1
|
Varga L, Moca VV, Molnár B, Perez-Cervera L, Selim MK, Díaz-Parra A, Moratal D, Péntek B, Sommer WH, Mureșan RC, Canals S, Ercsey-Ravasz M. Brain dynamics supported by a hierarchy of complex correlation patterns defining a robust functional architecture. Cell Syst 2024; 15:770-786.e5. [PMID: 39142285 DOI: 10.1016/j.cels.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/01/2023] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Functional magnetic resonance imaging (fMRI) provides insights into cognitive processes with significant clinical potential. However, delays in brain region communication and dynamic variations are often overlooked in functional network studies. We demonstrate that networks extracted from fMRI cross-correlation matrices, considering time lags between signals, show remarkable reliability when focusing on statistical distributions of network properties. This reveals a robust brain functional connectivity pattern, featuring a sparse backbone of strong 0-lag correlations and weaker links capturing coordination at various time delays. This dynamic yet stable network architecture is consistent across rats, marmosets, and humans, as well as in electroencephalogram (EEG) data, indicating potential universality in brain dynamics. Second-order properties of the dynamic functional network reveal a remarkably stable hierarchy of functional correlations in both group-level comparisons and test-retest analyses. Validation using alcohol use disorder fMRI data uncovers broader shifts in network properties than previously reported, demonstrating the potential of this method for identifying disease biomarkers.
Collapse
Affiliation(s)
- Levente Varga
- Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania; Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Vasile V Moca
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Botond Molnár
- Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania; Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Laura Perez-Cervera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Mohamed Kotb Selim
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Antonio Díaz-Parra
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Balázs Péntek
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Wolfgang H Sommer
- Institute of Psychopharmacology and Clinic for Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Raul C Mureșan
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania; STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain.
| | - Maria Ercsey-Ravasz
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Greene E, Morrison J. Human perception of flicker-fused letters that are luminance balanced. Eur J Neurosci 2024; 60:4291-4302. [PMID: 38840566 DOI: 10.1111/ejn.16425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/22/2024] [Accepted: 04/20/2024] [Indexed: 06/07/2024]
Abstract
The Talbot-Plateau law specifies what combinations of flash frequency, duration, and intensity will yield a flicker-fused stimulus that matches the brightness of a steady stimulus. It has proven to be remarkably robust in its predictions, and here we provide additional support though the use of a contrast discrimination task. However, we also find that the visual system can register flicker-fused letters when the combination of frequency and duration is relatively low. The letters are recognized even though they have the same physical luminance as background. We hypothesize that the letters elicit synchronous oscillations that encode for stimulus attributes, which prevents the letter from blending into the background.
Collapse
Affiliation(s)
- Ernest Greene
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Jack Morrison
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Neuenschwander S, Rosso G, Branco N, Freitag F, Tehovnik EJ, Schmidt KE, Baron J. On the Functional Role of Gamma Synchronization in the Retinogeniculate System of the Cat. J Neurosci 2023; 43:5204-5220. [PMID: 37328291 PMCID: PMC10342227 DOI: 10.1523/jneurosci.1550-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023] Open
Abstract
Fast gamma oscillations, generated within the retina, and transmitted to the cortex via the lateral geniculate nucleus (LGN), are thought to carry information about stimulus size and continuity. This hypothesis relies mainly on studies conducted under anesthesia and the extent to which it holds under more naturalistic conditions remains unclear. Using multielectrode recordings of spiking activity in the retina and the LGN of both male and female cats, we show that visually driven gamma oscillations are absent for awake states and are highly dependent on halothane (or isoflurane). Under ketamine, responses were nonoscillatory, as in the awake condition. Response entrainment to the monitor refresh was commonly observed up to 120 Hz and was superseded by the gamma oscillatory responses induced by halothane. Given that retinal gamma oscillations are contingent on halothane anesthesia and absent in the awake cat, such oscillations should be considered artifactual, thus playing no functional role in vision.SIGNIFICANCE STATEMENT Gamma rhythms have been proposed to be a robust encoding mechanism critical for visual processing. In the retinogeniculate system of the cat, many studies have shown gamma oscillations associated with responses to static stimuli. Here, we extend these observations to dynamic stimuli. An unexpected finding was that retinal gamma responses strongly depend on halothane concentration levels and are absent in the awake cat. These results weaken the notion that gamma in the retina is relevant for vision. Notably, retinal gamma shares many of the properties of cortical gamma. In this respect, oscillations induced by halothane in the retina may serve as a valuable preparation, although artificial, for studying oscillatory dynamics.
