1
|
Frankewycz B, Bell R, Chatterjee M, Andarawis-Puri N. The superior healing capacity of MRL tendons is minimally influenced by the systemic environment of the MRL mouse. Sci Rep 2023; 13:17242. [PMID: 37821476 PMCID: PMC10567747 DOI: 10.1038/s41598-023-42449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/10/2023] [Indexed: 10/13/2023] Open
Abstract
Murphy Roths Large mice (MRL) exhibit improved tendon healing and are often described as a "super-healer" strain. The underlying mechanisms that drive the superior healing response of MRL remain a controversial subject. We utilized a tendon transplantation model between MRL and "normal-healer" B6-mice to differentiate between the contribution of MRL's innate tendon and systemic environment to its improved healing capacity. Patellar tendons with a midsubstance punch injury were transplanted back into the same animal (autograft) or into an animal of the other strain (allograft). Findings at 4 weeks showed that the innate MRL tendon environment drives its improved healing capacity as demonstrated by improved stiffness and maximum load in MRL-grafts-in-B6-host-allografts compared to B6-autografts, and higher modulus in MRL-autografts compared to B6-graft-in-MRL-host-allografts. Groups with an MRL component showed an increase in pro-inflammatory cytokines in the 3 days after injury, suggesting an early enhanced inflammatory profile in MRL that ultimately resolves. A preserved range of motion of the knee joint in all MRL animals suggests a systemic "shielding effect" of MRL in regard to joint adhesiveness. Our findings 4-weeks post injury are consistent with previous studies showing tissue-driven improved healing and suggest that the systemic environment contributes to the overall healing process.
Collapse
Affiliation(s)
- Borys Frankewycz
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- University Hospital Regensburg, Regensburg, Germany
| | - Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
- Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
2
|
Ngo TB, Josyula A, DeStefano S, Fertil D, Faust M, Lokwani R, Sadtler K. Ectopic adipogenesis in response to injury and material implantation in an autoimmune mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561105. [PMID: 37986843 PMCID: PMC10659416 DOI: 10.1101/2023.10.05.561105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Due to the limited capacity of mammals to regenerate complex tissues, researchers have worked to understand the mechanisms of tissue regeneration in organisms that maintain that capacity. One example is the MRL/MpJ mouse strain with unique regenerative capacity in ear pinnae that is absent from other strains, such as the common C57BL/6 strain. The MRL/MpJ mouse has also been associated with an autoimmune phenotype even in the absence of the mutant Fas gene described in its parent strain MRL/lpr. Due to these findings, we evaluated the differences between the responses of MRL/MpJ versus C57BL/6 strain in traumatic muscle injury and subsequent material implantation. One salient feature of the MRL/MpJ response to injury was a robust adipogenesis within the muscle. This was associated with a decrease in M2-like polarization in response to biologically derived extracellular matrix scaffolds. In pro-fibrotic materials, such as polyethylene, there were fewer foreign body giant cells in the MRL/MpJ mice. As there are reports of both positive and negative influences of adipose tissue and adipogenesis on wound healing, this model could provide an important lens to investigate the interplay between stem cells, adipose tissue, and immune responses in trauma and materials implantation.
Collapse
Affiliation(s)
- Tran B. Ngo
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Aditya Josyula
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Sabrina DeStefano
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Daphna Fertil
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Mondreakest Faust
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Ravi Lokwani
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Kaitlyn Sadtler
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| |
Collapse
|
3
|
Tseng C, Sinha K, Pan H, Cui Y, Guo P, Lin CY, Yang F, Deng Z, Eltzschig HK, Lu A, Huard J. Markers of Accelerated Skeletal Muscle Regenerative Response in Murphy Roths Large Mice: Characteristics of Muscle Progenitor Cells and Circulating Factors. Stem Cells 2019; 37:357-367. [PMID: 30537304 DOI: 10.1002/stem.2957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
Abstract
The "super-healing" Murphy Roths Large (MRL/MpJ) mouse possesses a superior regenerative capacity for repair of many tissues, which makes it an excellent animal model for studying molecular and cellular mechanisms during tissue regeneration. As the role of muscle progenitor cells (MPCs) in muscle-healing capacity of MRL/MpJ mice has not been previously studied, we investigated the muscle regenerative capacity of MRL/MpJ mice following muscle injury, and the results were compared to results from C57BL/6J (B6) age-matched control mice. Our results show that muscle healing upon cardiotoxin injury was accelerated in MRL/MpJ mice and characterized by reduced necrotic muscle area, reduced macrophage infiltration, and more regenerated myofibers (embryonic myosin heavy chain+/centronucleated fibers) at 3, 5, and 12 days postinjury, when compared to B6 age-matched control mice. These observations were associated with enhanced function of MPCs, including improved cell proliferation, differentiation, and resistance to stress, as well as increased muscle regenerative potential when compared to B6 MPCs. Mass spectrometry of serum proteins revealed higher levels of circulating antioxidants in MRL/MpJ mice when compared to B6 mice. Indeed, we found relatively higher gene expression of superoxide dismutase 1 (Sod1) and catalase (Cat) in MRL/MpJ MPCs. Depletion of Sod1 or Cat by small interfering RNA impaired myogenic potential of MRL/MpJ MPCs, indicating a role for these antioxidants in muscle repair. Taken together, these findings provide evidence that improved function of MPCs and higher levels of circulating antioxidants play important roles in accelerating muscle-healing capacity of MRL/MpJ mice. Stem Cells 2019;37:357-367.
