1
|
Ascencio D, Diss G, Gagnon-Arsenault I, Dubé AK, DeLuna A, Landry CR. Expression attenuation as a mechanism of robustness against gene duplication. Proc Natl Acad Sci U S A 2021; 118:e2014345118. [PMID: 33526669 PMCID: PMC7970654 DOI: 10.1073/pnas.2014345118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene duplication is ubiquitous and a major driver of phenotypic diversity across the tree of life, but its immediate consequences are not fully understood. Deleterious effects would decrease the probability of retention of duplicates and prevent their contribution to long-term evolution. One possible detrimental effect of duplication is the perturbation of the stoichiometry of protein complexes. Here, we measured the fitness effects of the duplication of 899 essential genes in the budding yeast using high-resolution competition assays. At least 10% of genes caused a fitness disadvantage when duplicated. Intriguingly, the duplication of most protein complex subunits had small to nondetectable effects on fitness, with few exceptions. We selected four complexes with subunits that had an impact on fitness when duplicated and measured the impact of individual gene duplications on their protein-protein interactions. We found that very few duplications affect both fitness and interactions. Furthermore, large complexes such as the 26S proteasome are protected from gene duplication by attenuation of protein abundance. Regulatory mechanisms that maintain the stoichiometric balance of protein complexes may protect from the immediate effects of gene duplication. Our results show that a better understanding of protein regulation and assembly in complexes is required for the refinement of current models of gene duplication.
Collapse
Affiliation(s)
- Diana Ascencio
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Guillaume Diss
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre K Dubé
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Christian R Landry
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada;
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Sha W, Martins AM, Laubenbacher R, Mendes P, Shulaev V. The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide. PLoS One 2013; 8:e74939. [PMID: 24073228 PMCID: PMC3779239 DOI: 10.1371/journal.pone.0074939] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a well-known biological process that occurs in all respiring cells and is involved in pathophysiological processes such as aging and apoptosis. Oxidative stress agents include peroxides such as hydrogen peroxide, cumene hydroperoxide, and linoleic acid hydroperoxide, the thiol oxidant diamide, and menadione, a generator of superoxide, amongst others. The present study analyzed the early temporal genome-wide transcriptional response of Saccharomyces cerevisiae to oxidative stress induced by the aromatic peroxide cumene hydroperoxide. The accurate dataset obtained, supported by the use of temporal controls, biological replicates and well controlled growth conditions, provided a detailed picture of the early dynamics of the process. We identified a set of genes previously not implicated in the oxidative stress response, including several transcriptional regulators showing a fast transient response, suggesting a coordinated process in the transcriptional reprogramming. We discuss the role of the glutathione, thioredoxin and reactive oxygen species-removing systems, the proteasome and the pentose phosphate pathway. A data-driven clustering of the expression patterns identified one specific cluster that mostly consisted of genes known to be regulated by the Yap1p and Skn7p transcription factors, emphasizing their mediator role in the transcriptional response to oxidants. Comparison of our results with data reported for hydrogen peroxide identified 664 genes that specifically respond to cumene hydroperoxide, suggesting distinct transcriptional responses to these two peroxides. Genes up-regulated only by cumene hydroperoxide are mainly related to the cell membrane and cell wall, and proteolysis process, while those down-regulated only by this aromatic peroxide are involved in mitochondrial function.
