marine ecosystems, such as the pinfish (Lagodon rhomboides) in the Gulf of Mexico and western Atlantic. In this study, we exposed pinfish to a simulated MHW in aquaria and examined the impacts of acute warming on two life stages (juvenile and adult), measuring oxygen consumption and gene expression in two relevant tissue types (liver and muscle). We saw significant increases in routine metabolic rate with increasing temperature in both juveniles (24.58 mgO2/kg/h increase per 1°C of warming) and adults (10.01 mgO2/kg/h increase per 1°C of warming). These results indicate that exposure to increased temperatures was more metabolically costly for juveniles than for adults, on a mass-specific basis. This was also observed in the molecular analyses, where the largest number of differentially expressed genes were observed in the juvenile pinfish. The analyses of gene expression suggest warming produces changes to immune function, cell proliferation, muscle contraction, nervous system function, and oxygen transport. These results indicate that this ecologically relevant species will be significantly impacted by projected increases in frequency and magnitude of MHWs, particularly in the juvenile stage.
Collapse
|
7
|
Aminian AR, Forouzanfar F. Interplay between Heat Shock Proteins, Inflammation, and Pain: A promising Therapeutic Approach. Curr Mol Pharmacol 2021; 15:170-178. [PMID: 34781874 DOI: 10.2174/1874467214666210719143150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Heat Shock Proteins (HSPs) are important molecular chaperones that facilitate many functions of the cells. They also play a pivotal role in cell survival, especially in the presence of stressors, including nutritional deprivation, lack of oxygen, fever, alcohol, inflammation, oxidative stress, heavy metals, as well as conditions that cause injury and necrosis. In the face of a painful stimulus encounter, many factors could be associated with pain that may include nitric oxide, excitatory amino acids, reactive oxygen species (ROS) formation, prostaglandins, and inflammatory cytokines. One influential factor affecting pain reduction is the expression of HSPs that act as a ROS scavenger, regulate the inflammatory cytokines, and reduce pain responses subsequently. Hence, we assembled information on the painkilling attributes of HSPs. In this field of research, new painkillers could be developed by targetting HSPs to alleviate pain and widen our grasp of pain in pathological conditions and neurological diseases.
Collapse
Affiliation(s)
- Ahmad Reza Aminian
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
8
|
Piotrzkowska D, Miller E, Kucharska E, Niwald M, Majsterek I. Association of miRNA and mRNA Levels of the Clinical Onset of Multiple Sclerosis Patients. BIOLOGY 2021; 10:biology10060554. [PMID: 34202956 PMCID: PMC8234685 DOI: 10.3390/biology10060554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary In this study, we investigated the effect of microRNAs on the expression level of neuroprotective proteins, heat shock proteins, and sirtuin in peripheral blood mononuclear cells in the development of multiple sclerosis. Our results show that the gene expression of neurotrophins, heat shock proteins, SIRT1, and miRNAs by the immune cells of MS is d changed. A decrease in the expression of the BDNF and SIRT1 genes and an increase in the expression of miR-132-3p, miR-34a, and miR-132 in PBMCs may indicate an inhibition of the neuroprotective function of these cells, which may be associated with the transition of the immune system towards inflammation in the development of multiple sclerosis. Abstract Multiple sclerosis (MS) is a demyelinating disease characterized by chronic inflammation of the central nervous system, in which many factors can act together to influence disease susceptibility and progression. To date, the exact cause of MS is still unclear, but it is believed to result from an abnormal response of the immune system to one or more myelin antigens that develops in genetically susceptible individuals after their exposure to a, as yet undefined, causal agent. In our study, we assessed the effect of microRNAs on the expression level of neuroprotective proteins, including neurotrophins (BDNF and NT4/5), heat shock proteins (HSP70 and HSP27), and sirtuin (SIRT1) in peripheral blood mononuclear cells in the development of multiple sclerosis. The analysis of dysregulation of miRNA levels and the resulting changes in target mRNA/protein expression levels could contribute to a better understanding of the etiology of multiple sclerosis, as well as new alternative methods of diagnosis and treatment of this disease. The aim of this study was to find a link between neurotrophins (BDNF and NT4), SIRT1, heat shock proteins (HSP27 and HSP27), and miRNAs that are involved in the development of multiple sclerosis. The analysis of the selected miRNAs showed a negative correlation of SIRT1 with miR-132 and miR-34a and of BDNF with 132-3p in PBMCs, which suggests that the miRNAs we selected may regulate the expression level of the studied genes.
Collapse
Affiliation(s)
- Danuta Piotrzkowska
- Department of Chemistry and Clinical Biochemistry, Medical University of Lodz, 90-136 Lodz, Poland;
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.M.); (M.N.)
| | - Ewa Kucharska
- Department Geriatrics and Social Work, Jesuit University Ignatianum in Cracow, Kopernika 26, 31-501 Krakow, Poland;
| | - Marta Niwald
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.M.); (M.N.)
| | - Ireneusz Majsterek
- Department of Chemistry and Clinical Biochemistry, Medical University of Lodz, 90-136 Lodz, Poland;
- Correspondence:
| |
Collapse
|
9
|
Peng Q, Liu Y, Kong X, Xian J, Ye L, Yang L, Guo S, Zhang Y, Zhou L, Xiang T. The Novel Methylation Biomarker SCARA5 Sensitizes Cancer Cells to DNA Damage Chemotherapy Drugs in NSCLC. Front Oncol 2021; 11:666589. [PMID: 34150631 PMCID: PMC8213031 DOI: 10.3389/fonc.2021.666589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/28/2022] Open
Abstract
Background Scavenger Receptor Class A Member 5 (SCARA5), also known as TESR, is expressed in various tissues and organs and participates in host defense. Recent studies have found SCARA5 to produce an anti-tumor effect for multiple tumors, although the mechanistic basis for the effect is unknown. Methods Bioinformatics, methylation-specific polymerase chain reaction (MSP), quantitative real-time PCR, and immunohistochemistry were used to assess promoter methylation and expression of SCARA5 in lung cancer tissues and cell lines. The biological effect of SCARA5 on lung cancer cells was confirmed by the CCK8 assay, colony formation assay, and flow cytometry. GSEA, Western blot, RNA sequencing, and luciferase-based gene reporter assay were used to explore the mechanistic basis for the anti-tumor effect of SCARA5. Chemosensitivity assays were used to evaluate the anti-tumor effect of SCARA5 in conjunction with chemotherapeutic drugs. Results We found SCARA5 to be downregulated in lung cancer cell lines and tissues with SCARA5 levels negatively related to promoter methylation. Ectopic expression of SCARA5 suppressed proliferation of lung cancer both in vitro and in vivo through upregulation of HSPA5 expression, which inhibited FOXM1 expression resulting in G2/M arrest of the A549 cell line. SCARA5 also improved susceptibility of A549 cells to chemotherapeutic drugs that damage DNA. Conclusion SCARA5 was silenced in NSCLC due to promoter methylation and could be a potential tumor marker in NSCLC.
Collapse
Affiliation(s)
- Qi Peng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Liu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuehua Kong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jie Xian
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ye
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Yang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuliang Guo
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lan Zhou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Jee B, Dhar R, Singh S, Karmakar S. Heat Shock Proteins and Their Role in Pregnancy: Redefining the Function of "Old Rum in a New Bottle". Front Cell Dev Biol 2021; 9:648463. [PMID: 33996811 PMCID: PMC8116900 DOI: 10.3389/fcell.2021.648463] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Pregnancy in humans is a multi-step complex physiological process comprising three discrete events, decidualization, implantation and placentation. Its overall success depends on the incremental advantage that each of the preceding stages passes on to the next. The success of these synchronized sequels of events is an outcome of timely coordination between them. The pregnancy events are coordinated and governed primarily by the ovarian steroid hormones, estrogen and progesterone, which are essentially ligand-activated transcription factors. It's well known that intercellular signaling of steroid hormones engages a plethora of adapter proteins that participate in executing the biological functions. This involves binding of the hormone receptor complex to the DNA response elements in a sequence specific manner. Working with Drosophila melanogaster, the heat shock proteins (HSPs) were originally described by Ferruccio Ritossa back in the early 1960s. Over the years, there has been considerable advancement of our understanding of these conserved families of proteins, particularly in pregnancy. Accumulating evidence suggests that endometrial and uterine cells have an abundance of HSP27, HSP60, HSP70 and HSP90, implying their possible involvement during the pregnancy process. HSPs have been found to be associated with decidualization, implantation and placentation, with their dysregulation associated with implantation failure, pregnancy loss and other feto-maternal complications. Furthermore, HSP is also associated with stress response, specifically in modulating the ER stress, a critical determinant for reproductive success. Recent advances suggest a therapeutic role of HSPs proteins in improving the pregnancy outcome. In this review, we summarized our latest understanding of the role of different members of the HSP families during pregnancy and associated complications based on experimental and clinical evidences, thereby redefining and exploring their novel function with new perspective, beyond their prototype role as molecular chaperones.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Njemini R, Verhaeghen K, Mets T, Weets I, Bautmans I. A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70. Pathogens 2020; 9:pathogens9110863. [PMID: 33105839 PMCID: PMC7690633 DOI: 10.3390/pathogens9110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Heat shock proteins (HSPs) play an essential role in protecting proteins from denaturation and are implicated in diverse pathophysiological conditions like cardiovascular diseases, cancer, infections, and neurodegenerative diseases. Scientific evidence indicates that if HSP expression falls below a certain level, cells become sensitive to oxidative damage that accelerates protein aggregation diseases. On the other hand, persistently enhanced levels of HSP can lead to inflammatory and oncogenic changes. To date, although techniques for measuring HSPs exist, these assays are limited for use in specific sample types or are time consuming. Therefore, in the present study, we developed a single-molecule assay digital ELISA technology (Single Molecule Array—SIMOA) for the measurement of HSPs, which is time effective and can be adapted to measure multiple analytes simultaneously from a single sample. This technique combines two distinct HSP-specific antibodies that recognize different epitopes on the HSP molecule. A recombinant human HSP protein was used as the standard material. The assay performance characteristics were evaluated by repeated testing of samples spiked with HSP peptide at different levels. The limit of detection was 0.16 and 2 ng/mL for HSP27 and HSP70, respectively. The inter- and intra-assay coefficients of variation were less than 20% in all tested conditions for both HSPs. The HSP levels assayed after serial dilution of samples portrayed dilutional linearity (on average 109%, R2 = 0.998, p < 0.001, for HSP27 and 93%, R2 = 0.994, p < 0.001, for HSP70). A high linear response was also demonstrated with admixtures of plasma exhibiting relatively very low and high levels of HSP70 (R2 = 0.982, p < 0.001). Analyte spike recovery varied between 57% and 95%. Moreover, the relative HSP values obtained using Western blotting correlated significantly with HSP values obtained with the newly developed SIMOA assay (r = 0.815, p < 0.001 and r = 0.895, p < 0.001 for HSP70 and HSP27, respectively), indicating that our method is reliable. In conclusion, the assay demonstrates analytical performance for the accurate assessment of HSPs in various sample types and offers the advantage of a huge range of dilution linearity, indicating that samples with HSP concentration highly above the calibration range can be diluted into range without affecting the precision of the assay.