Collapse
Affiliation(s)
- Sergio Neuenschwander
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Giovanne Rosso
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Natalia Branco
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Fabio Freitag
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Edward J Tehovnik
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Kerstin E Schmidt
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Jerome Baron
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Rathore V, Kachhvah AD, Jalan S. Catalytic feed-forward explosive synchronization in multilayer networks. CHAOS (WOODBURY, N.Y.) 2021; 31:123130. [PMID: 34972326 DOI: 10.1063/5.0060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Inhibitory couplings are crucial for the normal functioning of many real-world complex systems. Inhibition in one layer has been shown to induce explosive synchronization in another excitatory (or positive) layer of duplex networks. By extending this framework to multiplex networks, this article shows that inhibition in a single layer can act as a catalyst, leading to explosive synchronization transitions in the rest of the layers feed-forwarded through intermediate layer(s). Considering a multiplex network of coupled Kuramoto oscillators, we demonstrate that the characteristics of the transition emergent in a layer can be entirely controlled by the intra-layer coupling of other layers and the multiplexing strengths. The results presented here are essential to fathom the synchronization behavior of coupled dynamical units in multi-layer systems possessing inhibitory coupling in one of its layers, representing the importance of multiplexing.
Collapse
Affiliation(s)
- Vasundhara Rathore
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Ajay Deep Kachhvah
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sarika Jalan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
5
|
Contactless measurements of retinal activity using optically pumped magnetometers. Neuroimage 2021; 243:118528. [PMID: 34464740 DOI: 10.1016/j.neuroimage.2021.118528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Optically pumped magnetometers (OPMs) have been adopted for the measurement of brain activity. Without the need to be cooled to cryogenic temperatures, an array of these sensors can be placed more flexibly, which allows for the recording of neuronal structures other than neocortex. Here we use eight OPM sensors to record human retinal activity following flash stimulation. We compare this magnetoretinographic (MRG) activity to the simultaneously recorded electroretinogram of the eight participants. The MRG shows the familiar flash-evoked potentials (a-wave and b-wave) and shares a highly significant amount of information with the electroretinogram (both in a simultaneous and separate measurement). We conclude that OPM sensors have the potential to become a contactless alternative to fiber electrodes for the measurement of retinal activity. Such a contactless solution can benefit both clinical and neuroscientific settings.
Collapse
|
6
|
Ahnaou A, Broadbelt T, Biermans R, Huysmans H, Manyakov NV, Drinkenburg WHIM. The phosphodiesterase-4 and glycine transporter-1 inhibitors enhance in vivo hippocampal theta network connectivity and synaptic plasticity, whereas D-serine does not. Transl Psychiatry 2020; 10:197. [PMID: 32555167 PMCID: PMC7303193 DOI: 10.1038/s41398-020-00875-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Dysfunctional N-methyl-D-aspartate receptors (NMDARs) and cyclic adenosine monophosphate (cAMP) have been associated with deficits in synaptic plasticity and cognition found in neurodegenerative and neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia. Therapeutic approaches that indirectly enhance NMDAR function through increases in glycine and/or D-serine levels as well as inhibition of phosphodiesterases that reduces degradation of cAMP, are expected to enhance synaptic strength, connectivity and to potentially impact cognition processes. The present in vivo study investigated effects of subcutaneous administration of D-serine, the glycine transporter 1 (GlyT1) inhibitor SSR504734 and the PDE4 inhibitor rolipram, on network oscillations, connectivity and long-term potentiation (LTP) at the hippocampi circuits in Sprague-Dawley rats. In conscious animals, multichannel EEG recordings assessed network oscillations and connectivity at frontal and hippocampal CA1-CA3 circuits. Under urethane anaesthesia, field excitatory postsynaptic potentials (fEPSPs) were measured in the CA1 subfield of the hippocampus after high-frequency stimulation (HFS) of the Schaffer collateral-CA1 (SC) pathway. SSR504734 and rolipram significantly increased slow theta oscillations (4-6.5 Hz) at the CA1-CA3, slow gamma oscillations (30-50 Hz) in the frontal areas and enhanced coherence in the CA1-CA3 network, which were dissociated from motor behaviour. SSR504734 enhanced short-term potentiation (STP) and fEPSP responses were extended into LTP response, whereas the potentiation of EPSP slope was short-lived to STP with rolipram. Unlike glycine, increased levels of D-serine had no effect on network oscillations and limits the LTP induction and expression. The present data support a facilitating role of glycine and cAMP on network oscillations and synaptic efficacy at the CA3-CA1 circuit in rats, whereas raising endogenous D-serine levels had no such beneficial effects.
