1
|
Fuchs B, Schiller J, Cross MA. Apoptosis-associated changes in the glycerophospholipid composition of hematopoietic progenitor cells monitored by 31P NMR spectroscopy and MALDI-TOF mass spectrometry. Chem Phys Lipids 2007; 150:229-38. [DOI: 10.1016/j.chemphyslip.2007.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 02/05/2023]
|
2
|
Vainstein V, Ginosar Y, Shoham M, Ranmar DO, Ianovski A, Agur Z. The complex effect of granulocyte colony-stimulating factor on human granulopoiesis analyzed by a new physiologically-based mathematical model. J Theor Biol 2005; 234:311-27. [PMID: 15784267 DOI: 10.1016/j.jtbi.2004.11.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 11/12/2004] [Accepted: 11/17/2004] [Indexed: 11/17/2022]
Abstract
Neutropenia, frequently a side effect of chemo- and radiotherapy, increases susceptibility to microbial infections and is a life-threatening condition. For realistically predicting drug treatment effects on granulopoiesis, we have constructed a new mathematical model of granulopoiesis in the bone marrow and in the peripheral blood, featuring cell cycle phase transition and detailed granulocyte-colony stimulating factor (G-CSF) pharmacokinetics (PK) and pharmacodynamics (PD), including intracellular second messenger. Using this model, in conjunction with clinical results, we evaluated the system parameters, implemented those in the model and successfully retrieved the results of several independent clinical experiments under a wide range of G-CSF regimens. Our results show that the introduction of G-CSF-controlled intracellular second messenger is indispensable for precise retrieval of the clinical results, and suggest that the half-life of this messenger varies between a single and multiple G-CSF administration schedules. In addition, our model provided reliable steady-state, as well as dynamic, estimations of human granulopoiesis parameters. These included an estimation of apoptosis index in the post-mitotic compartment, which corroborates previous results. At present the model is used for suggesting improved drug regimens.
Collapse
Affiliation(s)
- V Vainstein
- Institute for Medical Biomathematics, POB 282, Hagteena St. 10, Bene-Ataroth 60991, Israel.
| | | | | | | | | | | |
Collapse
|
3
|
Yokoyama T, Kitagawa H, Takeuchi T, Tsukahara S, Kannan Y. No apoptotic cell death of erythroid cells of erythroblastic islands in bone marrow of healthy rats. J Vet Med Sci 2002; 64:913-9. [PMID: 12419868 DOI: 10.1292/jvms.64.913] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A possibility of apoptotic cell death in erythropoietic regulation was examined by means of detailed light microscopical histoplanimetry, electron microscopy, the in situ nick-end labeling method, and an immunohistological method in the rat bone marrow. Serum erythropoietin concentrations were shown at normal levels. The erythroid series on a mature process presented several morphological features of apoptosis, i.e. the shrinkage of both nuclei and cytoplasm and the chromatin condensation. In the light microscopical histoplanimetry, however, morphological signs of final apoptotic cell death were never found in any erythroid cell within the erythroblastic islands. This finding was also supported by detailed ultrastructural observation: No erythroid cell bodies were trapped and degraded by the central macrophages of the erythroblastic islands, while the denucleated nuclei with small amount of cytoplasm of late erythroblasts were often trapped and degraded in the macrophages. Nuclear DNA fragmentation was not detected in any erythroblasts, but was detected in the lysosomes of the central macrophages. These findings suggest that erythropoiesis is regulated by other regulatory mechanisms than apoptotic cell death. An additional ultrastructural finding shows that the reticulocytes anchored to the central macrophages are transported into the peripheral blood circulation.