Collapse
Affiliation(s)
- Rose Njemini
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-477-42-41; Fax: +32-2-477-63-64
| | - Katrijn Verhaeghen
- Laboratory of Clinical Chemistry and Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium; (K.V.); (I.W.)
| | - Tony Mets
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Geriatric Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
| | - Ilse Weets
- Laboratory of Clinical Chemistry and Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium; (K.V.); (I.W.)
| | - Ivan Bautmans
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Geriatric Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
| |
Collapse
|
12
|
Hou ZS, Wen HS, Li JF, He F, Li Y, Qi X. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135272. [PMID: 31841926 DOI: 10.1016/j.scitotenv.2019.135272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia generally refers to a dissolved oxygen (DO) level that is less than 2-3 mg/L. With ongoing global warming and environment pollution, environmental or geological studies showed hypoxia frequently occurs in global aquatic systems including ocean, river, estuaries and coasts. A preliminary study was performed to evaluate hypoxia tolerant of rainbow trout (Oncorhynchus mykiss) with parameters of mortality, behavior, endocrine and metabolite, identifying three DO levels including normoxia (Ctrl, 7.0 mg/L), non-lethal hypoxia (NH, 4.5 mg/L) and lethal hypoxia (LH, 3.0 mg/L). Furthermore, trout was treated by Ctrl, NH and LH for six hours to mimic the acute hypoxia in wild and/or farming conditions. A significantly higher mortality was observed in LH group. Trout of NH and LH showed stressful responses with unnormal swimming, increased serum cortisol and up-regulated gill hif1α transcription. Despite trout of NH and LH increased the oxygen delivery abilities by increasing the serum hemoglobin levels, the anerobic metabolism were inevitably observed with increased lactate. This study also showed a prolonged influence of NH and LH on growth after 30-days' recovery. Based on RNA-Seq data, different expression genes (DEGs) associated with stress, apoptosis, antioxidant, chaperone, growth, calcium and vitamin D metabolism were identified. Enrichment analysis showed DEGs were clustered in osteoclast differentiation, apoptosis and intracellular signaling transduction pathways. Results further showed NH and LH significantly decreased bone calcium content and disrupted the growth hormone-insulin-like growth factor (GH-IGF) axis. Our study might contribute to a better understanding of the effects of hypoxia on rainbow trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Feng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| |
Collapse
|
13
|
Jego G, Hermetet F, Girodon F, Garrido C. Chaperoning STAT3/5 by Heat Shock Proteins: Interest of Their Targeting in Cancer Therapy. Cancers (Basel) 2019; 12:cancers12010021. [PMID: 31861612 PMCID: PMC7017265 DOI: 10.3390/cancers12010021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/16/2023] Open
Abstract
While cells from multicellular organisms are dependent upon exogenous signals for their survival, growth, and proliferation, commitment to a specific cell fate requires the correct folding and maturation of proteins, as well as the degradation of misfolded or aggregated proteins within the cell. This general control of protein quality involves the expression and the activity of molecular chaperones such as heat shock proteins (HSPs). HSPs, through their interaction with the STAT3/STAT5 transcription factor pathway, can be crucial both for the tumorigenic properties of cancer cells (cell proliferation, survival) and for the microenvironmental immune cell compartment (differentiation, activation, cytokine secretion) that contributes to immunosuppression, which, in turn, potentially promotes tumor progression. Understanding the contribution of chaperones such as HSP27, HSP70, HSP90, and HSP110 to the STAT3/5 signaling pathway has raised the possibility of targeting such HSPs to specifically restrain STAT3/5 oncogenic functions. In this review, we present how HSPs control STAT3 and STAT5 activation, and vice versa, how the STAT signaling pathways modulate HSP expression. We also discuss whether targeting HSPs is a valid therapeutic option and which HSP would be the best candidate for such a strategy.
Collapse
Affiliation(s)
- Gaëtan Jego
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Correspondence: (C.G.); (G.J.); Tel.: +33-3-8039-3345 (G.J.); Fax: +33-3-8039-3434 (C.G. & G.J.)
| | - François Hermetet
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
| | - François Girodon
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Haematology laboratory, Dijon University Hospital, F-21000 Dijon, France
| | - Carmen Garrido
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Centre Georges François Leclerc, 21000 Dijon, France
- Correspondence: (C.G.); (G.J.); Tel.: +33-3-8039-3345 (G.J.); Fax: +33-3-8039-3434 (C.G. & G.J.)
| |
Collapse
|
14
|
Effect of boar semen supplementation with recombinant heat shock proteins during summer. Anim Reprod Sci 2019; 211:106227. [PMID: 31785635 DOI: 10.1016/j.anireprosci.2019.106227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
Artificial insemination (AI) in pigs is mainly performed with refrigerated boar semen. There is a marked negative seasonal effect on the quality of boar sperm, mainly due to relatively greater ambient temperatures; to counteract this thermal stress, sperm cells possess natural defensive mechanisms such as Heat Shock Proteins (HSPs) that prevent protein denaturation. Thus, the objective of this research was to improve the quality of commercial boar semen collected during the summer when ambient temperatures are greater using recombinant HSPs. For this purpose, different concentrations (0.1, 0.5 and 1 μg/ml) of recombinant heat shock proteins (HSPD1, HSPA8 or HSP86) were added to commercial boar semen and there was cooling for 48 h at 17 °C. After this storage period, sperm quality was assessed by analyzing sperm viability, mitochondrial membrane potential and plasma membrane lipid organization using flow cytometry; additionally, sperm motility was examined using a CASA system. Also, in vitro fertilization (IVF) using HSP-supplemented boar semen was performed and the quality of the embryos produced was evaluated using quantitative real-time polymerase chain reaction (qPCR) analyzing the relative abundance of mRNA transcripts for genes encoding for embryo quality-related proteins (BAX, TFAM, POLG and POG2). Sperm quality variables, blastocyst rates and the abundance of mRNA transcripts for the selected genes were not affected by the presence of recombinant HSPs at any concentration. These results indicate that the supplementation of commercial seminal doses with recombinant HSPs does not improve boar sperm quality or fertility during the summer months when ambient temperatures are greater.