Collapse
Affiliation(s)
- A. Ahnaou
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - T. Broadbelt
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - R. Biermans
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - H. Huysmans
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - N. V. Manyakov
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - W. H. I. M. Drinkenburg
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
7
|
Dan HD, Zhou FQ, Huang X, Xing YQ, Shen Y. Altered intra- and inter-regional functional connectivity of the visual cortex in individuals with peripheral vision loss due to retinitis pigmentosa. Vision Res 2019; 159:68-75. [PMID: 30904614 DOI: 10.1016/j.visres.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/04/2019] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
This study investigated changes in intra- and inter-regional functional connectivity (FC) in individuals with retinitis pigmentosa (RP) by using regional homogeneity (ReHo) and FC methods. Sixteen RP individuals and 14 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging scans (fMRI). A combined ReHo and FC method was conducted to evaluate synchronization of brain activity. Compared with HCs, RP individuals had significantly lower ReHo values in the bilateral lingual gyrus/cerebellum posterior lobe (LGG/CPL). In FC analysis, the RP group showed decreased positive FC relative to the HC group, from bilateral LGG/CPL to bilateral LGG/cuneus (CUN) and to left postcentral gyrus (PosCG). In contrast, the RP group showed increased negative FC relative to the HC group, from bilateral LGG/CPL to bilateral thalamus, and decreased negative FC from bilateral LGG/CPL to right middle frontal gyrus (MFG), and to left inferior parietal lobule (IPL). Moreover, ReHo values of the bilateral LGG/CPL showed negative correlations with the duration of RP. FC values of the bilateral LGG/CPL-left IPL showed negative correlations with best-corrected visual acuity (BCVA) of the right eye and left eye in RP individuals. Our results reveal reduced synchronicity of neural activity changes in the primary visual area in RP individuals. Moreover, RP individuals showed intrinsic visual network disconnection and reorganization of the retino-thalamocortical pathway and dorsal visual stream, suggesting impaired visuospatial and stereoscopic vision.
Collapse
Affiliation(s)
- Han-Dong Dan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, China
| | - Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
8
|
Altered whole-brain gray matter volume in primary angle closure glaucoma patients: a voxel-based morphometry study. Neuroreport 2019; 29:1405-1412. [PMID: 30199440 DOI: 10.1097/wnr.0000000000001126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The study aimed to compare the whole-brain gray matter volume (GMV) and white matter volume (WMV) difference between primary angle closure glaucoma (PACG) patients and health controls (HCs) using a voxel-based morphometry method. A total of 27 patients with PACG (17 males and 10 females) and 27 HCs (17 males and 10 females), closely matched for age and education, were enrolled in the study. All subjects underwent magnetic resonance imaging (MRI) scans. The MRI data were processed using SPM8 software in voxel-based morphometry 8 toolbox. The relationship between the mean GMV values of brain regions and the clinical features including psychological testing and mean retinal nerve fiber layer (RNFL) thickness in PACG groups were analyzed by using Pearson correlation. Compared with HCs, PACG patients showed significantly decreased GMV values in the left cerebellum posterior lobe (CPL), right extra-nuclear, and right superior temporal gyrus. In contrast, PACG patients showed significantly increased GMV values in the left CPL, right CPL, right superior temporal gyrus, right thalamus and right insula (P<0.01). Moreover, in the PACG group, the left mean RNFL showed a positive correlation with the mean GMV values of the left CPL (r=0.719; P<0.001) and the right mean RNFL showed a positive correlation with the mean GMV values of the left CPL (r=0.721; P<0.001). The Hamilton depression score showed a positive correlation with the mean GMV values of right insula (r=0.897; P<0.001). Our results demonstrated that PACG patients showed altered brain structure in various regions related to visuomotor function, thalamocortical pathway, and emotion function, which might provide a useful informations to understanding the anatomy neural mechanisms of deficit in vision loss and depression in PACG.
Collapse
|
9
|
Abnormal intrinsic functional network hubs and connectivity following peripheral visual loss because of inherited retinal degeneration. Neuroreport 2019; 30:295-304. [DOI: 10.1097/wnr.0000000000001200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Jerath R, Cearley SM, Barnes VA, Nixon-Shapiro E. How lateral inhibition and fast retinogeniculo-cortical oscillations create vision: A new hypothesis. Med Hypotheses 2016; 96:20-29. [PMID: 27959269 DOI: 10.1016/j.mehy.2016.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022]
Abstract
The role of the physiological processes involved in human vision escapes clarification in current literature. Many unanswered questions about vision include: 1) whether there is more to lateral inhibition than previously proposed, 2) the role of the discs in rods and cones, 3) how inverted images on the retina are converted to erect images for visual perception, 4) what portion of the image formed on the retina is actually processed in the brain, 5) the reason we have an after-image with antagonistic colors, and 6) how we remember space. This theoretical article attempts to clarify some of the physiological processes involved with human vision. The global integration of visual information is conceptual; therefore, we include illustrations to present our theory. Universally, the eyeball is 2.4cm and works together with membrane potential, correspondingly representing the retinal layers, photoreceptors, and cortex. Images formed within the photoreceptors must first be converted into chemical signals on the photoreceptors' individual discs and the signals at each disc are transduced from light photons into electrical signals. We contend that the discs code the electrical signals into accurate distances and are shown in our figures. The pre-existing oscillations among the various cortices including the striate and parietal cortex, and the retina work in unison