Collapse
Affiliation(s)
- Wei Sha
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Bioinformatics Research Division, University of North Carolina at Charlotte, Kannapolis, North Carolina, United States of America
| | - Ana M. Martins
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Applied Biology, University of Sharjah, Sharjah, United Arab Emirates
- * E-mail:
| | - Reinhard Laubenbacher
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Pedro Mendes
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- School of Computer Science and Manchester Centre for Integrative Systems Biology, University of Manchester, Manchester, United Kingdom
| | - Vladimir Shulaev
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas, United States of America
| |
Collapse
|
3
|
Du Y, Xu N, Lu M, Li T. hUbiquitome: a database of experimentally verified ubiquitination cascades in humans. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar055. [PMID: 22134927 PMCID: PMC3228279 DOI: 10.1093/database/bar055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein ubiquitination is an evolutionarily conserved and functionally diverse post-translational modification achieved through the sequential action of E1-activating enzymes, E2-conjugating enzymes and E3 ligases. A summary of validated ubiquitination substrates have been presented and a prediction of new substrates have been conducted in yeast. However, a systematic summary of human ubiquitination substrates containing experimental evidence and the enzymatic cascade of each substrate is not available. In the present study, hUbiquitome web resource is introduced, a public resource for the retrieval of experimentally verified human ubiquitination enzymes and substrates. hUbiquitome is the first comprehensive database of human ubiquitination cascades. Currently, hUbiquitome has in its repertoire curated data comprising 1 E1 enzyme, 12 E2 enzymes, 138 E3 ligases or complexes, 279 different substrate proteins and 17 deubiquitination enzyme terms. The biological functions of substrates from different kinds of E3s were analyzed using the collected data. The findings show that substrates ubiquitinated by RING (Really Interesting New Gene) E3s are enriched most in apoptosis-related processes, whereas substrates ubiquitinated by other E3s are enriched in gene expression-associated processes. An analysis of the data demonstrates the biological process preferences of the different kinds of E3s. hUbiquitome is the first database to systematically collect experimentally validated ubiquitinated proteins and related ubiquitination cascade enzymes which might be helpful in the field of ubiquitination-modification research. Database URL: http://202.38.126.151/hmdd/hubi/
Collapse
Affiliation(s)
- Yipeng Du
- Department of Medical Informatics, Peking University Health Science Center, Beijing 100191, China
| | | | | | | |
Collapse
|
4
|
Ren J, Pashkova N, Winistorfer S, Piper RC. DOA1/UFD3 plays a role in sorting ubiquitinated membrane proteins into multivesicular bodies. J Biol Chem 2008; 283:21599-611. [PMID: 18508771 PMCID: PMC2490793 DOI: 10.1074/jbc.m802982200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/19/2008] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin (Ub) is a sorting signal that targets integral membrane proteins to the interior of the vacuole/lysosome by directing them into lumenal vesicles of multivesicular bodies (MVBs). The Vps27-Hse1 complex, which is homologous to the Hrs-STAM complex in mammalian cells, serves as a Ub-sorting receptor at the surface of early endosomes. We have found that Hse1 interacts with Doa1/Ufd3. Doa1 is known to interact with Cdc48/p97 and Ub and is required for maintaining Ub levels. We find that the Hse1 Src homology 3 domain binds directly to the central PFU domain of Doa1. Mutations in Doa1 that block Hse1 binding but not Ub binding do not alter Ub levels but do result in the missorting of the MVB cargo GFP-Cps1. Loss of Doa1 also causes a synthetic growth defect when combined with loss of Vps27. Unlike the loss of Doa1 alone, the doa1Delta vps27Delta double mutant phenotype is not suppressed by Ub overexpression, demonstrating that the effect is not due to indirect consequence of lowered Ub levels. Loss of Doa1 results in a defect in the accumulation of GFP-Ub within yeast vacuoles, implying that there is a reduction in the flux of ubiquitinated membrane proteins through the MVB pathway. This defect was also reflected by an inability to properly sort Vph1-GFP-Ub, a modified subunit of the multiprotein vacuolar ATPase complex, which carries an in-frame fusion of Ub as an MVB sorting signal. These results reveal novel roles for Doa1 in helping to process ubiquitinated membrane proteins for sorting into MVBs.