Collapse
|
15
|
Karri S, Singh S, Paripati AK, Marada A, Krishnamoorthy T, Guruprasad L, Balasubramanian D, Sepuri NBV. Adaptation of Mge1 to oxidative stress by local unfolding and altered Interaction with mitochondrial Hsp70 and Mxr2. Mitochondrion 2019; 46:140-148. [DOI: 10.1016/j.mito.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
|
16
|
Catanese HN, Brayton KA, Gebremedhin AH. A nearest-neighbors network model for sequence data reveals new insight into genotype distribution of a pathogen. BMC Bioinformatics 2018; 19:475. [PMID: 30541438 PMCID: PMC6291930 DOI: 10.1186/s12859-018-2453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sequence similarity networks are useful for classifying and characterizing biologically important proteins. Threshold-based approaches to similarity network construction using exact distance measures are prohibitively slow to compute and rely on the difficult task of selecting an appropriate threshold, while similarity networks based on approximate distance calculations compromise useful structural information. RESULTS We present an alternative network representation for a set of sequence data that overcomes these drawbacks. In our model, called the Directed Weighted All Nearest Neighbors (DiWANN) network, each sequence is represented by a node and is connected via a directed edge to only the closest sequence, or sequences in the case of ties, in the dataset. Our contributions span several aspects. Specifically, we: (i) Apply an all nearest neighbors network model to protein sequence data from three different applications and examine the structural properties of the networks; (ii) Compare the model against threshold-based networks to validate their semantic equivalence, and demonstrate the relative advantages the model offers; (iii) Demonstrate the model's resilience to missing sequences; and (iv) Develop an efficient algorithm for constructing a DiWANN network from a set of sequences. We find that the DiWANN network representation attains similar semantic properties to threshold-based graphs, while avoiding weaknesses of both high and low threshold graphs. Additionally, we find that approximate distance networks, using BLAST bitscores in place of exact edit distances, can cause significant loss of structural information. We show that the proposed DiWANN network construction algorithm provides a fourfold speedup over a standard threshold based approach to network construction. We also identify a relationship between the centrality of a sequence in a similarity network of an Anaplasma marginale short sequence repeat dataset and how broadly that sequence is dispersed geographically. CONCLUSION We demonstrate that using approximate distance measures to rapidly construct similarity networks may lead to significant deficiencies in the structure of that network in terms centrality and clustering analyses. We present a new network representation that maintains the structural semantics of threshold-based networks while increasing connectedness, and an algorithm for constructing the network using exact distance measures in a fraction of the time it would take to build a threshold-based equivalent.
Collapse
Affiliation(s)
- Helen N. Catanese
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA USA
| | - Kelly A. Brayton
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA USA
| | - Assefaw H. Gebremedhin
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA USA
| |
Collapse
|
17
|
Mane NR, Gajare KA, Deshmukh AA. Mild heat stress induces hormetic effects in protecting the primary culture of mouse prefrontal cerebrocortical neurons from neuropathological alterations. IBRO Rep 2018; 5:110-115. [PMID: 30519667 PMCID: PMC6260229 DOI: 10.1016/j.ibror.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022] Open
Abstract
Hormesis is a dose response phenomenon of cells and organisms to various types of stressors. Mild stress stimulates prosurvival pathways and makes the cells adaptive to stressful conditions. It is a widely used fundamental dose-response phenomenon in many biomedical and toxicological sciences, radiation biology, health science etc. Mild heat stress is an easily applicable hormetic agent that exerts consistent results. In the present investigations mouse cerebrocortical prefrontal neurons from E17 mouse embryos were grown in the laboratory on poly-L-lysine coated glass cover slips. The cells from the mild heat stressed group were subjected to a hyperthermic stress of 38 °C for 30 min every alternate day (i.e. mild heat stress was repeated after 48 h) up to the sixth day. After completion of twenty four hours of the final i.e. third exposure of the mild heat stress, the neurons were fixed for the cytochemical studies of neurofibrillary tangles, senile plaques, lipofuscin granules and Nissl substance. There was highly significant decrease in the neuropathological alterations (viz. deposition of Neurofibrillary tangles, deposition of senile plaques, accumulation of Lipofuscin granules) in the neurons from the mild heat stressed group as compared to control. Moreover, the Nissl substance was significantly preserved in the mild heat stressed group as compared to control. The results indicate that the applied mild heat stress (38 °C for 30 min) exerts beneficial effects on the prefrontal cerebrocortical neurons by slowing down the neuropathological alterations, suggesting the hormetic effect of the mild heat stress.
Collapse
Affiliation(s)
- Narayan R. Mane
- Cellular Stress Response Laboratory, Cell Biology Division, Department of Zoology, Shivaji University, Kolhapur, Maharashtra, 416 004, India
| | - Kavita A. Gajare
- Department of Zoology, The New College Kolhapur, Maharashtra, 416 012, India
| | - Ashish A. Deshmukh
- Cellular Stress Response Laboratory, Cell Biology Division, Department of Zoology, Shivaji University, Kolhapur, Maharashtra, 416 004, India
| |
Collapse
|
18
|
Tovar C, Patchett AL, Kim V, Wilson R, Darby J, Lyons AB, Woods GM. Heat shock proteins expressed in the marsupial Tasmanian devil are potential antigenic candidates in a vaccine against devil facial tumour disease. PLoS One 2018; 13:e0196469. [PMID: 29702669 PMCID: PMC5922574 DOI: 10.1371/journal.pone.0196469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/13/2018] [Indexed: 11/19/2022] Open
Abstract
The Tasmanian devil (Sarcophilus harrisii), the largest extant carnivorous marsupial and endemic to Tasmania, is at the verge of extinction due to the emergence of a transmissible cancer known as devil facial tumour disease (DFTD). DFTD has spread over the distribution range of the species and has been responsible for a severe decline in the global devil population. To protect the Tasmanian devil from extinction in the wild, our group has focused on the development of a prophylactic vaccine. Although this work has shown that vaccine preparations using whole DFTD tumour cells supplemented with adjuvants can induce anti-DFTD immune responses, alternative strategies that induce stronger and more specific immune responses are required. In humans, heat shock proteins (HSPs) derived from tumour cells have been used instead of whole-tumour cell preparations as a source of antigens for cancer immunotherapy. As HSPs have not been studied in the Tasmanian devil, this study presents the first characterisation of HSPs in this marsupial and evaluates the suitability of these proteins as antigenic components for the enhancement of a DFTD vaccine. We show that tissues and cancer cells from the Tasmanian devil express constitutive and inducible HSP. Additionally, this study suggests that HSP derived from DFTD cancer cells are immunogenic supporting the future development of a HSP-based vaccine against DFTD.
Collapse
Affiliation(s)
- Cesar Tovar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Amanda L. Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Vitna Kim
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Jocelyn Darby
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - A. Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Gregory M. Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
19
|
Guo C, Subjeck JR, Wang XY. Creation of Recombinant Chaperone Vaccine Using Large Heat Shock Protein for Antigen-Targeted Cancer Immunotherapy. Methods Mol Biol 2018; 1709:345-357. [PMID: 29177671 PMCID: PMC5812279 DOI: 10.1007/978-1-4939-7477-1_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Large heat shock proteins (HSPs) or stress proteins, including Hsp110 and Grp170, are unique molecular chaperones with superior capability of shuttling tumor protein antigens into professional antigen-presenting cells, such as dendritic cells, for highly efficient cross-presentation and T cell priming. Reconstituted chaperone complexes of large HSP and tumor protein antigen have been demonstrated to generate a robust antigen-specific T lymphocyte response with therapeutic potency against multiple cancer types in preclinical models. Here, we describe the methods for preparing this recombinant chaperone complex vaccine and analyzing the vaccine-induced activation of antigen-specific T cells using in vitro and in vivo systems.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
20
|
Calle-Guisado V, Bragado MJ, García-Marín LJ, González-Fernández L. HSP90 maintains boar spermatozoa motility and mitochondrial membrane potential during heat stress. Anim Reprod Sci 2017; 187:13-19. [PMID: 29032866 DOI: 10.1016/j.anireprosci.2017.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/06/2017] [Accepted: 09/21/2017] [Indexed: 11/26/2022]
Abstract
Heat Shock Proteins (HSP) is a family of proteins that protects cells from high temperatures. The present work aimed to elucidate the role that HSP90 exerts on boar sperm incubated under heat stress conditions on viability, total motility (TM), progressive motility (PM), acrosome status, mitochondrial membrane potential and plasma membrane lipid organization. Sperm were incubated in non-capacitating conditions (Tyrode's basal medium or TBM) for 3, 8 and 24h or in capacitating conditions (Tyrode's complete medium or TCM) for 4h at 38.5°C or 40°C (Heat stress) in the presence or absence of 5 or 20μM of 17-AAG, a specific HSP90 inhibitor. Sperm viability was not affected by the presence of 17-AAG in any condition tested compared with its own control (at the same temperature and incubation time). In non-capacitating conditions TM (22.7±4.1 vs. 1.9±1.1; % mean±SEM), PM (3.1±0.9 vs. 0) and high mitochondrial membrane potential (19.5±2.2 vs. 11.8±0.8) decreased significantly in sperm incubated at 40°C for 24h in the presence of 20μM 17-AAG (control vs. 20μM 17-AAG, respectively; p<0.05). In sperm incubated at 38.5°C only a mild decrease in TM was observed (48.7±3.1 vs. 32.1±4.8; control vs. 20μM 17-AAG, respectively; p<0.05). However, under capacitating conditions none of the sperm parameters studied were affected by 17-AAG after 4h of incubation. These results demonstrate for the first time the role of HSP90 in the maintenance of boar sperm motility and mitochondrial membrane potential during prolonged heat stress in non-capacitating conditions.