to create an infrastructure of visual space that functionally "places" the objects within this "neural" space. The horizontal layers integrate all discs accurately to create a retina that is pre-coded for distance. Our theory suggests image inversion never takes place on the retina, but rather images fall onto the retina as compressed and coiled, then amplified through lateral inhibition through intensification and amplification on the OFF-center cones. The intensified and amplified images are decompressed and expanded in the brain, which become the images we perceive as external vision. SUMMARY This is a theoretical article presenting a novel hypothesis about the physiological processes in vision, and expounds upon the visual aspect of two of our previously published articles, "A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience", and "Functional representation of vision within the mind: A visual consciousness model based in 3D default space." Currently, neuroscience teaches that visual images are initially inverted on the retina, processed in the brain, and then conscious perception of vision happens in the visual cortex. Here, we propose that inversion of visual images never takes place because images enter the retina as coiled and compressed graded potentials that are intensified and amplified in OFF-center photoreceptors. Once they reach the brain, they are decompressed and expanded to the original size of the image, which is perceived by the brain as the external image. We adduce that pre-existing oscillations (alpha, beta, and gamma) among the various cortices in the brain (including the striate and parietal cortex) and the retina, work together in unison to create an infrastructure of visual space thatfunctionally "places" the objects within a "neural" space. These fast oscillations "bring" the faculties of the cortical activity to the retina, creating the infrastructure of the space within the eye where visual information can be immediately recognized by the brain. By this we mean that the visual (striate) cortex synchronizes the information with the photoreceptors in the retina, and the brain instantaneously receives the already processed visual image, thereby relinquishing the eye from being required to send the information to the brain to be interpreted before it can rise to consciousness. The visual system is a heavily studied area of neuroscience yet very little is known about how vision occurs. We believe that our novel hypothesis provides new insights into how vision becomes part of consciousness, helps to reconcile various previously proposed models, and further elucidates current questions in vision based on our unified 3D default space model. Illustrations are provided to aid in explaining our theory.
Collapse
|
11
|
Kammermeier S, Pittard D, Hamada I, Wichmann T. Effects of high-frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys. J Neurophysiol 2016; 116:2869-2881. [PMID: 27683881 DOI: 10.1152/jn.00104.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/22/2016] [Indexed: 01/28/2023] Open
Abstract
Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs.
Collapse
Affiliation(s)
- Stefan Kammermeier
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Damien Pittard
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Ikuma Hamada
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; .,School of Medicine, Department of Neurology, Emory University, Atlanta, Georgia; and.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
12
|
Khazipov R, Minlebaev M, Valeeva G. Early gamma oscillations. Neuroscience 2013; 250:240-52. [PMID: 23872391 DOI: 10.1016/j.neuroscience.2013.07.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/27/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
Gamma oscillations have long been considered to emerge late in development. However, recent studies have revealed that gamma oscillations are transiently expressed in the rat barrel cortex during the first postnatal week, a "critical" period of sensory-dependent barrel map formation. The mechanisms underlying the generation and physiological roles of early gamma oscillations (EGOs) in the development of thalamocortical circuits will be discussed in this review. In contrast to adult gamma oscillations, synchronized through gamma-rhythmic perisomatic inhibition, EGOs are primarily driven through feedforward gamma-rhythmic excitatory input from the thalamus. The recruitment of cortical interneurons to EGOs and the emergence of feedforward inhibition are observed by the end of the first postnatal week. EGOs facilitate the precise synchronization of topographically aligned thalamic and cortical neurons. The multiple replay of sensory input during EGOs supports long-term potentiation at thalamocortical synapses. We suggest that this early form of gamma oscillations, which is mechanistically different from adult gamma oscillations, guides barrel map formation during the critical developmental period.
Collapse
Affiliation(s)
- R Khazipov
- INMED - INSERM U901, University Aix-Marseille II, Marseille, France; Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.
| | | | | |
Collapse
|
13
|
Syed ECJ, Benazzouz A, Taillade M, Baufreton J, Champeaux K, Falgairolle M, Bioulac B, Gross CE, Boraud T. Oscillatory entrainment of subthalamic nucleus neurons and behavioural consequences in rodents and primates. Eur J Neurosci 2012; 36:3246-57. [PMID: 22853738 DOI: 10.1111/j.1460-9568.2012.08246.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the functional role of oscillatory activity in the local field potential (LFP) of the subthalamic nucleus (STN) in the pathophysiology of Parkinson's disease (PD). It has been postulated that beta (15-30 Hz) oscillatory activity in the basal ganglia induces PD motor symptoms. To assess this hypothesis, an LFP showing significant power in the beta frequency range (23 Hz) was used as a stimulus both in vitro and in vivo. We first demonstrated in rat brain slices that STN neuronal activity was driven by the LFP stimulation. We then applied beta stimulation to the STN of 16 rats and two monkeys while quantifying motor behaviour. Although stimulation-induced behavioural effects were observed, stimulation of the STN at 23 Hz induced no significant decrease in motor performance in either rodents or primates. This study is the first to show LFP-induced behaviour in both rats and primates, and highlights the complex relationship between beta power and parkinsonian symptoms.