Collapse
Affiliation(s)
- Toshifumi Yokoyama
- Department of Life Science, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | |
Collapse
|
4
|
Akkari YM, Bateman RL, Reifsteck CA, D'Andrea AD, Olson SB, Grompe M. The 4N cell cycle delay in Fanconi anemia reflects growth arrest in late S phase. Mol Genet Metab 2001; 74:403-12. [PMID: 11749045 DOI: 10.1006/mgme.2001.3259] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fanconi anemia (FA) is a human genetic disorder characterized by hypersensitivity to DNA crosslinking agents. Its cellular phenotypes include increased chromosome breakage and a marked cell-cycle delay with 4N DNA content after introduction of interstrand DNA crosslinks (ICL). To further understand the nature of this delay previously described as a G2/M arrest, we introduced ICL specifically during G2 and monitored the cells for passage into mitosis. Our results showed that, even at the highest doses, postreplication ICL produced neither G2/M arrest nor chromosome breakage in FA-A or FA-C cells. This suggests that, similar to wild-type cells, DNA replication is required to trigger both responses. Therefore, the 4N cell DNA content observed in FA cells after ICL treatment also represents incomplete DNA replication and arrest in late S phase. FA fibroblasts from complementation groups A and C were able to recover from the ICL-induced cell-cycle arrest, but took approximately 3 times longer than controls. These results indicate that the FA pathway is required for the efficient resolution of ICL-induced S-phase arrest.
Collapse
Affiliation(s)
- Y M Akkari
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road L103, Portland, Oregon 97201, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Krishnaraju K, Hoffman B, Liebermann DA. Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages. Blood 2001; 97:1298-305. [PMID: 11222373 DOI: 10.1182/blood.v97.5.1298] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Using a variety of differentiation-inducible myeloid cell lines, we previously showed that the zinc-finger transcription factor early growth response gene 1 (Egr-1) is a positive modulator of macrophage differentiation and negatively regulates granulocytic differentiation. In this study, high-efficiency retroviral transduction was used to ectopically express Egr-1 in myeloid-enriched or stem cell-enriched bone marrow cultures to explore its effect on the development of hematopoietic progenitors in vitro and in lethally irradiated mice. It was found that ectopic Egr-1 expression in normal hematopoietic progenitors stimulates development along the macrophage lineage at the expense of development along the granulocyte or erythroid lineages, regardless of the cytokine used. Moreover, Egr-1 accelerated macrophage development by suppressing the proliferative phase of the growth-to-macrophage developmental program. The remarkable ability of Egr-1 to dictate macrophage development at the expense of development along other lineages resulted in failure of Egr-1-infected hematopoietic progenitors to repopulate the bone marrow and spleen, and thereby prevent death, in lethally irradiated mice. These observations further highlight the role Egr-1 plays in monocytic differentiation and growth suppression.
Collapse
Affiliation(s)
- K Krishnaraju
- Fels Institute for Cancer Research and Molecular Biology and the Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
6
|
Barreda DR, Belosevic M. Characterisation of growth enhancing factor production in different phases of in vitro fish macrophage development. FISH & SHELLFISH IMMUNOLOGY 2001; 11:169-185. [PMID: 11308078 DOI: 10.1006/fsim.2000.0305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We previously described the release of macrophage growth factor(s) (MGF) into culture supernatants (CCM) by a goldfish macrophage cell line (GMCL) and in vitro derived kidney macrophages (IVDKM). In this study, we report that IVDKM growth can be subdivided into three developmental phases, defined using both morphological and flow cytometric characteristics: a lag phase, a proliferative phase, and a senescence phase. Analysis of the growth inducing capabilities of CCM indicated that maximum activity was consistently found in supernatants isolated from IVDKM cultures during the proliferative phase of development. In contrast, CCM from the senescence phase proved to be poor inducers of macrophage growth. Overall, we identify a link between the seeding-CCM composition, the extent of IVDKM growth and the rate of entrance into a senescent state characterised by IVDKM apoptotic cell death. Use of IVDKM CCM obtained at the peak of macrophage growth maximised macrophage growth factor (MGF) activity, and prevented the introduction of negative regulators of IVDKM proliferation, which will contribute significantly to our MGF purification efforts. Furthermore, the collection of IVDKM, prior to their commitment into apoptotic pathways, will prove to be essential in the selection of specific cell subsets for studies of antimicrobial mechanisms of macrophages.