Collapse
Affiliation(s)
- V Calle-Guisado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, Cáceres, Spain
| | - M J Bragado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, Cáceres, Spain
| | - L J García-Marín
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, Cáceres, Spain
| | - L González-Fernández
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, Cáceres, Spain.
| |
Collapse
|
21
|
Wu X, Yao H, Cao L, Zheng Z, Chen X, Zhang M, Wei Z, Cheng J, Jiang S, Pan L, Li X. Improving Acetic Acid Production by Over-Expressing PQQ-ADH in Acetobacter pasteurianus. Front Microbiol 2017; 8:1713. [PMID: 28932219 PMCID: PMC5592214 DOI: 10.3389/fmicb.2017.01713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/24/2017] [Indexed: 11/24/2022] Open
Abstract
Pyrroquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) is a key enzyme in the ethanol oxidase respiratory chain of acetic acid bacteria (AAB). To investigate the effect of PQQ-ADH on acetic acid production by Acetobacter pasteurianus JST-S, subunits I (adhA) and II (adhB) of PQQ-ADH were over-expressed, the fermentation parameters and the metabolic flux analysis were compared in the engineered strain and the original one. The acetic acid production was improved by the engineered strain (61.42 g L−1) while the residual ethanol content (4.18 g L−1) was decreased. Analysis of 2D maps indicated that 19 proteins were differently expressed between the two strains; of these, 17 were identified and analyzed by mass spectrometry and two-dimensional gel electrophoresis. With further investigation of metabolic flux analysis (MFA) of the pathway from ethanol and glucose, the results reveal that over-expression of PQQ-ADH is an effective way to improve the ethanol oxidation respiratory chain pathway and these can offer theoretical references for potential mechanism of metabolic regulation in AAB and researches with its acetic acid resistance.
Collapse
Affiliation(s)
- Xuefeng Wu
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Hongli Yao
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Lili Cao
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Xiaoju Chen
- School of Chemical Engineering and Life Sciences, Chaohu UniversityHefei, China
| | - Min Zhang
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Zhaojun Wei
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Jieshun Cheng
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Shaotong Jiang
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Lijun Pan
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| |
Collapse
|
22
|
Srivastava K, Narang R, Bhatia J, Saluja D. Expression of Heat Shock Protein 70 Gene and Its Correlation with Inflammatory Markers in Essential Hypertension. PLoS One 2016; 11:e0151060. [PMID: 26989902 PMCID: PMC4798713 DOI: 10.1371/journal.pone.0151060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/22/2016] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Hypertension is characterized by systemic high blood pressure and is the most common and important risk factor for the development of cardiovascular diseases. Studies have shown that the circulating levels of certain inflammatory markers such as tumor necrosis factor-alpha (TNF-alpha), interlukin-6 (IL-6), c-reactive protein (CRP), and tumor suppressor protein-53 (p53) are upregulated and are independently associated with essential hypertension. However, mechanism of increase in the levels of HSP70 protein is not clear. No such studies are reported in the blood circulation of patients with essential hypertension. In the present study, we investigated the expression of circulating HSP70 at mRNA and protein levels and its relationship with other inflammatory markers in patients with essential hypertension. MATERIALS AND METHODS We recruited 132 patients with essential hypertension and 132 normal controls from similar socio-economic-geographical background. The expression of HSP70 at mRNA levels was determined by Real Time PCR and at protein levels by indirect Elisa and Western Blot techniques. RESULTS We found a significantly higher expression of HSP70 gene expression (approximately 6.45 fold, P < 0.0001) in hypertensive patients as compared to healthy controls. A significant difference (P < 0.0001) in the protein expression of HSP70 was also observed in plasma of patients as compared to that of controls. CONCLUSION Higher expression of HSP70 is positively correlated with inflammatory markers in patients with essential hypertension and this correlation could play an important role in essential hypertension.
Collapse
Affiliation(s)
- Kamna Srivastava
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Rajiv Narang
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi- 110029, India
| | - Daman Saluja
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| |
Collapse
|
23
|
Peng G, Zhao W, Shi Z, Chen H, Liu Y, Wei J, Gao F. Cloning HSP70 and HSP90 genes of kaluga (Huso dauricus) and the effects of temperature and salinity stress on their gene expression. Cell Stress Chaperones 2016; 21:349-59. [PMID: 26683614 PMCID: PMC4786522 DOI: 10.1007/s12192-015-0665-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022] Open
Abstract
The genes encoding HSP70 and HSP90 proteins were isolated from kaluga by homologous cloning and rapid amplification of complementary DNA (cDNA) ends (RACE). HSP70 (GenBank accession no. KP050541) and HSP90 (GenBank accession no. KP050542) cDNAs were composed of 2275 and 2718 bp and encoded polypeptides of 650 and 725 amino acids, respectively. Basic Local Alignment Search Tool (BLAST) analysis showed that HSP70 and HSP90 of kaluga shared high identities with those of Acipenser ruthenus, Acipenser schrenckii, and Acipenser baerii (98-99 %). Fluorescent real-time RT-PCR under unstressed conditions revealed that HSP70 and HSP90 were expressed in 11 different tissues of kaluga. Messenger RNA (mRNA) expressions of both HSP70 and HSP90 were highest in the intestine and lowest in the muscle. In addition, the patterns of mRNA expression of HSP70 and HSP90 were similar, although the level of expression was more in HSP90 than in HSP70 (P < 0.05).We also analyzed patterns of HSP70 and HSP90 expression in the muscle, gill, and liver of kaluga under different combinations of temperature and salinity stress, including temperatures of 4,10, 25, and 28 °C at 0 ppt salinity, and salinities of 10, 20, 30, and 40 ppt at 16 °C, where 16 °C at 0 ppt (parts per thousand) served as the control. We found that levels of mRNA expression of both HSP70 and HSP90 were highest at 4 °C in the muscle, gill, and liver and changed little with salinity stress. These results increase understanding of the mechanisms of stress response of cold freshwater fish.
Collapse
Affiliation(s)
- Guogan Peng
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| | - Wen Zhao
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China.
| | - Zhenguang Shi
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| | - Huirong Chen
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| | - Jie Wei
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| | - Fengying Gao
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| |
Collapse
|
24
|
Herrero Ó, Planelló R, Morcillo G. The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae. CHEMOSPHERE 2015; 128:266-277. [PMID: 25725395 DOI: 10.1016/j.chemosphere.2015.01.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Butyl benzyl phthalate (BBP) has been extensively used worldwide as a plasticizer in the polyvinyl chloride (PVC) industry and the manufacturing of many other products, and its presence in the aquatic environment is expected for decades. In the present study, the toxicity of BBP was investigated in Chironomus riparius aquatic larvae. The effects of acute 24-h and 48-h exposures to a wide range of BBP doses were evaluated at the molecular level by analysing changes in genes related to the stress response, the endocrine system, the energy metabolism, and detoxication pathways, as well as in the enzyme activity of glutathione S-transferase. BBP caused a dose and time-dependent toxicity in most of the selected biomarkers. 24-h exposures to high doses affected larval survival and lead to a significant response of several heat-shock genes (hsp70, hsp40, and hsp27), and to a clear endocrine disrupting effect by upregulating the ecdysone receptor gene (EcR). Longer treatments with low doses triggered a general repression of transcription and GST activity. Furthermore, delayed toxicity studies were specially relevant, since they allowed us to detect unpredictable toxic effects, not immediately manifested after contact with the phthalate. This study provides novel and interesting results on the toxic effects of BBP in C. riparius and highlights the suitability of this organism for ecotoxicological risk assessment, especially in aquatic ecosystems.
Collapse
Affiliation(s)
- Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
25
|
Tyagi N, Tyagi R. The wonderous chaperones: A highlight on therapeutics of cancer and potentially malignant disorders. J Oral Maxillofac Pathol 2015; 19:212-20. [PMID: 26604499 PMCID: PMC4611931 DOI: 10.4103/0973-029x.164535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Diverse environmental and physiological factors are known to induce the transcription of a set of genes encoding special protective molecules known as "molecular chaperones" within our cells. Literature abounds in evidence regarding the varied roles; these "guides" can effectively perform in our system. Highly conserved through evolution, from the prokaryotes to the eukaryotes, these make perfect study tools for verifying their role in both the pathogenesis as well as the therapeutics of varied neurodegenerative, autoimmune and potentially malignant disorders and varied cancer states. We present a concise review of this ever dynamic molecule, highlighting the probable role in a potentially malignant disorder, oral lichen planus.
Collapse
Affiliation(s)
- Nutan Tyagi
- Department of Oral and Maxillofacial Pathology, Institute of Dental Studies and Technologies, NH-58, Kadrabad, Modinagar, New Delhi, India
| | - Rishi Tyagi
- Department of Pedodontics and Preventive Dentistry, University of Delhi, University College of Medical Sciences and GTB Hospital, Dilshad Garden, New Delhi, India
| |
Collapse
|
26
|
Kung PJ, Tao YC, Hsu HC, Chen WL, Lin TH, Janreddy D, Yao CF, Chang KH, Lin JY, Su MT, Wu CH, Lee-Chen GJ, Hsieh-Li HM. Indole and synthetic derivative activate chaperone expression to reduce polyQ aggregation in SCA17 neuronal cell and slice culture models. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1929-39. [PMID: 25342886 PMCID: PMC4206201 DOI: 10.2147/dddt.s67376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In spinocerebellar ataxia type 17 (SCA17), the expansion of a translated CAG repeat in the TATA box binding protein (TBP) gene results in a long polyglutamine (polyQ) tract in the TBP protein, leading to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On SH-SY5Y cells with inducible SCA17 TBP/Q79-green fluorescent protein (GFP) expression to test indole and synthetic derivative NC001-8 for neuroprotection. We found that indole and NC001-8 up-regulated chaperone expression to reduce polyQ aggregation in neuronal differentiated TBP/Q79 cells. The effects on promoting neurite outgrowth and on reduction of aggregation on Purkinje cells were also confirmed with cerebellar primary and slice cultures of SCA17 transgenic mice. Our results demonstrate how indole and derivative NC001-8 reduce polyQ aggregation to support their therapeutic potentials in SCA17 treatment.