Collapse
Affiliation(s)
- E C J Syed
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université Bordeaux Segalen, Bordeaux Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Uhlhaas PJ, Pipa G, Neuenschwander S, Wibral M, Singer W. A new look at gamma? High- (>60 Hz) γ-band activity in cortical networks: function, mechanisms and impairment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:14-28. [PMID: 21034768 DOI: 10.1016/j.pbiomolbio.2010.10.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 11/19/2022]
Abstract
γ-band oscillations are thought to play a crucial role in information processing in cortical networks. In addition to oscillatory activity between 30 and 60 Hz, current evidence from electro- and magnetoencephalography (EEG/MEG) and local-field potentials (LFPs) has consistently shown oscillations >60 Hz (high γ-band) whose function and generating mechanisms are unclear. In the present paper, we summarize data that highlights the importance of high γ-band activity for cortical computations through establishing correlations between the modulation of oscillations in the 60-200 Hz frequency and specific cognitive functions. Moreover, we will suggest that high γ-band activity is impaired in neuropsychiatric disorders, such as schizophrenia and epilepsy. In the final part of the paper, we will review physiological mechanisms underlying the generation of high γ-band oscillations and discuss the functional implications of low vs. high γ-band activity patterns in cortical networks.
Collapse
Affiliation(s)
- Peter J Uhlhaas
- Department of Neurophysiology, Max-Planck Institute for Brain Research, Deutschordenstr. 46, Frankfurt am Main 60528, Germany.
| | | | | | | | | |
Collapse
|
15
|
Ito H, Maldonado PE, Gray CM. Dynamics of stimulus-evoked spike timing correlations in the cat lateral geniculate nucleus. J Neurophysiol 2010; 104:3276-92. [PMID: 20881200 DOI: 10.1152/jn.01000.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precisely synchronized neuronal activity has been commonly observed in the mammalian visual pathway. Spike timing correlations in the lateral geniculate nucleus (LGN) often take the form of phase synchronized oscillations in the high gamma frequency range. To study the relations between oscillatory activity, synchrony, and their time-dependent properties, we recorded activity from multiple single units in the cat LGN under stimulation by stationary spots of light. Autocorrelation analysis showed that approximately one third of the cells exhibited oscillatory firing with a mean frequency ∼80 Hz. Cross-correlation analysis showed that 30% of unit pairs showed significant synchronization, and 61% of these pairs consisted of synchronous oscillations. Cross-correlation analysis assumes that synchronous firing is stationary and maintained throughout the period of stimulation. We tested this assumption by applying unitary events analysis (UEA). We found that UEA was more sensitive to weak and transient synchrony than cross-correlation analysis and detected a higher incidence (49% of cell pairs) of significant synchrony (unitary events). In many unit pairs, the unitary events were optimally characterized at a bin width of 1 ms, indicating that neural synchrony has a high degree of temporal precision. We also found that approximately one half of the unit pairs showed nonstationary changes in synchrony that could not be predicted by the modulation of firing rates. Population statistics showed that the onset of synchrony between LGN cells occurred significantly later than that observed between retinal afferents and LGN cells. The synchrony detected among unit pairs recorded on separate tetrodes tended to be more transient and have a later onset than that observed between adjacent units. These findings show that stimulus-evoked synchronous activity within the LGN is often rhythmic, highly nonstationary, and modulated by endogenous processes that are not tightly correlated with firing rate.
Collapse
Affiliation(s)
- Hiroyuki Ito
- Faculty of Computer Science and Engineering, Kyoto Sangyo Univ., Kamigamo, Kita-ku, Kyoto 603-8555, Japan.
| | | | | |
Collapse
|
16
|
Wang S, Zhou C. Rate-synchrony relationship between input and output of spike trains in neuronal networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:011917. [PMID: 20365409 DOI: 10.1103/physreve.81.011917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/06/2009] [Indexed: 05/29/2023]
Abstract
Neuronal networks interact via spike trains. How the spike trains are transformed by neuronal networks is critical for understanding the underlying mechanism of information processing in the nervous system. Both the rate and synchrony of the spikes can affect the transmission, while the relationship between them has not been fully understood. Here we investigate the mapping between input and output spike trains of a neuronal network in terms of firing rate and synchrony. With large enough input rate, the working mode of the neurons is gradually changed from temporal integrators into coincidence detectors when the synchrony degree of input spike trains increases. Since the membrane potentials of the neurons can be depolarized to near the firing threshold by uncorrelated input spikes, small input synchrony can cause great output synchrony. On the other hand, the synchrony in the output may be reduced when the input rate is too small. The case of the feedforward network can be regarded as iterative process of such an input-output relationship. The activity in deep layers of the feedforward network is in an all-or-none manner depending on the input rate and synchrony.
Collapse
Affiliation(s)
- Sentao Wang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | |
Collapse
|
17
|
Abstract
AbstractChallenges to visual prediction as an organizing concept come from three main sources: (1) from observations arising from the results of experiments employing unpredictable motion, (2) from the assertions that motor processes compensate for all neural delays, and (3) from multiple interpretations specific to the flash-lag effect. One clarification that has emerged is that visual prediction is a process that either complements or reflects non-visual (e.g., motor) prediction.