Collapse
Affiliation(s)
- Chieh Tseng
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Krishna Sinha
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Haiying Pan
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Guo
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Chih Yi Lin
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, Shenzhen Second People's Hospital, Shenzhen, Guangzhou, People's Republic of China
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aiping Lu
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
4
|
Numakawa T, Odaka H, Adachi N. Actions of Brain-Derived Neurotrophic Factor and Glucocorticoid Stress in Neurogenesis. Int J Mol Sci 2017; 18:ijms18112312. [PMID: 29099059 PMCID: PMC5713281 DOI: 10.3390/ijms18112312] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Altered neurogenesis is suggested to be involved in the onset of brain diseases, including mental disorders and neurodegenerative diseases. Neurotrophic factors are well known for their positive effects on the proliferation/differentiation of both embryonic and adult neural stem/progenitor cells (NSCs/NPCs). Especially, brain-derived neurotrophic factor (BDNF) has been extensively investigated because of its roles in the differentiation/maturation of NSCs/NPCs. On the other hand, recent evidence indicates a negative impact of the stress hormone glucocorticoids (GCs) on the cell fate of NSCs/NPCs, which is also related to the pathophysiology of brain diseases, such as depression and autism spectrum disorder. Furthermore, studies including ours have demonstrated functional interactions between neurotrophic factors and GCs in neural events, including neurogenesis. In this review, we show and discuss relationships among the behaviors of NSCs/NPCs, BDNF, and GCs.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan.
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8551, Japan.
| | - Haruki Odaka
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan.
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8050, Japan.
| | - Naoki Adachi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda City, Hyogo 662-8501, Japan.
| |
Collapse
|
5
|
Palispis WA, Gupta R. Surgical repair in humans after traumatic nerve injury provides limited functional neural regeneration in adults. Exp Neurol 2017; 290:106-114. [PMID: 28111229 DOI: 10.1016/j.expneurol.2017.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 12/24/2022]
Abstract
Traumatic nerve injuries result in devastating loss of neurologic function with unpredictable functional recovery despite optimal medical management. After traumatic nerve injury and denervation, regenerating axons must traverse a complex environment in which they encounter numerous barriers on the way to reinnervation of their target muscle. Outcomes of surgical intervention alone have unfortunately reached a plateau, resulting in often unsatisfactory functional recovery. Over the past few decades, many improvements were developed to supplement and boost the results of surgical repair. Biological optimization of Schwann cells, macrophages, and degradation enzymes have been studied due to the key roles of these components in axonal development, maintenance and response to injury. Moreover, surgical techniques such as nerve grafting, conduits, and growth factor supplementation are also employed to enhance the microenvironment and nerve regeneration. Yet, most of the roadblocks to recovery after nerve injury remain unsolved. These roadblocks include, but are not limited to: slow regeneration rates and specificity of target innervation, the presence of a segmental nerve defect, and degeneration of the target end-organ after prolonged periods of denervation. A recognition of these limitations is necessary so as to develop new strategies to improve functional regeneration for these life changing injuries.