Collapse
Affiliation(s)
- Jihui Ren
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
5
|
Tsimokha AS, Mittenberg AG, Kulichkova VA, Vatazhok YY, Moiseeva TN, Evteeva IN, Ermolaeva YB, Gause LN, Konstantinova IM. Reprogramming of nuclear proteasomes under apoptosis induction in K562 cells I. Effect of glutathione-depleting agent diethylmaleate. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kim JH, Brachet V, Moriya H, Johnston M. Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:167-73. [PMID: 16400179 PMCID: PMC1360249 DOI: 10.1128/ec.5.1.167-173.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the HXT genes encoding glucose transporters in the budding yeast Saccharomyces cerevisiae is regulated by two interconnected glucose-signaling pathways: the Snf3/Rgt2-Rgt1 glucose induction pathway and the Snf1-Mig1 glucose repression pathway. The Snf3 and Rgt2 glucose sensors in the membrane generate a signal in the presence of glucose that inhibits the functions of Std1 and Mth1, paralogous proteins that regulate the function of the Rgt1 transcription factor, which binds to the HXT promoters. It is well established that glucose induces degradation of Mth1, but the fate of its paralogue Std1 has been less clear. We present evidence that glucose-induced degradation of Std1 via the SCF(Grr1) ubiquitin-protein ligase and the 26S proteasome is obscured by feedback regulation of STD1 expression. Disappearance of Std1 in response to glucose is accelerated when glucose induction of STD1 expression due to feedback regulation by Rgt1 is prevented. The consequence of relieving feedback regulation of STD1 expression is that reestablishment of repression of HXT1 expression upon removal of glucose is delayed. In contrast, degradation of Mth1 is reinforced by glucose repression of MTH1 expression: disappearance of Mth1 is slowed when glucose repression of MTH1 expression is prevented, and this results in a delay in induction of HXT3 expression in response to glucose. Thus, the cellular levels of Std1 and Mth1, and, as a consequence, the kinetics of induction and repression of HXT gene expression, are closely regulated by interwoven transcriptional and posttranslational controls mediated by two different glucose-sensing pathways.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Genetics, Campus Box 8232, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
7
|
Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ, Boone C, Emili A, Weissman JS, Hughes TR, Strahl BD, Grunstein M, Greenblatt JF, Buratowski S, Krogan NJ. Cotranscriptional Set2 Methylation of Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex. Cell 2005; 123:593-605. [PMID: 16286008 DOI: 10.1016/j.cell.2005.10.025] [Citation(s) in RCA: 620] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 09/22/2005] [Accepted: 10/25/2005] [Indexed: 11/19/2022]
Abstract
The yeast histone deacetylase Rpd3 can be recruited to promoters to repress transcription initiation. Biochemical, genetic, and gene-expression analyses show that Rpd3 exists in two distinct complexes. The smaller complex, Rpd3C(S), shares Sin3 and Ume1 with Rpd3C(L) but contains the unique subunits Rco1 and Eaf3. Rpd3C(S) mutants exhibit phenotypes remarkably similar to those of Set2, a histone methyltransferase associated with elongating RNA polymerase II. Chromatin immunoprecipitation and biochemical experiments indicate that the chromodomain of Eaf3 recruits Rpd3C(S) to nucleosomes methylated by Set2 on histone H3 lysine 36, leading to deacetylation of transcribed regions. This pathway apparently acts to negatively regulate transcription because deleting the genes for Set2 or Rpd3C(S) bypasses the requirement for the positive elongation factor Bur1/Bur2.
Collapse
Affiliation(s)
- Michael-Christopher Keogh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Harkness TAA, Arnason TG, Legrand C, Pisclevich MG, Davies GF, Turner EL. Contribution of CAF-I to anaphase-promoting-complex-mediated mitotic chromatin assembly in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:673-84. [PMID: 15821127 PMCID: PMC1087812 DOI: 10.1128/ec.4.4.673-684.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 01/21/2005] [Indexed: 11/20/2022]
Abstract
The anaphase-promoting complex (APC) is required for mitotic progression and genomic stability. Recently, we demonstrated that the APC is also required for mitotic chromatin assembly and longevity. Here, we investigated the role the APC plays in chromatin assembly. We show that apc5(CA) mutations genetically interact with the CAF-I genes as well as ASF1, HIR1, and HIR2. When present in multiple copies, the individual CAF-I genes, CAC1, CAC2, and MSI1, suppress apc5(CA) phenotypes in a CAF-1- and Asf1p-independent manner. CAF-I and the APC functionally overlap, as cac1delta cac2delta msi1delta (caf1delta) cells expressing apc5(CA) exhibit a phenotype more severe than that of apc5(CA) or caf1delta. The Ts- phenotypes observed in apc5(CA) and apc5(CA) caf mutants may be rooted in compromised histone metabolism, as coexpression of histones H3 and H4 suppressed the Ts- defects. Synthetic genetic interactions were also observed in apc5(CA) asf1delta cells. Furthermore, increased expression of genes encoding Asf1p, Hir1p, and Hir2p suppressed the apc5(CA) Ts- defect in a CAF-I-dependent manner. Together, these results suggest the existence of a complex molecular mechanism controlling APC-dependent chromatin assembly. Our data suggest the APC functions with the individual CAF-I subunits, Asf1p, and the Hir1p and Hir2p proteins. However, Asf1p and an intact CAF-I complex are dispensable for CAF-I subunit suppression, whereas CAF-I is necessary for ASF1, HIR1, and HIR2 suppression of apc5(CA) phenotypes. We discuss the implications of our observations.