Collapse
|
18
|
Amassian V, Mari Z, Sagliocco L, Hassan N, Maccabee P, Cracco JB, Cracco RQ, Bodis-Wollner I. Perception of Phosphenes and Flashed Alphabetical Characters is Enhanced by Single-Pulse Transcranial Magnetic Stimulation of Anterior Frontal Lobe: The Thalamic Gate Hypothesis. Perception 2008; 37:375-88. [DOI: 10.1068/p5948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Single pulses of transcranial magnetic stimulation (sTMS) restricted locally to the primary cortical areas for somatosensory and visual input, unlike the effects of repetitive stimulation, usually fail to elicit projected sensations. We tested the effect of sTMS over anterior frontal cortex in facilitating phosphenes from preceding sTMS over calcarine cortex, which alone was rarely effective in eliciting phosphenes. The combined sTMS elicited complex phosphenes, which changed with the site of frontal sTMS and the interstimulus interval. Our results show that sTMS over anterior frontal cortex also improved reporting of weakly illuminated, flashed four-letter stimuli, which permitted its statistical validation. We propose that the present demonstration of frontal cortical facilitation of visual awareness, when combined with the previous finding of projected paresthesias and sense of movement (Amassian et al, 1991 Brain114 2505 – 2520), provide evidence of a general frontal opening effect on a thalamic gate. Opening this gate facilitates entry of information from primary cortical receiving areas to thalamus. Thereby, the reciprocal thalamocortical interrelations that subserve conscious awareness of sensory stimuli could be fostered.
Collapse
Affiliation(s)
- Vahe Amassian
- Department of Neurology, [also Department of Physiology and Pharmacology
| | | | | | | | | | | | | | - Ivan Bodis-Wollner
- Department of Ophthalmology], Downstate Medical Center, State University of New York, 450 Clarkson Avenue, Brooklyn, NY 11201, USA
| |
Collapse
|
19
|
Greene E. Spatial and temporal proximity as factors in shape recognition. Behav Brain Funct 2007; 3:27. [PMID: 17550614 PMCID: PMC1894631 DOI: 10.1186/1744-9081-3-27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 06/05/2007] [Indexed: 11/30/2022] Open
Abstract
Prior research from this laboratory examined minimal stimulus conditions that allow for recognition of objects. Using briefly flashed dots that marked the outer border of objects, it was found that timing differentials within and among successive dot pairs affected recognition, with significant declines being seen by the addition of temporal separations in the millisecond range. These experiments were done with dot pairs that had close spatial proximity, which leaves open the possibility that the effects could be attributed to strictly local neural encoding processes. The present research reports that spatial separation of pair members resulted in declines in recognition that were similar to those produced with close spacing of pair members. Both for close and separated dot pairs, recognition was best when they were displayed with near simultaneity, which likely generated synchronized spikes in the retina. These results provide cognitive evidence in support of proposals that synchronous neural activity is part of the image encoding process. The physiological literature is surveyed and discussed in an effort to delineate the issues, and a tentative model of retinal response to these stimulus conditions is offered.
Collapse
Affiliation(s)
- Ernest Greene
- Laboratory for Neurometric Research, Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA.
| |
Collapse
|
20
|
Hermer-Vazquez R, Hermer-Vazquez L, Srinivasan S, Chapin JK. Beta- and gamma-frequency coupling between olfactory and motor brain regions prior to skilled, olfactory-driven reaching. Exp Brain Res 2007; 180:217-35. [PMID: 17273874 PMCID: PMC2747650 DOI: 10.1007/s00221-007-0850-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 12/30/2006] [Indexed: 11/28/2022]
Abstract
A major question in neuroscience concerns how widely separated brain regions coordinate their activity to produce unitary cognitive states or motor actions. To investigate this question, we employed multisite, multielectrode recording in rats to study how olfactory and motor circuits are coupled prior to the execution of an olfactory-driven, GO/NO-GO variant of a skilled, rapidly executed (approximately 350-600 ms) reaching task. During task performance, we recorded multi-single units and local field potentials (LFPs) simultaneously from the rats' olfactory cortex (specifically, the posterior piriform cortex) and from cortical and subcortical motor sites (the caudal forepaw M1, and the magnocellular red nucleus, respectively). Analyses on multi-single units across areas revealed an increase in beta-frequency spiking (12-30 Hz) during a approximately 100 ms window surrounding the Final Sniff of the GO cue before lifting the arm (the "Sniff-GO window") that was seldom seen when animals sniffed the NO-GO cue. Also during the Sniff-GO window, LFPs displayed a striking increase in beta, low-gamma, and high-gamma energy (12-30, 30-50, and 50-100 Hz, respectively), and oscillations in the high gamma band appeared to be coherent across the recorded sites. These results indicate that transient, multispectral coherence across cortical and subcortical brain sites is part of the coordination process prior to sensory-guided movement initiation.