Collapse
Affiliation(s)
- Winnie A Palispis
- Department of Orthopaedic Surgery, University of California, Irvine, Orange, California, USA; Peripheral Nerve Research Lab, Gillespie Neuroscience Research Facility, Irvine, California, USA.
| | - Ranjan Gupta
- Department of Orthopaedic Surgery, University of California, Irvine, Orange, California, USA; Peripheral Nerve Research Lab, Gillespie Neuroscience Research Facility, Irvine, California, USA; VA Long Beach Healthcare System, Long Beach, CA 90822, USA.
| |
Collapse
|
6
|
Enhanced cartilage repair in 'healer' mice-New leads in the search for better clinical options for cartilage repair. Semin Cell Dev Biol 2016; 62:78-85. [PMID: 27130635 DOI: 10.1016/j.semcdb.2016.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Adult articular cartilage has a poor capacity to undergo intrinsic repair. Current strategies for the repair of large cartilage defects are generally unsatisfactory because the restored cartilage does not have the same resistance to biomechanical loading as authentic articular cartilage and degrades over time. Recently, an exciting new research direction, focused on intrinsic cartilage regeneration rather than fibrous repair by external means, has emerged. This review explores the new findings in this rapidly moving field as they relate to the clinical goal of restoration of structurally robust, stable and non-fibrous articular cartilage following injury.
Collapse
|
7
|
Jonker SS, Louey S. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment. J Endocrinol 2016; 228:R1-18. [PMID: 26432905 PMCID: PMC4677998 DOI: 10.1530/joe-15-0309] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 01/09/2023]
Abstract
Immature contractile cardiomyocytes proliferate to rapidly increase cell number, establishing cardiomyocyte endowment in the perinatal period. Developmental changes in cellular maturation, size and attrition further contribute to cardiac anatomy. These physiological processes occur concomitant with a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. There are complex interactions between endocrine, hemodynamic and nutritional regulators of cardiac development. Birth has been long assumed to be the trigger for major differences between the fetal and postnatal cardiomyocyte growth patterns, but investigations in normally growing sheep and rodents suggest this may not be entirely true; in sheep, these differences are initiated before birth, while in rodents they occur after birth. The aim of this review is to draw together our understanding of the temporal regulation of these signals and cardiomyocyte responses relative to birth. Further, we consider how these dynamics are altered in stressed and suboptimal intrauterine environments.
Collapse
Affiliation(s)
- S S Jonker
- Knight Cardiovascular Institute Center for Developmental HealthOregon Health and Science University, Portland, Oregon 97239, USA
| | - S Louey
- Knight Cardiovascular Institute Center for Developmental HealthOregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
8
|
Podolak-Popinigis J, Górnikiewicz B, Ronowicz A, Sachadyn P. Transcriptome profiling reveals distinctive traits of retinol metabolism and neonatal parallels in the MRL/MpJ mouse. BMC Genomics 2015; 16:926. [PMID: 26572684 PMCID: PMC4647819 DOI: 10.1186/s12864-015-2075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022] Open
Abstract
Background The MRL/MpJ mouse is a laboratory inbred strain known for regenerative abilities which are manifested by scarless closure of ear pinna punch holes. Enhanced healing responses have been reported in other organs. A remarkable feature of the strain is that the adult MRL/MpJ mouse retains several embryonic biochemical characteristics, including increased expression of stem cell markers. Results We explored the transcriptome of the MRL/MpJ mouse in the heart, liver, spleen, bone marrow and ears. We used two reference strains, thus increasing the chances to discover the genes responsible for the exceptional properties of the regenerative strain. We revealed several distinctive characteristics of gene expression patterns in the MRL/MpJ mouse, including the repression of immune response genes, the up-regulation of those associated with retinol metabolism and PPAR signalling, as well as differences in expression of the genes engaged in wounding response. Another crucial finding is that the gene expression patterns in the adult MRL/MpJ mouse and murine neonates share a number of parallels, which are also related to immune and wounding response, PPAR pathway, and retinol metabolism. Conclusions Our results indicate the significance of retinol signalling and neonatal transcriptomic relics as the distinguishing features of the MRL/MpJ mouse. The possibility that retinoids could act as key regulatory molecules in this regeneration model brings important implications for regenerative medicine. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2075-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna Podolak-Popinigis
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Bartosz Górnikiewicz
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland.