Collapse
Affiliation(s)
- Troy A A Harkness
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | | | | | | | | | | |
Collapse
|
9
|
Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol 2004; 5:R95. [PMID: 15575969 PMCID: PMC545798 DOI: 10.1186/gb-2004-5-12-r95] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 09/27/2004] [Accepted: 11/02/2004] [Indexed: 12/03/2022] Open
Abstract
By integrating phenotypic and transcriptional profiling and mapping the data onto metabolic and regulatory networks, it was shown that arsenic probably channels sulfur into glutathione for detoxification, leads to indirect oxidative stress by depleting glutathione pools, and alters protein turnover via arsenation of sulfhydryl groups on proteins. Background Arsenic is a nonmutagenic carcinogen affecting millions of people. The cellular impact of this metalloid in Saccharomyces cerevisiae was determined by profiling global gene expression and sensitivity phenotypes. These data were then mapped to a metabolic network composed of all known biochemical reactions in yeast, as well as the yeast network of 20,985 protein-protein/protein-DNA interactions. Results While the expression data unveiled no significant nodes in the metabolic network, the regulatory network revealed several important nodes as centers of arsenic-induced activity. The highest-scoring proteins included Fhl1, Msn2, Msn4, Yap1, Cad1 (Yap2), Pre1, Hsf1 and Met31. Contrary to the gene-expression analyses, the phenotypic-profiling data mapped to the metabolic network. The two significant metabolic networks unveiled were shikimate, and serine, threonine and glutamate biosynthesis. We also carried out transcriptional profiling of specific deletion strains, confirming that the transcription factors Yap1, Arr1 (Yap8), and Rpn4 strongly mediate the cell's adaptation to arsenic-induced stress but that Cad1 has negligible impact. Conclusions By integrating phenotypic and transcriptional profiling and mapping the data onto the metabolic and regulatory networks, we have shown that arsenic is likely to channel sulfur into glutathione for detoxification, leads to indirect oxidative stress by depleting glutathione pools, and alters protein turnover via arsenation of sulfhydryl groups on proteins. Furthermore, we show that phenotypically sensitive pathways are upstream of differentially expressed ones, indicating that transcriptional and phenotypic profiling implicate distinct, but related, pathways.
Collapse
|
10
|
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC PLANT BIOLOGY 2004; 4:10. [PMID: 15171794 PMCID: PMC446195 DOI: 10.1186/1471-2229-4-10] [Citation(s) in RCA: 1271] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2003] [Accepted: 06/01/2004] [Indexed: 05/17/2023]
Abstract
BACKGROUND Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. RESULTS Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. CONCLUSIONS Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.
Collapse
Affiliation(s)
- Steven B Cannon
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
- Plant Pathology Department, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Andrew Baumgarten
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
- Ecology, Evolution, and Behavior Department, University of Minnesota, St. Paul, MN 55108, USA
| | - Nevin D Young
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
- Plant Pathology Department, University of Minnesota, St. Paul, MN 55108, USA
| | - Georgiana May
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
- Ecology, Evolution, and Behavior Department, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
11
|
Chernova TA, Allen KD, Wesoloski LM, Shanks JR, Chernoff YO, Wilkinson KD. Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool. J Biol Chem 2003; 278:52102-15. [PMID: 14559899 DOI: 10.1074/jbc.m310283200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation of the mouse Usp14 gene, encoding the homolog of yeast deubiquitinating enzyme Ubp6, causes ataxia. Here we show that deletion of the UBP6 gene in Saccharomyces cerevisiae causes sensitivity to a broad range of toxic compounds and antagonizes phenotypic expression and de novo induction of the yeast prion [PSI+], a functionally defective self-perpetuating isoform of the translation termination factor Sup35. Conversely, overexpression of ubiquitin (Ub) increases phenotypic expression and induction of [PSI+] in the wild type cells and suppresses all tested ubp6Delta defects, indicating that they are primarily due to depletion of cellular Ub levels. Several lines of evidence suggest that Ubp6 functions on the proteasome. First, Ub levels in the ubp6Delta cells can be partly restored by proteasome inhibitors, suggesting that deletion of Ubp6 decreases Ub levels by increasing proteasome-dependent degradation of Ub. Second, fluorescence microscopy analysis shows that Ubp6-GFP fusion protein is localized to the nucleus of yeast cell, as are most proteasomes. Third, the N-terminal Ub-like domain, although it is not required for nuclear localization of Ubp6, targets Ubp6 to the proteasome and cannot be functionally replaced by Ub. The human ortholog of Ubp6, USP14, probably plays a similar role in higher eukaryotes, since it fully compensates for ubp6Delta defects and binds to the yeast proteasome. These data link the Ub system to prion expression and propagation and have broad implications for other neuronal inclusion body diseases.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