Collapse
Affiliation(s)
- D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
7
|
Lee SF, Huang HM, Chao JR, Lin S, Yang-Yen HF, Yen JJ. Cytokine receptor common beta chain as a potential activator of cytokine withdrawal-induced apoptosis. Mol Cell Biol 1999; 19:7399-409. [PMID: 10523628 PMCID: PMC84733 DOI: 10.1128/mcb.19.11.7399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Growth factors and cytokines play an important role in supporting cellular viability of various tissues during development due to their ability to suppress the default cell death program in each cell type. To date, neither the triggering molecule nor the transduction pathway of these default apoptosis programs is understood. In this study, we explored the possibility that cytokine receptors are involved in modulating cytokine withdrawal-induced apoptosis (CWIA) in hematopoietic cells. Expression of the exogenous cytokine receptor common beta chain (betac), but not the alpha chains, accelerated CWIA in multiple cytokine-dependent cell lines. Reduction of the expression level of endogenous betac by antisense transcripts resulted in prolonged survival during cytokine deprivation, suggesting a critical role of betac in modulating CWIA. Fine mapping of the betac subunit revealed that a membrane-proximal cytoplasmic sequence, designated the death enhancement region (DER), was critical to the death acceleration effect of betac. Furthermore, DER accelerated cell death either as a chimeric membrane protein or as a cytosolic protein, suggesting that DER functions independently of the cytokine receptor and membrane anchorage. Cross-linking of the chimeric membrane-bound DER molecules by antibody or of the FK506-binding protein-DER fusion protein by a synthetic dimerizing agent, AP1510, did not abrogate the death acceleration effect. Transient transfection assays further indicated that DER promoted cell death in the absence of serum in the nonhematopoietic 293 cell line. In summary, our data suggest that betac plays an important role in modulating CWIA via an anchorage-independent and aggregation-insensitive mechanism. These findings may facilitate further studies on the signaling pathways of CWIA.
Collapse
Affiliation(s)
- S F Lee
- Institute of Biomedical Sciences, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Activation of protein kinase C (PKC) can protect cells from apoptosis induced by various agents, including Fas ligation. To elucidate a possible interaction between Fas-mediated apoptotic signals and activation-related protective signals, we investigated the impact of Fas ligation on PKC activity. We demonstrate that engagement of Fas on human lymphoid Jurkat cells triggered apoptosis, and Fas ligation resulted in partial blockade of cellular PKC activity. The phorbol 12-myristate 13-acetate-mediated translocation of PKCtheta from the cytoplasm to the membrane was inhibited by treatment with anti-Fas antibody, whereas the translocation of PKCalpha or epsilon was not affected. In vitro kinase assay of PKCalpha or epsilon phosphotransferase activity demonstrated that Fas ligation inhibited the ability of PKCalpha to phosphorylate histone H1 as substrate but did not inhibit epsilon isozyme activity. This inhibition of PKCalpha activity mediated by Fas ligation was reversed by okadaic acid, a phosphatase inhibitor, suggesting the involvement of a member of the protein phosphatase 2A subfamily in this component of Fas signaling. Identical patterns of PKC isozyme inhibition were obtained using mouse thymoma cells overexpressing the fas gene (LF(+)). These results suggest that the selective inhibition of a potentially protective, PKC-mediated pathway by Fas activation may, to some extent, contribute to Fas-induced apoptotic signaling.