| |
Collapse
|
9
|
Bastakoty D, Saraswati S, Cates J, Lee E, Nanney LB, Young PP. Inhibition of Wnt/β-catenin pathway promotes regenerative repair of cutaneous and cartilage injury. FASEB J 2015; 29:4881-92. [PMID: 26268926 DOI: 10.1096/fj.15-275941] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/27/2015] [Indexed: 12/27/2022]
Abstract
Wound healing in mammals is a fibrotic process. The mechanisms driving fibrotic (as opposed to regenerative) repair are poorly understood. Herein we report that therapeutic Wnt inhibition with topical application of small-molecule Wnt inhibitors can reduce fibrosis and promote regenerative cutaneous wound repair. In the naturally stented model of ear punch injury, we found that Wnt/β-catenin pathway is activated most notably in the dermis of the wound bed early (d 2) after injury and subsides to baseline levels by d10. Topical application of either of 2 mechanistically distinct small-molecule Wnt pathway inhibitors (a tankyrase inhibitor, XAV-939, and the U.S. Food and Drug Administration-approved casein kinase activator, pyrvinium) in C57Bl/6J mice resulted in significantly increased rates of wound closure (72.3 ± 14.7% with XAV-939; and 52.1 ± 20.9% with pyrvinium) compared with contralateral controls (38.1 ± 23.0 and 40.4.± 16.7%, respectively). Histologically, Wnt inhibition reduced fibrosis as measured by α-smooth muscle actin positive myofibroblasts and collagen type I α1 synthesis. Wnt inhibition also restored skin architecture including adnexal structures in ear wounds and dermal-epidermal junction with rete pegs in excisional wounds. Additionally, in ear punch injury Wnt inhibitor treatment enabled regeneration of auricular cartilage. Our study shows that pharmacologic Wnt inhibition holds therapeutic utility for regenerative repair of cutaneous wounds.
Collapse
Affiliation(s)
- Dikshya Bastakoty
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Sarika Saraswati
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Justin Cates
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Ethan Lee
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Lillian B Nanney
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Pampee P Young
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Heber-Katz E. From Immunity and Vaccines to Mammalian Regeneration. J Infect Dis 2015; 212 Suppl 1:S52-8. [PMID: 26116734 DOI: 10.1093/infdis/jiu637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our current understanding of major histocompatibility complex (MHC)-mediated antigen presentation in self and nonself immune recognition was derived from immunological studies of autoimmunity and virus-host interactions, respectively. The trimolecular complex of the MHC molecule, antigen, and T-cell receptor accounts for the phenomena of immunodominance and MHC degeneracy in both types of responses and constrains vaccine development. Out of such considerations, we developed a simple peptide vaccine construct that obviates immunodominance, resulting in a broadly protective T-cell response in the absence of antibody. In the course of autoimmunity studies, we identified the MRL mouse strain as a mammalian model of amphibian-like regeneration. A significant level of DNA damage in the cells from this mouse pointed to the role of the cell cycle checkpoint gene CDKN1a, or p21(cip1/waf1). The MRL mouse has highly reduced levels of this molecule, and a genetic knockout of this single gene in otherwise nonregenerating strains led to an MRL-type regenerative response, indicating that the ability to regenerate has not been lost during evolution.
Collapse
|
11
|
Leonard CA, Lee WY, Tailor P, Salo PT, Kubes P, Krawetz RJ. Allogeneic Bone Marrow Transplant from MRL/MpJ Super-Healer Mice Does Not Improve Articular Cartilage Repair in the C57Bl/6 Strain. PLoS One 2015; 10:e0131661. [PMID: 26120841 PMCID: PMC4486721 DOI: 10.1371/journal.pone.0131661] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023] Open
Abstract
Background Articular cartilage has been the focus of multiple strategies to improve its regenerative/ repair capacity. The Murphy Roths Large (MRL/MpJ) “super-healer” mouse demonstrates an unusual enhanced regenerative capacity in many tissues and provides an opportunity to further study endogenous cartilage repair. The objective of this study was to test whether the super-healer phenotype could be transferred from MRL/MpJ to non-healer C57Bl/6 mice by allogeneic bone marrow transplant. Methodology The healing of 2mm ear punches and full thickness cartilage defects was measured 4 and 8 weeks after injury in control C57Bl/6 and MRL/MpJ “super-healer” mice, and in radiation chimeras reconstituted with bone marrow from the other mouse strain. Healing was assessed using ear hole diameter measurement, a 14 point histological scoring scale for the cartilage defect and an adapted version of the Osteoarthritis Research Society International scale for assessment of osteoarthritis in mouse knee joints. Principal Findings Normal and chimeric MRL mice showed significantly better healing of articular cartilage and ear wounds along with less severe signs of osteoarthritis after cartilage injury than the control strain. Contrary to our hypothesis, however, bone marrow transplant from MRL mice did not confer improved healing on the C57Bl/6 chimeras, either in regards to ear wound healing or cartilage repair. Conclusion and Significance The elusive cellular basis for the MRL regenerative phenotype still requires additional study and may possibly be dependent on additional cell types external to the bone marrow.