12
|
Cannon SB, Young ND. OrthoParaMap: distinguishing orthologs from paralogs by integrating comparative genome data and gene phylogenies. BMC Bioinformatics 2003; 4:35. [PMID: 12952558 PMCID: PMC200972 DOI: 10.1186/1471-2105-4-35] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Accepted: 09/02/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In eukaryotic genomes, most genes are members of gene families. When comparing genes from two species, therefore, most genes in one species will be homologous to multiple genes in the second. This often makes it difficult to distinguish orthologs (separated through speciation) from paralogs (separated by other types of gene duplication). Combining phylogenetic relationships and genomic position in both genomes helps to distinguish between these scenarios. This kind of comparison can also help to describe how gene families have evolved within a single genome that has undergone polyploidy or other large-scale duplications, as in the case of Arabidopsis thaliana - and probably most plant genomes. RESULTS We describe a suite of programs called OrthoParaMap (OPM) that makes genomic comparisons, identifies syntenic regions, determines whether sets of genes in a gene family are related through speciation or internal chromosomal duplications, maps this information onto phylogenetic trees, and infers internal nodes within the phylogenetic tree that may represent local - as opposed to speciation or segmental - duplication. We describe the application of the software using three examples: the melanoma-associated antigen (MAGE) gene family on the X chromosomes of mouse and human; the 20S proteasome subunit gene family in Arabidopsis, and the major latex protein gene family in Arabidopsis. CONCLUSION OPM combines comparative genomic positional information and phylogenetic reconstructions to identify which gene duplications are likely to have arisen through internal genomic duplications (such as polyploidy), through speciation, or through local duplications (such as unequal crossing-over). The software is freely available at http://www.tc.umn.edu/~cann0010/.
Collapse
Affiliation(s)
- Steven B Cannon
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
| | - Nevin D Young
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
- Plant Pathology Department, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
13
|
Pratt JM, Petty J, Riba-Garcia I, Robertson DHL, Gaskell SJ, Oliver SG, Beynon RJ. Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics 2002; 1:579-91. [PMID: 12376573 DOI: 10.1074/mcp.m200046-mcp200] [Citation(s) in RCA: 300] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional genomic experiments frequently involve a comparison of the levels of gene expression between two or more genetic, developmental, or physiological states. Such comparisons can be carried out at either the RNA (transcriptome) or protein (proteome) level, but there is often a lack of congruence between parallel analyses using these two approaches. To fully interpret protein abundance data from proteomic experiments, it is necessary to understand the contributions made by the opposing processes of synthesis and degradation to the transition between the states compared. Thus, there is a need for reliable methods to determine the rates of turnover of individual proteins at amounts comparable to those obtained in proteomic experiments. Here, we show that stable isotope-labeled amino acids can be used to define the rate of breakdown of individual proteins by inspection of mass shifts in tryptic fragments. The approach has been applied to an analysis of abundant proteins in glucose-limited yeast cells grown in aerobic chemostat culture at steady state. The average rate of degradation of 50 proteins was 2.2%/h, although some proteins were turned over at imperceptible rates, and others had degradation rates of almost 10%/h. This range of values suggests that protein turnover is a significant missing dimension in proteomic experiments and needs to be considered when assessing protein abundance data and comparing it to the relative abundance of cognate mRNA species.