Collapse
Affiliation(s)
- Pin-Jui Kung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Chen Tao
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ho-Chiang Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wan-Ling Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Donala Janreddy
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Jung-Yaw Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
27
|
Hsp70 regulates immune response in experimental autoimmune encephalomyelitis. PLoS One 2014; 9:e105737. [PMID: 25153885 PMCID: PMC4143280 DOI: 10.1371/journal.pone.0105737] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/28/2014] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein (Hsp)70 is one of the most important stress-inducible proteins. Intracellular Hsp70 not only mediates chaperone-cytoprotective functions but can also block multiple steps in the apoptosis pathway. In addition, Hsp70 is actively released into the extracellular milieu, thereby promoting innate and adaptive immune responses. Thus, Hsp70 may be a critical molecule in multiple sclerosis (MS) pathogenesis and a potential target in this disease due to its immunological and cytoprotective functions. To investigate the role of Hsp70 in MS pathogenesis, we examined its immune and cytoprotective roles using both in vitro and in vivo experimental procedures. We found that Hsp70.1-deficient mice were more resistant to developing experimental autoimmune encephalomyelitis (EAE) compared with their wild-type (WT) littermates, suggesting that Hsp70.1 plays a critical role in promoting an effective myelin oligodendrocyte glycoprotein (MOG)-specific T cell response. Conversely, Hsp70.1-deficient mice that developed EAE showed an increased level of autoreactive T cells to achieve the same production of cytokines compared with the WT mice. Although a neuroprotective role of HSP70 has been suggested, Hsp70.1-deficient mice that developed EAE did not exhibit increased demyelination compared with the control mice. Accordingly, Hsp70 deficiency did not influence the vulnerability to apoptosis of oligodendrocyte precursor cells (OPCs) in culture. Thus, the immunological role of Hsp70 may be relevant in EAE, and specific therapies down-regulating Hsp70 expression may be a promising approach to reduce the early autoimmune response in MS patients.
Collapse
|
28
|
Huang W, Ye M, Zhang LR, Wu QD, Zhang M, Xu JH, Zheng W. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Mol Cancer 2014; 13:150. [PMID: 24927996 PMCID: PMC4074137 DOI: 10.1186/1476-4598-13-150] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022] Open
Abstract
Background Heat shock protein 90 (Hsp90) is a promising therapeutic target and inhibition of Hsp90 will presumably result in suppression of multiple signaling pathways. FW-04-806, a bis-oxazolyl macrolide compound extracted from China-native Streptomyces FIM-04-806, was reported to be identical in structure to the polyketide Conglobatin. Methods We adopted the methods of chemproteomics, computational docking, immunoprecipitation, siRNA gene knock down, Quantitative Real-time PCR and xenograft models on the research of FW-04-806 antitumor mechanism, through the HER2-overexpressing breast cancer SKBR3 and HER2-underexpressing breast cancer MCF-7 cell line. Results We have verified the direct binding of FW-04-806 to the N-terminal domain of Hsp90 and found that FW-04-806 inhibits Hsp90/cell division cycle protein 37 (Cdc37) chaperone/co-chaperone interactions, but does not affect ATP-binding capability of Hsp90, thereby leading to the degradation of multiple Hsp90 client proteins via the proteasome pathway. In breast cancer cell lines, FW-04-806 inhibits cell proliferation, caused G2/M cell cycle arrest, induced apoptosis, and downregulated Hsp90 client proteins HER2, Akt, Raf-1 and their phosphorylated forms (p-HER2, p-Akt) in a dose and time-dependent manner. Importantly, FW-04-806 displays a better anti-tumor effect in HER2-overexpressed SKBR3 tumor xenograft model than in HER2-underexpressed MCF-7 model. The result is consistent with cell proliferation assay and in vitro apoptosis assay applied for SKBR-3 and MCF-7. Furthermore, FW-04-806 has a favorable toxicity profile. Conclusions As a novel Hsp90 inhibitor, FW-04-806 binds to the N-terminal of Hsp90 and inhibits Hsp90/Cdc37 interaction, resulting in the disassociation of Hsp90/Cdc37/client complexes and the degradation of Hsp90 client proteins. FW-04-806 displays promising antitumor activity against breast cancer cells both in vitro and in vivo, especially for HER2-overexpressed breast cancer cells.
Collapse
Affiliation(s)
| | - Min Ye
- School of Pharmacy, Fujian Medical University, Basic Medicine Building North 205, No,88 Jiaotong Road, Fuzhou, Fujian 350004, China.
| | | | | | | | | | | |
Collapse
|
29
|
Noelker C, Morel L, Osterloh A, Alvarez-Fischer D, Lescot T, Breloer M, Gold M, Oertel WH, Henze C, Michel PP, Dodel RC, Lu L, Hirsch EC, Hunot S, Hartmann A. Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease. J Neuroinflammation 2014; 11:86. [PMID: 24886419 PMCID: PMC4018945 DOI: 10.1186/1742-2094-11-86] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that inflammation associated with microglial cell activation in the substantia nigra (SN) of patients with Parkinson disease (PD) is not only a consequence of neuronal degeneration, but may actively sustain dopaminergic (DA) cell loss over time. We aimed to study whether the intracellular chaperone heat shock protein 60 (Hsp60) could serve as a signal of CNS injury for activation of microglial cells. METHODS Hsp60 mRNA expression in the mesencephalon and the striatum of C57/BL6 mice treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and the Hsp60/TH mRNA ratios in the SN of PD patients and aged-matched subjects were measured. To further investigate a possible link between the neuronal Hsp60 response and PD-related cellular stress, Hsp60 immunoblot analysis and quantification in cell lysates from SH-SY5Y after treatment with 100 μM MPP+ (1-methyl-4-phenylpyridinium) at different time points (6, 12, 24 and 48 hours) compared to control cells were performed. Additional MTT and LDH assay were used. We next addressed the question as to whether Hsp60 influences the survival of TH+ neurons in mesencephalic neuron-glia cultures treated either with MPP+ (1 μM), hHsp60 (10 μg/ml) or a combination of both. Finally, we measured IL-1β, IL-6, TNF-α and NO-release by ELISA in primary microglial cell cultures following treatment with different hHsp60 preparations. Control cultures were exposed to LPS. RESULTS In the mesencephalon and striatum of mice treated with MPTP and also in the SN of PD patients, we found that Hsp60 mRNA was up-regulated. MPP+, the active metabolite of MPTP, also caused an increased expression and release of Hsp60 in the human dopaminergic cell line SH-SY5Y. Interestingly, in addition to being toxic to DA neurons in primary mesencephalic cultures, exogenous Hsp60 aggravated the effects of MPP+. Yet, although we demonstrated that Hsp60 specifically binds to microglial cells, it failed to stimulate the production of pro-inflammatory cytokines or NO by these cells. CONCLUSIONS Overall, our data suggest that Hsp60 is likely to participate in DA cell death in PD but via a mechanism unrelated to cytokine release.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stéphane Hunot
- CR-ICM, INSERM UMR_S1127, Université Pierre et Marie Curie Paris 06 UMR_S1127, CNRS UMR 7225, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France.
| | | |
Collapse
|
30
|
Baldon EJ, Marengo EB, de Franco M, Starobinas N, Bueno V, Sant’Anna OA. Mycobacterium leprae Hsp65 administration reduces the lifespan of aged high antibody producer mice. Immun Ageing 2014; 11:6. [PMID: 24669842 PMCID: PMC3986931 DOI: 10.1186/1742-4933-11-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/22/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Aging process may result in immune modifications that lead to disruption of innate and acquired immunity mechanisms that may induce chronic-degenerative events. The heat shock proteins (Hsp), phylogeneticaly conserved among organisms, present as main function the ability of folding and refolding proteins, but they also are associated with chronic-degenerative disorders. Here were evaluated the role of M. leprae native Hsp65 (WT) and its point-mutated (K409A) on survival and anti-DNA and anti-Hsp65 antibody production of aged genetically selected mice for high (HIII) and low (LIII) antibody production; data from 120- and 270-days old mice (named "adult" or "aged", respectively) were compared. RESULTS WT Hsp65 administration induces reduction in the mean survival time of adult and aged female HIII mice, this effect being stronger in aged individuals. Surprisingly, the native protein administration increased the survival of aged female LIII when compared to K409A and control groups. No survival differences were observed in aged male mice after Hsp65 proteins inoculation. We observed increase in IgG1 anti-Hsp65 in WT and K409A aged HIII female mice groups and no marked changes in the anti-DNA (adult and aged HIII) and anti-Hsp65 IgG1 or IgG2a isotypes production in adult HIII female and aged male mice. LIII male mice presented increased anti-DNA and anti-Hsp65 IgG2a isotype production after WT or K409A injection, and LIII female groups showed no alterations. CONCLUSIONS The results revealed that the WT Hsp65 interferes with survival of aged HIII female mice without involvement of a remarkable IgG1 and IgG2a anti-DNA and anti-Hsp65 antibodies production. The deleterious effects of Hsp65 on survival time in aged HIII female mice could be linked to a gender-effect and are in agreement with those previously reported in lupus-prone mice.