Collapse
Affiliation(s)
- Catherine A. Leonard
- McCaig Institute for Bone and Joint Health, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Woo-Yong Lee
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Disease, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Pankaj Tailor
- McCaig Institute for Bone and Joint Health, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Paul T. Salo
- McCaig Institute for Bone and Joint Health, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Disease, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Roman J. Krawetz
- McCaig Institute for Bone and Joint Health, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
12
|
Abstract
Mammals rarely regenerate their lost or injured tissues into adulthood. MRL/MpJ mouse strain initially identified to heal full-thickness ear wounds now represents a classical example of mammalian wound regeneration since it can heal a spectrum of injuries such as skin and cardiac wounds, nerve injuries and knee articular cartilage lesions. In addition to MRL/MpJ, a few other mouse strains such as LG/J (a parent of MRL/MpJ) and LGXSM-6 (arising from an intercross between LG/J and SM/J mouse strains) have now been recognized to possess regenerative/healing abilities for articular cartilage and ear wound injuries that are similar, if not superior, to MRL/MpJ mice. While some mechanisms underlying regenerative potential have been begun to emerge, a complete set of biological processes and pathways still needs to be elucidated. Using a panel of healer and non-healer mouse strains, our recent work has provided some insights into the genes that could potentially be associated with healing potential. Future mechanistic studies can help seek the Holy Grail of regenerative medicine. This review highlights the regenerative capacity of selected mouse strains for articular cartilage, in particular, and lessons from other body tissues, in general.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States.
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States; Department of Cell Biology and Physiology, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States; Department of Biomedical Engineering, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
13
|
Berhanu TK, Holley-Cuthrell J, Roberts NW, Mull AJ, Heydemann A. Increased AMP-activated protein kinase in skeletal muscles of Murphy Roth Large mice and its potential role in altered metabolism. Physiol Rep 2014; 2:e00252. [PMID: 24760507 PMCID: PMC4002233 DOI: 10.1002/phy2.252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 12/19/2022] Open
Abstract
Abstract Wild-type Murphy Roth Large (MRL) mice have long been investigated for their superior healing ability when subjected to various wound and disease models. Despite this long history, the mechanisms causing their extraordinary healing ability remain undefined. As we have recently demonstrated that MRL mice with muscular dystrophy are resistant to the associated fibrosis and the Heber-Katz group has demonstrated MRL mitochondrial mutations, we decided to investigate the skeletal muscle metabolic characteristics of the MRL mouse strain compared to the commonly utilized C57BL/6J control mouse strain. We now have evidence demonstrating an altered metabolism in the MRL quadriceps, triceps brachii, and diaphragm of 8-week-old animals compared to tissues from control animals. The MRL skeletal muscles have increased activated phosphorylated AMP-activated protein kinase (pAMPK). The increased pAMPK signaling coincides with increased skeletal muscle mitochondrial content. These metabolic changes may compensate for insufficient oxidative phosphorylation which is demonstrated by altered quantities of proteins involved in oxidative phosphorylation and ex vivo metabolic investigations. We also demonstrate that the MRL muscle cells have increased metabolic physiologic reserve. These data further the investigations into this important and unique mouse strain. Why the MRL mice have increased pAMPK and how increased pAMPK and the resultant metabolic alterations affect the healing ability in the MRL mouse strain is discussed. Understanding the molecular mechanisms surrounding the super healing characteristics of these mice will lead to relevant clinical intervention points. In conclusion, we present novel data of increased mitochondrial content, pAMPK, and glycolytic indicators in MRL skeletal muscles.
Collapse
Affiliation(s)
- Tirsit K Berhanu
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | |
Collapse
|
14
|
Bani D, Nistri S. New insights into the morphogenic role of stromal cells and their relevance for regenerative medicine. lessons from the heart. J Cell Mol Med 2014; 18:363-70. [PMID: 24533677 PMCID: PMC3955144 DOI: 10.1111/jcmm.12247] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/14/2014] [Indexed: 02/06/2023] Open
Abstract
The term stromal cells is referred to cells of direct or indirect (hematopoietic) mesenchymal origin, and encompasses different cell populations residing in the connective tissue, which share the ability to produce the macromolecular components of the extracellular matrix and to organize them in the correct spatial assembly. In physiological conditions, stromal cells are provided with the unique ability to shape a proper three-dimensional scaffold and stimulate the growth and differentiation of parenchymal precursors to give rise to tissues and organs. Thus, stromal cells have an essential function in the regulation of organ morphogenesis and regeneration. In pathological conditions, under the influence of local pro-inflammatory mediators, stromal cells can be prompted to differentiate into myofibroblasts, which rather express a fibrogenic phenotype required for prompt deposition of reparatory scar tissue. Indeed, scarring may be interpreted as an emergency healing response to injury typical of evolved animals, like mammals, conceivably directed to preserve survival at the expense of function. However, under appropriate conditions, the original ability of stromal cells to orchestrate organ regeneration, which is typical of some lower vertebrates and mammalian embryos, can be resumed. These concepts underline the importance of expanding the knowledge on the biological properties of stromal cells and their role as key regulators of the three-dimensional architecture of the organs in view of the refinement of the therapeutic protocols of regenerative medicine.