Collapse
Affiliation(s)
- Julie M Pratt
- Department of Veterinary Preclinical Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZJ, United Kingom
| | | | | | | | | | | | | |
Collapse
|
14
|
Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL. Archaeal proteasomes: proteolytic nanocompartments of the cell. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:279-338. [PMID: 11677686 DOI: 10.1016/s0065-2164(01)50008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
15
|
Dohlman HG, Thorner JW. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 2002; 70:703-54. [PMID: 11395421 DOI: 10.1146/annurev.biochem.70.1.703] [Citation(s) in RCA: 366] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All cells have the capacity to evoke appropriate and measured responses to signal molecules (such as peptide hormones), environmental changes, and other external stimuli. Tremendous progress has been made in identifying the proteins that mediate cellular response to such signals and in elucidating how events at the cell surface are linked to subsequent biochemical changes in the cytoplasm and nucleus. An emerging area of investigation concerns how signaling components are assembled and regulated (both spatially and temporally), so as to control properly the specificity and intensity of a given signaling pathway. A related question under intensive study is how the action of an individual signaling pathway is integrated with (or insulated from) other pathways to constitute larger networks that control overall cell behavior appropriately. This review describes the signal transduction pathway used by budding yeast (Saccharomyces cerevisiae) to respond to its peptide mating pheromones. This pathway is comprised by receptors, a heterotrimeric G protein, and a protein kinase cascade all remarkably similar to counterparts in multicellular organisms. The primary focus of this review, however, is recent advances that have been made, using primarily genetic methods, in identifying molecules responsible for regulation of the action of the components of this signaling pathway. Just as many of the constituent proteins of this pathway and their interrelationships were first identified in yeast, the functions of some of these regulators have clearly been conserved in metazoans, and others will likely serve as additional models for molecules that carry out analogous roles in higher organisms.
Collapse
Affiliation(s)
- H G Dohlman
- Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA.
| | | |
Collapse
|
16
|
Owsianik G, Balzi l L, Ghislain M. Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae. Mol Microbiol 2002; 43:1295-308. [PMID: 11918814 DOI: 10.1046/j.1365-2958.2002.02823.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotic cells, intracellular proteolysis occurs mainly via the ubiquitin-proteasome system. Expression of the yeast proteasome is under the control of the transcription factor, Rpn4p (also known as Son1p/Ufd5p). We show here that the RPN4 gene promoter contains regulatory sequences that bind Pdr1p and Pdr3p, two homologous zinc finger-containing transcription factors, which mediate multiple drug resistance through the expression of membrane transporter proteins. Mutations in the RPN4 Pdr1p/Pdr3p binding sites lead to decreased expression of the proteasome RPT6 gene and to defective ubiquitin-mediated proteolysis. Pdr3p, but not Pdr1p, is required for normal levels of intracellular proteolysis, indicating that the two transcription factors have distinct functions in the control of RPN4 expression. The RPN4 promoter contains an additional sequence that binds Yap1p, a bZIP-type transcription factor that plays an important role in the oxidative stress response and multidrug resistance. We also show that the Yap1p response element is important in the transactivation of RPN4 by Yap1p. In yeast cells lacking Pdr1p, ubiquitin-Pro-beta-galactosidase, a short-lived protein used to assay proteasome activity, is stabilized by the loss of Yap1p. These data demonstrate that the ubiquitin-proteasome system is controlled by transcriptional regulators of multidrug resistance via RPN4 expression.
Collapse
Affiliation(s)
- Grzegorz Owsianik
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Croix du Sud 2-20, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
17
|
Abstract
Regulated proteolysis plays important roles in cell physiology as well as in pathological conditions. In most of the cases, regulated proteolysis is carried out by the ubiquitin- and proteasome-dependent proteolytic system, which is also in charge of the bulk of cytoplasmic proteolysis. However, apoptosis or the process of programmed cell death is regulated by a different proteolytic system, i.e. by caspases, a family of specialized cysteine proteases. Nevertheless, there is plenty of evidence of a crosstalk between the apoptotic pathways and the ubiquitin and proteasome system, whose function in apoptosis appears to be very complex. Proteasome inhibitors induce apoptosis in multiple cell types, while in other they are relatively harmless or even prevent apoptosis induced by other stimuli. Proteasomes degrade specific proteins during apoptosis, but on the other hand some components of the proteasome system are degraded by caspases. The knowledge about the involvement of the ubiquitin- and proteasome-dependent system in apoptosis is already clinically exploited, since proteasome inhibitors are being tested as experimental drugs in the treatment of cancer and other pathological conditions, where manipulation of apoptosis is desirable.