Collapse
Affiliation(s)
- Estevam José Baldon
- Laboratório de Imunoquímica, Instituto Butantan, Avenida Vital Brazil 1500, 05530-900 São Paulo, Brasil
| | - Eliana Blini Marengo
- Hospital Israelita Albert Einstein, Avenida Albert Einstein, 627/701, 05652-000 São Paul, Brasil
| | - Marcelo de Franco
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brazil 1500, 05530-900 São Paulo, Brasil
| | - Nancy Starobinas
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brazil 1500, 05530-900 São Paulo, Brasil
| | - Valquiria Bueno
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Botucatu 862, 04023-062 São Paulo, Brasil
| | - Osvaldo Augusto Sant’Anna
- Laboratório de Imunoquímica, Instituto Butantan, Avenida Vital Brazil 1500, 05530-900 São Paulo, Brasil
| |
Collapse
|
31
|
Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 2014; 119:421-75. [PMID: 23870514 DOI: 10.1016/b978-0-12-407190-2.00007-1] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines represent a viable option for active immunotherapy of cancers that aim to treat late stage disease by using a patient's own immune system. The promising results from clinical trials recently led to the approval of the first therapeutic cancer vaccine by the U.S. Food and Drug Administration. This major breakthrough not only provides a new treatment modality for cancer management but also paves the way for rationally designing and optimizing future vaccines with improved anticancer efficacy. Numerous vaccine strategies are currently being evaluated both preclinically and clinically. This review discusses therapeutic cancer vaccines from diverse platforms or targets as well as the preclinical and clinical studies employing these therapeutic vaccines. We also consider tumor-induced immune suppression that hinders the potency of therapeutic vaccines, and potential strategies to counteract these mechanisms for generating more robust and durable antitumor immune responses.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
32
|
Norris-Mullins B, VanderKolk K, Vacchina P, Joyce MV, Morales MA. LmaPA2G4, a homolog of human Ebp1, is an essential gene and inhibits cell proliferation in L. major. PLoS Negl Trop Dis 2014; 8:e2646. [PMID: 24421916 PMCID: PMC3888471 DOI: 10.1371/journal.pntd.0002646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
We have identified LmaPA2G4, a homolog of the human proliferation-associated 2G4 protein (also termed Ebp1), in a phosphoproteomic screening. Multiple sequence alignment and cluster analysis revealed that LmaPA2G4 is a non-peptidase member of the M24 family of metallopeptidases. This pseudoenzyme is structurally related to methionine aminopeptidases. A null mutant system based on negative selection allowed us to demonstrate that LmaPA2G4 is an essential gene in Leishmania major. Over-expression of LmaPA2G4 did not alter cell morphology or the ability to differentiate into metacyclic and amastigote stages. Interestingly, the over-expression affected cell proliferation and virulence in mouse footpad analysis. LmaPA2G4 binds a synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [poly(I∶C)] as shown in an electrophoretic mobility shift assay (EMSA). Quantitative proteomics revealed that the over-expression of LmaPA2G4 led to accumulation of factors involved in translation initiation and elongation. Significantly, we found a strong reduction of de novo protein biosynthesis in transgenic parasites using a non-radioactive metabolic labeling assay. In conclusion, LmaPA2G4 is an essential gene and is potentially implicated in fundamental biological mechanisms, such as translation, making it an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Brianna Norris-Mullins
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kaitlin VanderKolk
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Paola Vacchina
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michelle V. Joyce
- Mass Spectrometry and Proteomics Facility, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Miguel A. Morales
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
33
|
Wang H, Yu X, Guo C, Zuo D, Fisher PB, Subjeck JR, Wang XY. Enhanced endoplasmic reticulum entry of tumor antigen is crucial for cross-presentation induced by dendritic cell-targeted vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:6010-21. [PMID: 24218449 PMCID: PMC3858385 DOI: 10.4049/jimmunol.1302312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Efficient cross-presentation of protein Ags to CTLs by dendritic cells (DCs) is essential for the success of prophylactic and therapeutic vaccines. In this study, we report a previously underappreciated pathway involving Ag entry into the endoplasmic reticulum (ER) critically needed for T cell cross-priming induced by a DC-targeted vaccine. Directing the clinically relevant, melanoma Ag gp100 to mouse-derived DCs by molecular adjuvant and chaperone Grp170 substantially facilitates Ag access to the ER. Grp170 also strengthens the interaction of internalized protein Ag with molecular components involved in ER-associated protein dislocation and/or degradation, which culminates in cytosolic translocation for proteasome-dependent degradation and processing. Targeted disruption of protein retrotranslocation causes exclusive ER retention of tumor Ag in mouse bone marrow-derived DCs and splenic CD8(+) DCs. This results in the blockade of Ag ubiquitination and processing, which abrogates the priming of Ag-specific CD8(+) T cells in vitro and in vivo. Therefore, the improved ER entry of tumor Ag serves as a molecular basis for the superior cross-presenting capacity of Grp170-based vaccine platform. The ER access and retrotranslocation represents a distinct pathway that operates within DCs for cross-presentation and is required for the activation of Ag-specific CTLs by certain vaccines. These results also reinforce the importance of the ER-associated protein quality control machinery and the mode of the Ag delivery in regulating DC-elicited immune outcomes.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Xiaofei Yu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Daming Zuo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - John R. Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
34
|
Mansilla MJ, Comabella M, Río J, Castilló J, Castillo M, Martin R, Montalban X, Espejo C. Up-regulation of inducible heat shock protein-70 expression in multiple sclerosis patients. Autoimmunity 2013; 47:127-33. [PMID: 24328534 DOI: 10.3109/08916934.2013.866104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inducible heat shock protein (HSP)70 (HSP70-1A and HSP70-1B proteins) is a chaperone responsible for assisting proper protein folding. Following stress conditions, HSP70 is highly up-regulated to mediate cytoprotective functions. In addition, HSP70 is able to trigger innate and adaptive immune responses that promote the immune recognition of antigens and to act as a cytokine when it is released. The data in the literature are controversial with regard to expression studies in peripheral blood mononuclear cells (PBMCs). In the present study, we aimed to examine if alterations of HSP70-1A/B expression are involved in the autoimmune pathogenesis of multiple sclerosis (MS). We determined both mRNA and protein expression in PBMCs of MS patients and healthy donors (HDs). We found a baseline increased expression of the HSPA1A gene in PBMCs from MS patients compared with HDs. Gene expression findings were associated with an increased protein expression of HSP70-1A/B in T lymphocytes (CD4+ and CD8+) and monocytes from MS patients under basal conditions that may reflect the immunological activation occurring in MS patients. We also provided evidence that heat shock (HS) stimulus induced HSP70-1A/B protein expression in HDs and MS patients, and that HS-induced HSP70-1A/B protein expression in monocytes correlated with the number of T2 lesions at baseline in MS patients. However, after lipopolysaccharide inflammatory stimulus, monocytes from MS patients failed to induce HSP70-1A/B protein expression. Our data hint at altered immune responses in MS and may indicate either a state of chronic stress or increased vulnerability to physiological immune responses in MS patients.
Collapse
Affiliation(s)
- María José Mansilla
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (CEM-Cat), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona , Barcelona , Spain and
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mosenson JA, Eby JM, Hernandez C, Le Poole IC. A central role for inducible heat-shock protein 70 in autoimmune vitiligo. Exp Dermatol 2013; 22:566-9. [PMID: 23786523 DOI: 10.1111/exd.12183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 12/14/2022]
Abstract
Inducible heat-shock protein 70 (HSP70i) is a protein regulated by stress that protects cells from undergoing apoptosis. Such proteins are marvellously well conserved throughout evolution, which has placed them in the spotlight for helping to understand the intriguing relationship between infection and immunity. In the presence of stress proteins, dendritic cells (DCs) will sense this alarm signal and respond by recruiting immune cells of different plumage to fit the occasion. In times of stress, melanocytes will secrete antigen-bound HSP70i to act as an alarm signal in activating DCs that comes equipped with an address of origin to drive the autoimmune response in vitiligo. Here we pose that if the autoimmune response is funnelled through HSP70i, then blocking the stress protein from activating DCs can lend new treatment opportunities for vitiligo.
Collapse
Affiliation(s)
- Jeffrey A Mosenson
- Department of Pathology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | | | | | | |
Collapse
|
36
|
Activation of the heat shock response attenuates the interleukin 1β-mediated inhibition of the amiloride-sensitive alveolar epithelial ion transport. Shock 2013; 39:189-96. [PMID: 23324889 DOI: 10.1097/shk.0b013e31827e8ea3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute lung injury (ALI) is a clinical syndrome characterized by hypoxia, which is caused by the breakdown of the alveolar capillary barrier. Interleukin 1β (IL-1β), a cytokine released within the airspace in ALI, downregulates the α subunit of the epithelial sodium channel (αENaC) transcription and protein expression via p38 MAP kinase-dependent signaling. Although induction of the heat shock response can restore alveolar fluid clearance compromised by IL-1β following the onset of severe hemorrhagic shock in rats, the mechanisms are not fully understood. In this study, we report that the induction of the heat shock response prevents IL-1β-dependent inhibition of αENaC mRNA expression and subsequent channel function. Heat shock results in IRAK1 detergent insolubility and a disruption of Hsp90 binding to IRAK1. Likewise, TAK1, another client protein of Hsp90 and signaling component of the IL-1β pathway, is also detergent insoluble after heat shock. Twenty-four hours after heat shock, both IRAK1 and TAK1 are again detergent soluble, which correlates with the IL-1β-dependent p38 activation. Remarkably, IL-1β-dependent p38 activation 24 h after heat shock did not result in an inhibition of αENaC mRNA expression and channel function. Further analysis demonstrates prolonged preservation of αENaC expression by the activation of the heat shock response that involves inducible Hsp70. Inhibition of Hsp70 at 24 h after heat shock results in p38-dependent IL-1β inhibition of αENaC mRNA expression, whereas overexpression of Hsp70 attenuates the p38-dependent IL-1β inhibition of αENaC mRNA expression. These studies demonstrate new mechanisms by which the induction of the heat shock response protects the barrier function of the alveolar epithelium in ALI.