Collapse
Affiliation(s)
- Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology, Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | | |
Collapse
|
15
|
Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2013; 123:141-50. [PMID: 24060344 DOI: 10.1016/j.exer.2013.09.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium (RPE) is a simple epithelium interposed between the neural retina and the choroid. Although only 1 cell-layer in thickness, the RPE is a virtual workhorse, acting in several capacities that are essential for visual function and preserving the structural and physiological integrities of neighboring tissues. Defects in RPE function, whether through chronic dysfunction or age-related decline, are associated with retinal degenerative diseases including age-related macular degeneration. As such, investigations are focused on developing techniques to replace RPE through stem cell-based methods, motivated primarily because of the seemingly limited regeneration or self-repair properties of mature RPE. Despite this, RPE cells have an unusual capacity to transdifferentiate into various cell types, with the particular fate choices being highly context-dependent. In this review, we describe recent findings elucidating the mechanisms and steps of RPE development and propose a developmental framework for understanding the apparent contradiction in the capacity for low self-repair versus high transdifferentiation.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - ChangJiang Zou
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Edward M Levine
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
16
|
Sereysky JB, Flatow EL, Andarawis-Puri N. Musculoskeletal regeneration and its implications for the treatment of tendinopathy. Int J Exp Pathol 2013; 94:293-303. [PMID: 23772908 DOI: 10.1111/iep.12031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/21/2013] [Indexed: 02/06/2023] Open
Abstract
Tendinopathies are common muskoloskeletal injuries that lead to pain and disability. Development and pathogenesis of tendinopathy is attributed to progressive pathological changes to the structure, function, and biology of tendon. The nature of this disease state, whether acquired by acute or chronic injury, is being actively investigated. Scarring, disorganized tissue, and loss of function characterize adult tendon healing. Recent work from animal models has begun to reveal the potential for adult mammalian tendon regeneration, the replacement of diseased with innate tissue. This review discusses what is known about musculoskeletal regeneration from a molecular perspective and how these findings can be applied to tendinopathy. Non-mammalian and mammalian models are discussed with emphasis on the potential of Murphy Roths Large mice to serve as a model of adult tendon regeneration. Comparison of regeneration in non-mammals, foetal mammals and adult mammals emphasizes distinctly different contributing factors to effective regeneration.
Collapse
Affiliation(s)
- Jedd B Sereysky
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | |
Collapse
|
17
|
Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PLoS One 2013; 8:e61372. [PMID: 23637819 PMCID: PMC3630201 DOI: 10.1371/journal.pone.0061372] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/07/2013] [Indexed: 01/03/2023] Open
Abstract
Bone is a dynamically remodeled tissue that requires gravity-mediated mechanical stimulation for maintenance of mineral content and structure. Homeostasis in bone occurs through a balance in the activities and signaling of osteoclasts, osteoblasts, and osteocytes, as well as proliferation and differentiation of their stem cell progenitors. Microgravity and unloading are known to cause osteoclast-mediated bone resorption; however, we hypothesize that osteocytic osteolysis, and cell cycle arrest during osteogenesis may also contribute to bone loss in space. To test this possibility, we exposed 16-week-old female C57BL/6J mice (n = 8) to microgravity for 15-days on the STS-131 space shuttle mission. Analysis of the pelvis by µCT shows decreases in bone volume fraction (BV/TV) of 6.29%, and bone thickness of 11.91%. TRAP-positive osteoclast-covered trabecular bone surfaces also increased in microgravity by 170% (p = 0.004), indicating osteoclastic bone degeneration. High-resolution X-ray nanoCT studies revealed signs of lacunar osteolysis, including increases in cross-sectional area (+17%, p = 0.022), perimeter (+14%, p = 0.008), and canalicular diameter (+6%, p = 0.037). Expression of matrix metalloproteinases (MMP) 1, 3, and 10 in bone, as measured by RT-qPCR, was also up-regulated in microgravity (+12.94, +2.98 and +16.85 fold respectively, p<0.01), with MMP10 localized to osteocytes, and consistent with induction of osteocytic osteolysis. Furthermore, expression of CDKN1a/p21 in bone increased 3.31 fold (p<0.01), and was localized to osteoblasts, possibly inhibiting the cell cycle during tissue regeneration as well as conferring apoptosis resistance to these cells. Finally the apoptosis inducer Trp53 was down-regulated by −1.54 fold (p<0.01), possibly associated with the quiescent survival-promoting function of CDKN1a/p21. In conclusion, our findings identify the pelvic and femoral region of the mouse skeleton as an active site of rapid bone loss in microgravity, and indicate that this loss is not limited to osteoclastic degradation. Therefore, this study offers new evidence for microgravity-induced osteocytic osteolysis, and CDKN1a/p21-mediated osteogenic cell cycle arrest.