Collapse
Affiliation(s)
- C Y Chen
- Cancer Research Center and Departments of Medicine, Biochemistry, Pediatrics, Microbiology, Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
9
|
Rabinovich GA, Riera CM, Iribarren P. Granulocyte-macrophage colony-stimulating factor protects dendritic cells from liposome-encapsulated dichloromethylene diphosphonate-induced apoptosis through a Bcl-2-mediated pathway. Eur J Immunol 1999; 29:563-70. [PMID: 10064072 DOI: 10.1002/(sici)1521-4141(199902)29:02<563::aid-immu563>3.0.co;2-a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Liposome-encapsulated dichloromethylene diphosphonate (L-MDP) has been used for depleting cells of the monocyte-macrophage lineage. We have undertaken this study to investigate whether dendritic cells are susceptible to this liposome-encapsulated compound. Dendritic cells were cultured in the presence of L-MDP and further processed for apoptosis detection. The highly characteristic DNA cleavage into oligonucleosome-sized fragments, incorporation of biotinylated dUTP into DNA strand breaks and the typical ultrastructural features of apoptosis were evident in dendritic cells exposed to the drug. More importantly, we demonstrated that granulocyte-macrophage colony-stimulating factor protects dendritic cells not only from apoptosis induced by the exogenous compound but also from spontaneous apoptosis. Western blot analysis revealed that this protection was tightly correlated with the activation of a Bcl-2-mediated pathway. Regulation of the apoptotic threshold of dendritic cells will be advantageous for the generation of new insights in immunotherapy.
Collapse
Affiliation(s)
- G A Rabinovich
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, National University of Córdoba, Argentina
| | | | | |
Collapse
|
10
|
Suenobu N, Shichiri M, Iwashina M, Marumo F, Hirata Y. Natriuretic peptides and nitric oxide induce endothelial apoptosis via a cGMP-dependent mechanism. Arterioscler Thromb Vasc Biol 1999; 19:140-6. [PMID: 9888876 DOI: 10.1161/01.atv.19.1.140] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apoptosis is a mode of cell death in which the cell participates in its own demise. We studied whether endothelium-derived relaxing factor, nitric oxide (NO), and natriuretic peptides affect apoptosis of rat vascular endothelial cells via a cGMP-dependent pathway and whether such effects are antagonized by an endothelium-derived vasoconstrictor, endothelin-1 (ET-1). Three natriuretic peptides (atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide) induced endothelial apoptosis as demonstrated by nucleosomal laddering on agarose gel electrophoresis and by the terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling method. This dose-dependent relation was assessed by quantifying the fragmented and intact DNA contents by the diphenylamine method. The atrial natriuretic peptide-induced endothelial apoptosis was completely blocked by a guanylate cyclase-coupled receptor antagonist (HS-142-1) and an inhibitor of cGMP-dependent protein kinase (KT5823). An NO donor, NOR3 ((+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexeneamide; FK409) also induced endothelial apoptosis; the effect of this compound was abrogated by KT5823 and an inhibitor of soluble guanylate cyclase, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). A cGMP derivative, 8-bromo-cGMP, but not the cAMP derivative 8-bromo-cAMP, caused endothelial apoptosis; the effect of ODQ was also abrogated by KT5823. Endothelial apoptosis induced by ANP, NOR3, and 8-bromo-cGMP was similarly antagonized by ET-1. ANP, NOR3, and 8-bromo-cGMP caused marked accumulations of the tumor suppressor gene product p53 but not of bcl-2, as determined by Western blot analysis. These results demonstrate for the first time that endothelium-derived NO and natriuretic peptides are proapoptotic factors for endothelial cells, whereas the endothelium-derived vasoconstrictor ET-1 is an antiapoptotic factor, suggesting that the countervailing balance between these vasodilators and vasoconstrictors, in addition to regulation of vascular tonus, may contribute to endothelial cell integrity.