Collapse
|
37
|
Martín-Saavedra FM, Wilson CG, Voellmy R, Vilaboa N, Franceschi RT. Spatiotemporal control of vascular endothelial growth factor expression using a heat-shock-activated, rapamycin-dependent gene switch. Hum Gene Ther Methods 2013; 24:160-70. [PMID: 23527589 DOI: 10.1089/hgtb.2013.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A major challenge in regenerative medicine is to develop methods for delivering growth and differentiation factors in specific spatial and temporal patterns, thereby mimicking the natural processes of development and tissue repair. Heat shock (HS)-inducible gene expression systems can respond to spatial information provided by localized heating, but are by themselves incapable of sustained expression. Conversely, gene switches activated by small molecules provide tight temporal control and sustained expression, but lack mechanisms for spatial targeting. Here we combine the advantages of HS and ligand-activated systems by developing a novel rapamycin-regulated, HS-inducible gene switch that provides spatial and temporal control and sustained expression of transgenes such as firefly luciferase and vascular endothelial growth factor (VEGF). This gene circuit exhibits very low background in the uninduced state and can be repeatedly activated up to 1 month. Furthermore, dual regulation of VEGF induction in vivo is shown to stimulate localized vascularization, thereby providing a route for temporal and spatial control of angiogenesis.
Collapse
|
38
|
Mansilla MJ, Montalban X, Espejo C. Heat shock protein 70: roles in multiple sclerosis. Mol Med 2012; 18:1018-28. [PMID: 22669475 DOI: 10.2119/molmed.2012.00119] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/31/2012] [Indexed: 11/06/2022] Open
Abstract
Heat shock proteins (HSP) have long been considered intracellular chaperones that possess housekeeping and cytoprotective functions. Consequently, HSP overexpression was proposed as a potential therapy for neurodegenerative diseases characterized by the accumulation or aggregation of abnormal proteins. Recently, the discovery that cells release HSP with the capacity to trigger proinflammatory as well as immunoregulatory responses has focused attention on investigating the role of HSP in chronic inflammatory autoimmune diseases such as multiple sclerosis (MS). To date, the most relevant HSP is the inducible Hsp70, which exhibits both cytoprotectant and immunoregulatory functions. Several studies have presented contradictory evidence concerning the involvement of Hsp70 in MS or experimental autoimmune encephalomyelitis (EAE), the MS animal model. In this review, we dissect the functions of Hsp70 and discuss the controversial data concerning the role of Hsp70 in MS and EAE.
Collapse
Affiliation(s)
- María José Mansilla
- Unitat de Neuroimmunologia Clínica, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
39
|
Chen HF, Chen CY, Lin TH, Huang ZW, Chi TH, Ma YS, Wu SB, Wei YH, Hsieh M. The protective roles of phosphorylated heat shock protein 27 in human cells harboring myoclonus epilepsy with ragged-red fibers A8344G mtDNA mutation. FEBS J 2012; 279:2987-3001. [DOI: 10.1111/j.1742-4658.2012.08678.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Baek YH, Lee SH, Han MH, Choi YH, Kim SH, Kwak YS. Effects of Black Garlic Supplementation and Exercise on TBARS, HSP 70 and COX-2 Expression after High-intensity Exercise. ACTA ACUST UNITED AC 2012. [DOI: 10.5352/jls.2012.22.6.772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Pei Y, Wu Y, Qin Y. Effects of chronic heat stress on the expressions of heat shock proteins 60, 70, 90, A2, and HSC70 in the rabbit testis. Cell Stress Chaperones 2012; 17:81-7. [PMID: 21830018 PMCID: PMC3227842 DOI: 10.1007/s12192-011-0287-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022] Open
Abstract
Few studies have focused on the expression of heat shock proteins (HSPs) after chronic heat stress. The objective of this study was to investigate the effect of chronic high temperature-humidity index treatment on the expressions of HSP60, HSP70, HSP90, HSPA2 and HSC70, in the Rex rabbit testis and the expressions of these proteins after recovery from the chronic heat shock. Thirty mature male rabbits of the same age were randomly divided into three groups: control, heat stress, and recovery. The western blot results showed that the expressional levels of HSP60, HSP90, and HSC70 increased significantly and HSPA2 was elevated slightly after a 9-week heat treatment. HSP70 was absent in the control testis and had a high level of expression after heat stress. All of these proteins partially reverted back to normal levels after a 9-week recovery. The immunohistochemical results indicated that the expression patterns of HSP60, HSP90, HSPA2, and HSC70 did not change.
Collapse
Affiliation(s)
- Yangli Pei
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Yingjie Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
| |
Collapse
|
42
|
Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol 2012; 34:107-25. [PMID: 21805323 DOI: 10.1007/s00281-011-0282-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/30/2022]
Abstract
The goal is to provide an extensive review of the physiologic role of thrombomodulin (TM) in maintaining vascular homeostasis, with a focus on its anti-inflammatory properties. Data were collected from published research. TM is a transmembrane glycoprotein expressed on the surface of all vascular endothelial cells. Expression of TM is tightly regulated to maintain homeostasis and to ensure a rapid and localized hemostatic and inflammatory response to injury. By virtue of its strategic location, its multidomain structure and complex interactions with thrombin, protein C (PC), thrombin activatable fibrinolysis inhibitor (TAFI), complement components, the Lewis Y antigen, and the cytokine HMGB1, TM exhibits a range of physiologically important anti-inflammatory, anti-coagulant, and anti-fibrinolytic properties. TM is an essential cofactor that impacts on multiple biologic processes. Alterations in expression of TM and its partner proteins may be manifest by inflammatory and thrombotic disorders. Administration of soluble forms of TM holds promise as effective therapies for inflammatory diseases, and infections and malignancies that are complicated by disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Edward M Conway
- Division of Hematology-Oncology, Department of Medicine, Centre for Blood Research (CBR), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
43
|
Food odor, visual danger stimulus, and retrieval of an aversive memory trigger heat shock protein HSP70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neuroscience 2011; 201:239-51. [PMID: 22100787 DOI: 10.1016/j.neuroscience.2011.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 01/21/2023]
Abstract
Although some of the neuronal substrates that support memory process have been shown in optic ganglia, the brain areas activated by memory process are still unknown in crustaceans. Heat shock proteins (HSPs) are synthesized in the CNS not only in response to traumas but also after changes in metabolic activity triggered by the processing of different types of sensory information. Indeed, the expression of citosolic/nuclear forms of HSP70 (HSC/HSP70) has been repeatedly used as a marker for increases in neural metabolic activity in several processes, including psychophysiological stress, fear conditioning, and spatial learning in vertebrates. Previously, we have shown that, in the crab Chasmagnathus, two different environmental challenges, water deprivation and heat shock, trigger a rise in the number of glomeruli of the olfactory lobes (OLs) expressing HSC/HSP70. In this study, we initially performed a morphometric analysis and identified a total of 154 glomeruli in each OL of Chasmagnathus. Here, we found that crabs exposed to food odor stimuli also showed a significant rise in the number of olfactory glomeruli expressing HSC/HSP70. In the crab Chasmagnathus, a powerful memory paradigm based on a change in its defensive strategy against a visual danger stimulus (VDS) has been extensively studied. Remarkably, the iterative presentation of a VDS caused an increase as well. This increase was triggered in animals visually stimulated using protocols that either build up a long-term memory or generate only short-term habituation. Besides, memory reactivation was sufficient to trigger the increase in HSC/HSP70 expression in the OL. Present and previous results strongly suggest that, directly or indirectly, an increase in arousal is a sufficient condition to bring about an increase in HSC/HSP70 expression in the OL of Chasmagnathus.