Collapse
|
18
|
Brain monoamines and antidepressant-like responses in MRL/MpJ versus C57BL/6J mice. Neuropharmacology 2012; 67:503-10. [PMID: 23220293 DOI: 10.1016/j.neuropharm.2012.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 11/22/2022]
Abstract
The MRL/MpJ mouse demonstrates enhanced wound healing and tissue regeneration and increased neurotrophic mobilization to chronic antidepressant drug treatments. This study compared brain monoamine systems between MRL/MpJ and C57BL/6J mice as a potential basis for strain differences after chronic antidepressant treatment. MRL/MpJ mice had significantly higher tissue levels of serotonin and dopamine in multiple brain regions. Microdialysis studies demonstrated that baseline levels of extracellular serotonin did not differ between strains. However, acute administration of the selective serotonin reuptake inhibitor citalopram produced an increase in extracellular serotonin in the ventral hippocampus of MRL/MpJ mice that was twice as large as achieved in C57BL/6J mice. The greater effects in MRL/MpJ mice on 5-HT levels were not maintained after local perfusion of citalopram, suggesting that mechanisms outside of the hippocampus were responsible for the greater effect of citalopram after systemic injection. The density of serotonin and norepinephrine transporters in the hippocampus was significantly higher in MRL/MpJ mice. In addition, the expression of 5-HT(1A) mRNA was lower in the hippocampus, 5-HT(1B) mRNA was higher in the hippocampus and brainstem and SERT mRNA was higher in the brain stem of MRL/MpJ mice. The exaggerated neurotransmitter release in MRL/MpJ mice was accompanied by reduced baseline immobility in the tail suspension test and a greater reduction of immobility produced by citalopram or the tricyclic antidepressant desipramine. These data suggest that differences in the response to acute and chronic antidepressant treatments between the two strains could be attributed to differences in serotonin or catecholamine transmission.
Collapse
|
19
|
Heydemann A, Swaggart KA, Kim GH, Holley-Cuthrell J, Hadhazy M, McNally EM. The superhealing MRL background improves muscular dystrophy. Skelet Muscle 2012; 2:26. [PMID: 23216833 PMCID: PMC3534636 DOI: 10.1186/2044-5040-2-26] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/08/2012] [Indexed: 01/05/2023] Open
Abstract
Background Mice from the MRL or “superhealing” strain have enhanced repair after acute injury to the skin, cornea, and heart. We now tested an admixture of the MRL genome and found that it altered the course of muscle pathology and cardiac function in a chronic disease model of skeletal and cardiac muscle. Mice lacking γ-sarcoglycan (Sgcg), a dystrophin-associated protein, develop muscular dystrophy and cardiomyopathy similar to their human counterparts with limb girdle muscular dystrophy. With disruption of the dystrophin complex, the muscle plasma membrane becomes leaky and muscles develop increased fibrosis. Methods MRL/MpJ mice were bred with Sgcg mice, and cardiac function was measured. Muscles were assessed for fibrosis and membrane leak using measurements of hydroxyproline and Evans blue dye. Quantitative trait locus mapping was conducted using single nucleotide polymorphisms distinct between the two parental strains. Results Introduction of the MRL genome reduced fibrosis but did not alter membrane leak in skeletal muscle of the Sgcg model. The MRL genome was also associated with improved cardiac function with reversal of depressed fractional shortening and the left ventricular ejection fraction. We conducted a genome-wide analysis of genetic modifiers and found that a region on chromosome 2 was associated with cardiac, diaphragm muscle and abdominal muscle fibrosis. Conclusions These data are consistent with a model where the MRL genome acts in a dominant manner to suppress fibrosis in this chronic disease setting of heart and muscle disease.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Medicine, Section of Cardiology, 5841 S, Maryland, MC 6088, Chicago, IL, 60637, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Hodes GE, Brookshire BR, Hill-Smith TE, Teegarden SL, Berton O, Lucki I. Strain differences in the effects of chronic corticosterone exposure in the hippocampus. Neuroscience 2012; 222:269-80. [PMID: 22735575 DOI: 10.1016/j.neuroscience.2012.