Collapse
Affiliation(s)
- N Suenobu
- Endocrine-Hypertension Division, Second Department of Internal Medicine, Tokyo Medical and Dental University, Pharmaceutical Research Laboratories, Pola R&D Laboratories, POLA Corp, Yokohama, Japan
| | | | | | | | | |
Collapse
|
11
|
The Zinc Finger Transcription Factor Egr-1 Activates Macrophage Differentiation in M1 Myeloblastic Leukemia Cells. Blood 1998. [DOI: 10.1182/blood.v92.6.1957] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe previously have shown that the zinc finger transcription factor Egr-1 blocked granulocytic differentiation of HL-60 cells, restricting differentiation along the monocytic lineage. Egr-1 also was observed to block granulocyte colony-stimulating factor (G-CSF)–induced differentiation of interleukin-3 (IL-3)–dependent 32Dcl3 hematopoietic precursor cells, endowing the cells with the ability to be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) for terminal differentiation along the macrophage lineage. To better understand the function of Egr-1 as a positive modulator of monocytic differentiation, in this work we have studied the effect of ectopic expression of Egr-1 on the murine myeloblastic leukemic cell line M1, which is induced for differentiation by the physiological inducer IL-6. It is shown that, unlike in HL-60 and 32Dcl3 cells, ectopic expression of Egr-1 in M1 cells resulted in activation of the macrophage differentiation program in the absence of differentiation inducer. This included the appearance of morphologically differentiated cells, decreased growth rate in mass culture, and cloning efficiency in soft agar, and expression of endogenous c-myb and c-myc mRNAs was markedly downregulated. Untreated M1Egr-1 cells also exhibited cell adherence, expression of Fc and C3 receptors, and upregulation of the myeloid differentiation primary response genes c-Jun, junD, andjunB and the late genetic markers ferritin light-chainand lysozyme. Ectopic expression of Egr-1 in M1 cells also dramatically increased the sensitivity of the cells for IL-6–induced differentiation, allowed a higher proportion of M1 cells to become terminally differentiated under conditions of optimal stimulation for differentiation, and decreased M1 leukemogenicity in vivo. These findings demonstrate that the functions of Egr-1 as a positive modulator of macrophage differentiation vary, depending on the state of lineage commitment for differentiation of the hematopoietic cell type.© 1998 by The American Society of Hematology.
Collapse
|
12
|
The Zinc Finger Transcription Factor Egr-1 Activates Macrophage Differentiation in M1 Myeloblastic Leukemia Cells. Blood 1998. [DOI: 10.1182/blood.v92.6.1957.418k24_1957_1966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously have shown that the zinc finger transcription factor Egr-1 blocked granulocytic differentiation of HL-60 cells, restricting differentiation along the monocytic lineage. Egr-1 also was observed to block granulocyte colony-stimulating factor (G-CSF)–induced differentiation of interleukin-3 (IL-3)–dependent 32Dcl3 hematopoietic precursor cells, endowing the cells with the ability to be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) for terminal differentiation along the macrophage lineage. To better understand the function of Egr-1 as a positive modulator of monocytic differentiation, in this work we have studied the effect of ectopic expression of Egr-1 on the murine myeloblastic leukemic cell line M1, which is induced for differentiation by the physiological inducer IL-6. It is shown that, unlike in HL-60 and 32Dcl3 cells, ectopic expression of Egr-1 in M1 cells resulted in activation of the macrophage differentiation program in the absence of differentiation inducer. This included the appearance of morphologically differentiated cells, decreased growth rate in mass culture, and cloning efficiency in soft agar, and expression of endogenous c-myb and c-myc mRNAs was markedly downregulated. Untreated M1Egr-1 cells also exhibited cell adherence, expression of Fc and C3 receptors, and upregulation of the myeloid differentiation primary response genes c-Jun, junD, andjunB and the late genetic markers ferritin light-chainand lysozyme. Ectopic expression of Egr-1 in M1 cells also dramatically increased the sensitivity of the cells for IL-6–induced differentiation, allowed a higher proportion of M1 cells to become terminally differentiated under conditions of optimal stimulation for differentiation, and decreased M1 leukemogenicity in vivo. These findings demonstrate that the functions of Egr-1 as a positive modulator of macrophage differentiation vary, depending on the state of lineage commitment for differentiation of the hematopoietic cell type.© 1998 by The American Society of Hematology.