Collapse
Affiliation(s)
- Cezary Wójcik
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
18
|
Abstract
Pex18p and Pex21p are structurally related yeast peroxins (proteins required for peroxisome biogenesis) that are partially redundant in function. One or the other is essential for the import into peroxisomes of proteins with type 2 peroxisomal targeting sequences (PTS2). These sequences bind to the soluble PTS2 receptor, Pex7p, which in turn binds to Pex18p (or Pex21p or possibly both). Here we show that Pex18p is constitutively degraded with a half-time of less than 10 min in wild-type Saccharomyces cerevisiae. This degradation probably occurs in proteasomes, because it requires the related ubiquitin-conjugating enzymes Ubc4p and Ubc5p and occurs normally in a mutant lacking the Pep4p vacuolar protease. The turnover of Pex18p stops, and Pex18p accumulates to a much higher than normal abundance in pex mutants in which the import of all peroxisomal matrix proteins is blocked. This includes mutants that lack peroxins involved in receptor docking at the membrane (Deltapex13 or Deltapex14), a mutant that lacks the peroxisomal member of the E2 family of ubiquitin-conjugating enzymes (Deltapex4), and others (Deltapex1). This stabilization in a variety of pex mutants indicates that Pex18p turnover is associated with its normal function. A Pex18p-Pex7p complex is detected by immunoprecipitation in wild type cells, and its abundance increases considerably in the Deltapex14 peroxisome biogenesis mutant. Cells that lack Pex7p fail to stabilize and accumulate Pex18p, indicating an important role for complex formation in the stabilization. Mono- and diubiquitinated forms of Pex18p are detected in wild-type cells, and there is no Pex18p turnover in a yeast doa4 mutant in which ubiquitin homeostasis is defective. These data represent, to the best of our knowledge, the first instance of an organelle biogenesis factor that is degraded constitutively and rapidly.
Collapse
Affiliation(s)
- P E Purdue
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, 1190 Fifth Ave., New York, NY 10029-6574, USA.
| | | |
Collapse
|
19
|
Swanson R, Locher M, Hochstrasser M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev 2001; 15:2660-74. [PMID: 11641273 PMCID: PMC312819 DOI: 10.1101/gad.933301] [Citation(s) in RCA: 376] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Substrate discrimination in the ubiquitin-proteasome system is believed to be dictated by specific combinations of ubiquitin-protein ligases (E3s) and ubiquitin-conjugating enzymes (E2s). Here we identify Doa10/Ssm4 as a yeast E3 that is embedded in the endoplasmic reticulum (ER)/nuclear envelope yet can target the soluble transcription factor Matalpha2. Doa10 contains an unusual RING finger, which has ubiquitin-ligase activity in vitro and is essential in vivo for degradation of alpha2 via its Deg1 degradation signal. Doa10 functions with two E2s, Ubc6 and Ubc7, to ubiquitinate Deg1-bearing substrates, and it is also required for the degradation of at least one ER membrane protein. Interestingly, different short-lived ER proteins show distinct requirements for Doa10 and another ER-localized E3, Hrd1. Nevertheless, the two E3s overlap in function: A doa10Delta hrd1Delta mutant is far more sensitive to cadmium relative to either single mutant and displays strong constitutive induction of the unfolded protein response; this suggests a role for both E3s in eliminating aberrant ER proteins. The likely human ortholog of DOA10 is in the cri-du-chat syndrome critical region on chromosome 5p, suggesting that defective ubiquitin ligation might contribute to this common genetic disorder.
Collapse
Affiliation(s)
- R Swanson
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
20
|
Strunnikov AV, Aravind L, Koonin EV. Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. Genetics 2001; 158:95-107. [PMID: 11333221 PMCID: PMC1461644 DOI: 10.1093/genetics/158.1.95] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a search for regulatory genes affecting the targeting of the condensin complex to chromatin in Saccharomyces cerevisiae, we identified a member of the adenovirus protease family, SMT4. SMT4 overexpression suppresses the temperature-sensitive conditional lethal phenotype of smc2-6, but not smc2-8 or smc4-1. A disruption allele of SMT4 has a prominent chromosome phenotype: impaired targeting of Smc4p-GFP to rDNA chromatin. Site-specific mutagenesis of the predicted protease active site cysteine and histidine residues of Smt4p abolishes the SMT4 function in vivo. The previously uncharacterized SIZ1 (SAP and Miz) gene, which encodes a protein containing a predicted DNA-binding SAP module and a Miz finger, is identified as a bypass suppressor of the growth defect associated with the SMT4 disruption. The SIZ1 gene disruption is synthetically lethal with the SIZ2 deletion. We propose that SMT4, SIZ1, and SIZ2 are involved in a novel pathway of chromosome maintenance.