Collapse
Affiliation(s)
- Raymond Hermer-Vazquez
- Behavioral Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Linda Hermer-Vazquez
- Behavioral Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Sridhar Srinivasan
- Department of Electrical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - John K. Chapin
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
21
|
Amthor FR, Tootle JS, Grzywacz NM. Stimulus-dependent correlated firing in directionally selective retinal ganglion cells. Vis Neurosci 2006; 22:769-87. [PMID: 16469187 DOI: 10.1017/s0952523805226081] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 07/15/2005] [Indexed: 11/06/2022]
Abstract
Synchronous spiking has been postulated to be a meta-signal in visual cortex and other CNS loci that tags neuronal spike responses to a single entity. In retina, however, synchronized spikes have been postulated to arise via mechanisms that would largely preclude their carrying such a code. One such mechanism is gap junction coupling, in which synchronous spikes would be a by-product of lateral signal sharing. Synchronous spikes have also been postulated to arise from common-source inputs to retinal ganglion cells having overlapping receptive fields, and thus code for stimulus location in the overlap area. On-Off directionally selective ganglion cells of the rabbit retina exhibit a highly precise tiling pattern in which gap junction coupling occurs between some neighboring, same-preferred-direction cells. Depending on how correlated spikes arise, and for what purpose, one could postulate that synchronized spikes in this system (1) always arise in some subset of same-direction cells because of gap junctions, but never in non-same-preferred-directional cells; (2) never arise in same-directional cells because their receptive fields do not overlap, but arise only in different-directional cells whose receptive fields overlap, as a code for location in the overlap region; or (3) arise in a stimulus-dependent manner for both same- and different-preferred-direction cells for a function similar to that postulated for neurons in visual cortex. Simultaneous, extracellular recordings were obtained from neighboring On-Off directionally selective (DS) ganglion cells having the same and different preferred directions in an isolated rabbit retinal preparation. Stimulation by large flashing spots elicited responses from DS ganglion-cell pairs that typically showed little synchronous firing. Movement of extended bars, however, often produced synchronous spikes in cells having similar or orthogonal preferred directions. Surprisingly, correlated firing could occur for the opposite contrast polarity edges of moving stimuli when the leading edge of a sweeping bar excited the receptive field of one cell as its trailing edge stimulated another. Pharmacological manipulations showed that the spike synchronization is enhanced by excitatory cholinergic amacrine-cell inputs, and reduced by inhibitory GABAergic inputs, in a motion-specific manner. One possible interpretation is that this synchronous firing could be a signal to higher centers that the outputs of the two DS ganglion cells should be "bound" together as responding to a contour of a common object.
Collapse
Affiliation(s)
- Franklin R Amthor
- Department of Psychology, University of Alabama at Birmingham, 35294-1170, USA.
| | | | | |
Collapse
|
22
|
Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT. High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol 2005; 94:4269-80. [PMID: 16093343 DOI: 10.1152/jn.00324.2005] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded electrophysiological responses from the left frontal and temporal cortex of awake neurosurgical patients to both repetitive background and rare deviant auditory stimuli. Prominent sensory event-related potentials (ERPs) were recorded from auditory association cortex of the temporal lobe and adjacent regions surrounding the posterior Sylvian fissure. Deviant stimuli generated an additional longer latency mismatch response, maximal at more anterior temporal lobe sites. We found low gamma (30-60 Hz) in auditory association cortex, and we also show the existence of high-frequency oscillations above the traditional gamma range (high gamma, 60-250 Hz). Sensory and mismatch potentials were not reliably observed at frontal recording sites. We suggest that the high gamma oscillations are sensory-induced neocortical ripples, similar in physiological origin to the well-studied ripples of the hippocampus.
Collapse
Affiliation(s)
- Erik Edwards
- Department of Psychology, University of California, Berkeley, 94720, USA.
| | | | | | | | | |
Collapse
|
23
|
Abstract
In this work, the enhancement of coherence resonance of firings in a 10-layer feedforward neuronal network with sparse couplings is found when there is noise input to each layer. Periodic signals with frequency 30-80 Hz are found to be well transmitted though the network, and such a frequency sensitivity can be modulated by the noise intensity and is different in different layers. When a random pulse-like signal is input to the neurons of the first layer, the signal can be well read out from the population rates in an optimal range of noise intensity. This ability decreases as the layer index increases.