Collapse
|
13
|
|
14
|
Seto ML, Nunes ME, MacArthur CA, Cunningham ML. Pathogenesis of ectrodactyly in the Dactylaplasia mouse: aberrant cell death of the apical ectodermal ridge. TERATOLOGY 1997; 56:262-70. [PMID: 9408977 DOI: 10.1002/(sici)1096-9926(199710)56:4<262::aid-tera5>3.0.co;2-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dactylaplasia, or Dac, was recently mapped to the distal portion of mouse chromosome 19 and shown to be inherited as an autosomal semi-dominant trait characterized by missing central digital rays. The most common locus for human split hand split foot malformation, also typically characterized by missing central digital rays, is 10q25, a region of synteny to the Dac locus. The Dac mouse appears to be an ideal genotypic and phenotypic model for this human malformation syndrome. Several genes lie in this region of synteny, however, only Fibroblast Growth Factor 8, or Fgf-8, has been implicated to have a role in limb development. We demonstrate that the developmental mechanism underlying loss of central rays in Dac limbs is dramatic cell death of the apical ectodermal ridge, or AER. This cell death pattern is apparent in E10.5-11.5 Dac limb buds stained with the supravital dye Nile Blue Sulfate. We demonstrate that Fgf8 expression in wild type limbs colocalizes spatially and temporally with AER cell death in Dac limbs. Furthermore, in our mapping panel, there is an absence of recombinants between Fgf-8 and the Dac locus in 133 backcross progeny with a median linkage estimate of approximately 0.5 cM. Thus, our results demonstrate that cell death of the AER in Dac limbs silences the role of the AER as key regulator of limb outgrowth, and that Fgf-8 is a strong candidate for the cause of the Dac phenotype.
Collapse
Affiliation(s)
- M L Seto
- Department of Pediatrics, University of Washington, School of Medicine, Seattle 98195, USA
| | | | | | | |
Collapse
|
15
|
Brenner B, Koppenhoefer U, Weinstock C, Linderkamp O, Lang F, Gulbins E. Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem 1997; 272:22173-81. [PMID: 9268362 DOI: 10.1074/jbc.272.35.22173] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the present study, we show that Fas receptor ligation or cellular treatment with synthetic C6-ceramide results in activation or phosphorylation, respectively, of the small G-protein Rac1, Jun N-terminal kinase (JNK)/p38 kinases (p38-K), and the transcription factor GADD153. A signaling cascade from the Fas receptor via ceramide, Ras, Rac1, and JNK/p38-K to GADD153 is demonstrated employing transfection of transdominant inhibitory N17Ras, N17Rac1, c-Jun, or treatment with a specific p38-K inhibitor. The critical function of this signaling cascade is indicated by prevention of Fas- or C6-ceramide-induced apoptosis after inhibition of Ras, Rac1, or JNK/p38-K.
Collapse
Affiliation(s)
- B Brenner
- Department of Pediatrics, University of Heidelberg, INF 150, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Gulbins E, Szabo I, Baltzer K, Lang F. Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc Natl Acad Sci U S A 1997; 94:7661-6. [PMID: 9207149 PMCID: PMC23879 DOI: 10.1073/pnas.94.14.7661] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The n-type K+ channel (n-K+, Kv1.3) in lymphocytes has been recently implicated in the regulation of Fas-induced programmed cell death. Here, we demonstrate that ceramide, a lipid metabolite synthesized upon Fas receptor ligation, inhibits n-K+ channel activity and induces a tyrosine phosphorylation of the Kv1.3 protein in Jurkat T lymphocytes. Tyrosine phosphorylation of the n-K+ channel correlated with an activation of the Src-like tyrosine kinase p56lck upon cellular treatment with the ceramide analog C6-ceramide. Because genetic deficiency of p56lck or inhibition of Src-like tyrosine kinases by herbimycin A prevented ceramide-mediated n-K+ channel inhibition and tyrosine phosphorylation, we propose a ceramide-initiated activation of p56lck resulting in tyrosine phosphorylation and inhibition of the n-K+ channel protein.
Collapse
Affiliation(s)
- E Gulbins
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|