Collapse
|
44
|
Thirunavukkarasu SV, Venkataraman S, Raja S, Upadhyay L. Neuroprotective effect ofManasamitra vatakamagainst aluminium induced cognitive impairment and oxidative damage in the cortex and hippocampus of rat brain. Drug Chem Toxicol 2011; 35:104-15. [DOI: 10.3109/01480545.2011.589442] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Abstract
Original experimental studies in nonhuman primate models of focal ischemia showed flow-related changes in evoked potentials that suggested a circumferential zone of low regional cerebral blood flow with normal K(+) homeostasis, around a core of permanent injury in the striatum or the cortex. This became the basis for the definition of the ischemic penumbra. Imaging techniques of the time suggested a homogeneous core of injury, while positing a surrounding 'penumbral' region that could be salvaged. However, both molecular studies and observations of vascular integrity indicate a more complex and dynamic situation in the ischemic core that also changes with time. The microvascular, cellular, and molecular events in the acute setting are compatible with heterogeneity of the injury within the injury center, which at early time points can be described as multiple 'mini-cores' associated with multiple 'mini-penumbras'. These observations suggest the progression of injury from many small foci to a homogeneous defect over time after the onset of ischemia. Recent observations with updated imaging techniques and data processing support these dynamic changes within the core and the penumbra in humans following focal ischemia.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- Department of Medicine (Division of Hematology), University of Washington School of Medicine, Seattle, Washington 98104, USA.
| | | | | | | |
Collapse
|
46
|
Chen CY, Chen HF, Gi SJ, Chi TH, Cheng CK, Hsu CF, Ma YS, Wei YH, Liu CS, Hsieh M. Decreased heat shock protein 27 expression and altered autophagy in human cells harboring A8344G mitochondrial DNA mutation. Mitochondrion 2011; 11:739-49. [PMID: 21679777 DOI: 10.1016/j.mito.2011.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 03/11/2011] [Accepted: 05/27/2011] [Indexed: 02/03/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations are responsible for human neuromuscular diseases caused by mitochondrial dysfunction. Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a maternally inherited mitochondrial encephalomyopathy with various syndromes involving both muscular and nervous systems. The most common mutation in MERRF syndrome, A8344G mutation in mtDNA, has been associated with severe defects in protein synthesis. This defect impairs assembly of complexes in electron transport chain and results in decreased respiratory function of mitochondria. In this study, we showed a significant decrease of the heat shock protein 27 (Hsp27) in lymphoblastoid cells derived from a MERRF patient and in cybrid cells harboring MERRF A8344G mutation. However, normal cytoplasmic distributions of Hsp27 and normal heat shock responses were observed in both wild type and mutant cybrids. Furthermore, overexpression of wild type Hsp27 in mutant MERRF cybrids significantly decreased cell death under staurosporine (STS) treatment, suggesting a protective function of Hsp27 in cells harboring the A8344G mutation of mtDNA. Meanwhile, reverse transcriptase PCR showed no difference in the mRNA level between normal and mutant cybrids, indicating that alterations may occur at the protein level. Evidenced by the decreased levels of Hsp27 upon treatment with proteasome inhibitor, starvation and rapamycin and the accumulation of Hsp27 upon lysosomal inhibitor treatment; Hsp27 may be degraded by the autophagic pathway. In addition, the increased formation of LC3-II and autophagosomes was found in MERRF cybrids under the basal condition, indicating a constitutively-activated autophagic pathway. It may explain, at least partially, the faster turnover of Hsp27 in MERRF cybrids. This study provides information for us to understand that Hsp27 is degraded through the autophagic pathway and that Hsp27 may have a protective role in MERRF cells. Regulating Hsp27 and the autophagic pathway might help develop therapeutic solutions for treatment of MERRF syndrome in the future.
Collapse
Affiliation(s)
- Chin-Yi Chen
- Department of Life Science, TungHai University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Circulating heat shock protein 70 (Hsp70) in elderly members of a rural population from Cameroon: association with infection and nutrition. Arch Gerontol Geriatr 2011; 53:359-63. [PMID: 21334752 DOI: 10.1016/j.archger.2011.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/21/2022]
Abstract
Hsp are highly conserved cytoprotective proteins which have been repeatedly portrayed at elevated levels in various infectious diseases, and there are suggestions that the presence of infectious agents may possibly be the root cause of Hsp induction. As organisms age the vulnerability to illnesses such as infection and inflammation increases and late complications due to infectious agents are mostly observed in the older part of the population. Although it is well known that environmental conditions can modulate the susceptibility to infection, and that poor nutritional status can increase the risk of contracting infection when exposed to an infectious agent, the effects of environmental conditions and nutritional status on the heat shock response have not been investigated. Therefore, we studied the heat shock response in a special elderly population living in a remote area in Cameroon, where infection and parasitosis are endemic. Our results indicate a significant increase in Hsp70 serum levels with increasing degree of inflammation. We found negative correlations between Hsp70 levels and micronutrients including vitamin D, vitamin B12, as well as folate, which could be linked to the immune modulating effects of these vitamins.
Collapse
|
48
|
Grover A, Shandilya A, Agrawal V, Pratik P, Bhasme D, Bisaria VS, Sundar D. Hsp90/Cdc37 chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A. BMC Bioinformatics 2011; 12 Suppl 1:S30. [PMID: 21342561 PMCID: PMC3044286 DOI: 10.1186/1471-2105-12-s1-s30] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND HSPs (Heat shock proteins) are highly conserved ubiquitous proteins among species which are involved in maintaining appropriate folding and conformation of other proteins and are thus referred to as molecular chaperones. Hsp90 (Heat-shock protein 90 kDa) is one of a group of molecular chaperones responsible for managing protein folding and quality control in cell environment. However it is also involved in the maturation and stabilization of a wide range of oncogenic client proteins which are crucial for oncogenesis and malignant progression. Hsp90 requires a series of co-chaperones to assemble into a super-chaperone complex for its function. These co-chaperones bind and leave the complex at various stages to regulate the chaperoning process. Arresting the chaperone cycle at these stages by targeting different co-chaperone/Hsp90 interactions seems to be quite a viable alternative and is likely to achieve similar consequences as that of Hsp90 direct inhibition with added favors of high specificity and reduced side effect profile. The study conducted here is an attempt to explore the potential of Withania somnifera's major constituent WA (Withaferin A) in attenuating the Hsp90/Cdc37 chaperone/co-chaperone interactions for enhanced tumor arresting activity and to elucidate the underlying mode of action using computational approaches. RESULTS Formation of active Hsp90/Cdc37 complex is one of the essential steps for facilitation of chaperone client interaction, non-assembly of which can lead to prevention of the chaperone-client association resulting in apoptosis of tumor cells. From our flexible docking analysis of WA into active Hsp90/Cdc37 complex in which key interfacing residues of the complex were kept flexible, disruption of the active association complex can be discerned. While docking of WA into segregated Hsp90 leaves the interface residues untouched. Thus the molecular docking analysis of WA into Hsp90 and active Hsp90/Cdc37 complex conducted in this study provides significant evidence in support of the proposed mechanism of chaperone assembly suppression by inhibition or disruption of active Hsp90/Cdc37 complex formation being accounted by non-assembly of the catalytically active Hsp90/Cdc37 complex. Results from the molecular dynamics simulations in water show that the trajectories of the protein complexed with ligand WA are stable over a considerably long time period of 4 ns, with the energies of the complex being lowered in comparison to the un-docked association complex, suggesting the thermodynamic stability of WA complexed Hsp90/Cdc37. CONCLUSIONS The molecular chaperone Hsp90 has been a promising target for cancer therapy. Cancer is a disease marked by genetic instability. Thus specific inhibition of individual proteins or signalling pathways holds a great potential for subversion of this genetic plasticity of cancers. This study is a step forward in this direction. Our computational analysis provided a rationalization to the ability of naturally occurring WA to alter the chaperone signalling pathway. The large value of binding energy involved in binding of WA to the active Hsp90/Cdc37 complex consolidates the thermodynamic stability of the binding. Our docking results obtained substantiate the hypothesis that WA has the potential to inhibit the association of chaperone (Hsp90) to its co-chaperone (Cdc37) by disrupting the stability of attachment of Hsp90 to Cdc37. Conclusively our results strongly suggest that withaferin A is a potent anticancer agent as ascertained by its potent Hsp90-client modulating capability.
Collapse
Affiliation(s)
- Abhinav Grover
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashutosh Shandilya
- Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Vibhuti Agrawal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Piyush Pratik
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Divya Bhasme
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Virendra S Bisaria
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
49
|
Ford PJ, Raphael SL, Cullinan MP, Jenkins AJ, West MJ, Seymour GJ. Why should a doctor be interested in oral disease? Expert Rev Cardiovasc Ther 2011; 8:1483-93. [PMID: 20936934 DOI: 10.1586/erc.10.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oral health has been implicated in systemic disease throughout the ages; however, the understanding of the relationship between oral disease and systemic diseases such as cardiovascular disease and Type 2 diabetes mellitus is still emerging today. Chronic periodontal disease is widespread in the general population and a significant proportion of adults suffer from the most severe form of the disease. Dental plaque biofilm is necessary for the development of chronic periodontal disease with genetic and environmental factors contributing towards the pathogenesis. The putative biological mechanisms of the association between oral disease and atherogenesis are discussed, although there is insufficient evidence to establish causality at this time. Regardless of a direct causal relationship between oral disease and cardiovascular disease, treatment of oral disease leads to both a reduction in the systemic inflammatory burden as reflected in inflammatory markers and an improvement in endothelial function and hence improved overall health outcomes. A brief overview of periodontal disease including etiology, pathogenesis, screening and therapeutic implications is presented.
Collapse
Affiliation(s)
- Pauline J Ford
- The University of Queensland, School of Dentistry, 200 Turbot Street, Brisbane, QLD 4000, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Yabu T, Imamura S, Mohammed MS, Touhata K, Minami T, Terayama M, Yamashita M. Differential gene expression of HSC70/HSP70 in yellowtail cells in response to chaperone-mediated autophagy. FEBS J 2011; 278:673-85. [DOI: 10.1111/j.1742-4658.2010.07989.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|