Collapse
Affiliation(s)
- Sentao Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
| | | |
Collapse
|
24
|
Stuart L, Walter M, Borisyuk R. The correlation grid: analysis of synchronous spiking in multi-dimensional spike train data and identification of feasible connection architectures. Biosystems 2005; 79:223-33. [PMID: 15649608 DOI: 10.1016/j.biosystems.2004.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper presents a visualization technique specifically designed to support the analysis of synchronous firings in multiple, simultaneously recorded, spike trains. This technique, called the correlation grid, enables investigators to identify groups of spike trains, where each pair of spike trains has a high probability of generating spikes approximately simultaneously or within a constant time shift. Moreover, the correlation grid was developed to help solve the following reverse problem: identification of the connection architecture between spike train generating units, which may produce a spike train dataset similar to the one under analysis. To demonstrate the efficacy of this approach, results are presented from a study of three simulated, noisy, spike train datasets. The parameters of the simulated neurons were chosen to reflect the typical characteristics of cortical pyramidal neurons. The schemes of neuronal connections were not known to the analysts. Nevertheless, the correlation grid enabled the analysts to find the correct connection architecture for each of these three data sets.
Collapse
Affiliation(s)
- L Stuart
- The Visualization Laboratory, Centre for Interactive Intelligent Systems, University of Plymouth, Plymouth, UK.
| | | | | |
Collapse
|
25
|
Samonds JM, Bonds AB. Gamma Oscillation Maintains Stimulus Structure-Dependent Synchronization in Cat Visual Cortex. J Neurophysiol 2005; 93:223-36. [PMID: 15282261 DOI: 10.1152/jn.00548.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Visual cortical cells demonstrate both oscillation and synchronization, although the underlying causes and functional significance of these behaviors remain uncertain. We simultaneously recorded single-unit activity with microelectrode arrays in supragranular layers of area 17 of cats paralyzed and anesthetized with propofol and N2O. Rate-normalized autocorrelograms of 24 cells reveal bursting (100%) and gamma oscillation (63%). Renewal density analysis, used to explore the source of oscillation, suggests a contribution from extrinsic influences such as feedback. However, a bursting refractory period, presumably membrane-based, could also encourage oscillatory firing. When we investigated the source of synchronization for 60 cell pairs we found only moderate correlation of synchrony with bursts and oscillation. We did, nonetheless, discover a possible functional role for oscillation. In all cases of cross-correlograms that exhibited oscillation, the strength of the synchrony was maintained throughout the stimulation period. When no oscillation was apparent, 75% of the cell pairs showed decay in their synchronization. The synchrony between cells is strongly dependent on similar response onset latencies. We therefore propose that structured input, which yields tight organization of latency, is a more likely candidate for the source of synchronization than oscillation. The reliable synchrony at response onset could be driven by spatial and temporal correlation of the stimulus that is preserved through the earlier stages of the visual system. Oscillation then contributes to maintenance of the synchrony to enhance reliable transmission of the information for higher cognitive processing.
Collapse
Affiliation(s)
- Jason M Samonds
- Department of Electrical Engineering, Vanderbilt University, 255 Featheringill Hall, 400 24th Ave. South, Nashville, TN 37212, USA
| | | |
Collapse
|
26
|
Wang W, Slotine JJE. On partial contraction analysis for coupled nonlinear oscillators. BIOLOGICAL CYBERNETICS 2005; 92:38-53. [PMID: 15650898 DOI: 10.1007/s00422-004-0527-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 09/30/2004] [Indexed: 05/24/2023]
Abstract
We describe a simple yet general method to analyze networks of coupled identical nonlinear oscillators and study applications to fast synchronization, locomotion, and schooling. Specifically, we use nonlinear contraction theory to derive exact and global (rather than linearized) results on synchronization, antisynchronization, and oscillator death. The method can be applied to coupled networks of various structures and arbitrary size. For oscillators with positive definite diffusion coupling, it can be shown that synchronization always occurs globally for strong enough coupling strengths, and an explicit upper bound on the corresponding threshold can be computed through eigenvalue analysis. The discussion also extends to the case when network structure varies abruptly and asynchronously, as in "flocks" of oscillators or dynamic elements.
Collapse
Affiliation(s)
- Wei Wang
- Nonlinear Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,
| | | |
Collapse
|
27
|
Heinrich SP, Bach M. High-frequency oscillations in human visual cortex do not mirror retinal frequencies. Neurosci Lett 2004; 369:55-8. [PMID: 15380307 DOI: 10.1016/j.neulet.2004.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 07/16/2004] [Accepted: 07/16/2004] [Indexed: 11/26/2022]
Abstract
Flash stimulation elicits oscillatory responses above 100 Hz in human visual cortex. It has been proposed that these are the result of retinal oscillations being directly relayed through the visual pathway to area V1. Experimental evidence, however, is scarce and contradictory. To address this issue, we performed a time-frequency analysis of simultaneously recorded retinal and cortical potentials. Matching frequencies would support the assumption of a direct relationship between retinal and cortical activities. In 4 of 7 subjects the frequency was significantly lower in the cortex than in the retina and in one subject it was significantly higher. The differences were in the range of 10-34 Hz and suggest that the cortical oscillations are not a simple echo of their retinal counterparts.
Collapse
Affiliation(s)
- Sven P Heinrich
- Elektrophysiologisches Labor, Univ.-Augenklinik Freiburg, Killianstr. 5, 79106 Freiburg, Germany.
| | | |
Collapse
|