Collapse
Affiliation(s)
- A V Strunnikov
- National Institute of Child Health and Human Development, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
21
|
Abstract
Cell-cycle progression in all eukaryotes is driven by cyclin-dependent kinases (CDKs) and their cyclin partners. In vertebrates, the proper and timely duplication of the genome during S-phase relies on the coordinated activities of positive regulators such as CDK-cyclins and E2F, and negative regulators such as CDK inhibitors of the Cip/Kip and INK4 families. Recent and ongoing work indicates that many important regulators of G1- and S-phases are targeted for ubiquitination and subsequent degradation by the 26S proteasome. The proteolysis of key proteins during G1- and S-phases appears to be central for proper custodial regulation of DNA replication and the maintenance of cellular homeostasis in general. This review highlights the current literature regarding ubiquitin-mediated proteolysis of G1- and S-phase regulators and the control of events during the initiation and completion of DNA replication in vertebrates.
Collapse
Affiliation(s)
- P R Yew
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
22
|
Sommer T, Jarosch E, Lenk U. Compartment-specific functions of the ubiquitin-proteasome pathway. Rev Physiol Biochem Pharmacol 2001; 142:97-160. [PMID: 11190579 DOI: 10.1007/bfb0117492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- T Sommer
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | | | | |
Collapse
|
23
|
Satoh K, Sasajima H, Nyoumura KI, Yokosawa H, Sawada H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 2001; 40:314-9. [PMID: 11148024 DOI: 10.1021/bi001815n] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated whether the assembly/disassembly of the 26S proteasome is regulated by phosphorylation/dephosphorylation. The regulatory complex disassembled from the 26S proteasome was capable of phosphorylating the p45/Sug1/Rpt6 subunit, suggesting that the protein kinase is activated upon dissociation of the 26S proteasome or that the phosphorylation site of p45 becomes susceptible to the protein kinase. In addition, the p45-phosphorylated regulatory complex was found to be incorporated into the 26S proteasome. When the 26S proteasome was treated with alkaline phosphatase, it was dissociated into the 20S proteasome and the regulatory complex. Furthermore, the p45 subunit and the C3/alpha2 subunit were cross-linked with DTBP, whereas these subunits were not cross-linked by dephosphorylating the 26S proteasome. These results indicate that the 26S proteasome is disassembled into the constituent subcomplexes by dephosphorylation and that it is assembled by phosphorylation of p45 by a protein kinase, which is tightly associated with the regulatory complex. It was also revealed that the p45 subunit is directly associated with the 20S proteasome alpha-subunit C3 in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- K Satoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | |
Collapse
|
24
|
Swanson R, Hochstrasser M. A viable ubiquitin-activating enzyme mutant for evaluating ubiquitin system function in Saccharomyces cerevisiae. FEBS Lett 2000; 477:193-8. [PMID: 10908719 DOI: 10.1016/s0014-5793(00)01802-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ligation of proteins to ubiquitin requires activation of ubiquitin by E1, the ubiquitin-activating enzyme. Mutant alleles of E1 in mammalian cells have been crucial for dissecting the contribution of the ubiquitin system to cell function. Comparable mutants have been unavailable for Saccharomyces cerevisiae. Here we describe the isolation and characterization of a hypomorphic allele of S. cerevisiae E1. Protein modification by ubiquitin is strongly impaired in the mutant, inhibiting degradation of ubiquitin-proteasome pathway substrates as well as ubiquitin-dependent but proteasome-independent degradation of membrane receptors. This allele will be a useful tool for evaluating the ubiquitin-dependence of cellular processes in yeast, even those in which the proteasome is not involved.
Collapse
Affiliation(s)
- R Swanson
- University of Chicago, Department of Biochemistry and Molecular Biology, 920 East 58th Street, 60637, Chicago, IL, USA
| | | |
Collapse
|