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/18/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Stress hormones are thought to be involved in the etiology of depression, in part, because animal models show they cause morphological damage to the brain, an effect that can be reversed by chronic antidepressant treatment. The current study examined two mouse strains selected for naturalistic variation of tissue regeneration after injury for resistance to the effects of chronic corticosterone (CORT) exposure on cell proliferation and neurotrophin mobilization. The wound healer MRL/MpJ and control C57BL/6J mice were implanted subcutaneously with pellets that released CORT for 7 days. MRL/MpJ mice were resistant to reductions of hippocampal cell proliferation by chronic exposure to CORT when compared to vulnerable C57BL/6J mice. Chronic CORT exposure also reduced protein levels of brain-derived neurotrophic factor (BDNF) in the hippocampus of C57BL/6J but not MRL/MpJ mice. CORT pellet exposure increased circulating levels of CORT in the plasma of both strains in a dose-dependent manner although MRL/MpJ mice may have larger changes from baseline. The strains did not differ in circulating levels of corticosterone binding globulin (CBG). There were also no strain differences in CORT levels in the hippocampus, nor did CORT exposure alter glucocorticoid receptor or mineralocorticoid receptor expression in a strain-dependent manner. Strain differences were found in the N-methyl-D-aspartate (NMDA) receptor, and BDNF I and IV promoters. Strain and CORT exposure interacted to alter tropomyosine-receptor-kinase B (TrkB) expression and this may be a potential mechanism protecting MRL/MpJ mice. In addition, differences in the inflammatory response of matrix metalloproteinases (MMPs) may also contribute to these strain differences in resistance to the deleterious effects of CORT to the brain.
Collapse
Affiliation(s)
- G E Hodes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Faslpr /J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Faslpr /J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Canhamero T, Reines B, Peters LC, Borrego A, Carneiro PS, Albuquerque LL, Cabrera WH, Ribeiro OG, Jensen JR, Starobinas N, Ibañez OM, De Franco M. Distinct early inflammatory events during ear tissue regeneration in mice selected for high inflammation bearing Slc11a1 R and S alleles. Inflammation 2012; 34:303-13. [PMID: 20665098 DOI: 10.1007/s10753-010-9235-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High inflammatory AIRmax mice homozygous for Slc11a1 R and S alleles were produced. AIRmax(SS) mice showed faster ear tissue regeneration than AIRmax(RR) mice, suggesting that the S allele favored tissue restoration. Here, we investigated the gene expression profiles and the inflammatory reactions of AIRmax(RR) and AIRmax(SS) mice during the initial phase of ear tissue regeneration. We observed superior levels of analysis of wound myeloperoxidase and edema in AIRmax(SS) mice, although similar cell influx was verified in both lines. Of the genes, 794 were up- and 674 down-regulated in AIRmax(RR), while 735 genes were found to be up- and 1616 down-regulated in AIRmax(SS) mice 48 h after punch. Both mouse lines showed significant over-represented genes related to cell proliferation; however AIRmax(SS) displayed up-regulation of inflammatory response genes. Quantitative PCR experiments showed higher expressions of Tgfb1, Dap12 and Trem1 genes in AIRmax(SS) mice. These results indicate that Slc11a1 gene modulated the early inflammatory events of ear tissue regeneration.
Collapse
Affiliation(s)
- Tatiane Canhamero
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fluoxetine treatment induces dose dependent alterations in depression associated behavior and neural plasticity in female mice. Neurosci Lett 2010; 484:12-6. [PMID: 20692322 DOI: 10.1016/j.neulet.2010.07.084] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/27/2010] [Accepted: 07/31/2010] [Indexed: 11/20/2022]
Abstract
Antidepressant-induced increases in neurogenesis and neurotrophin mobilization in rodents and primates are proposed to be necessary for behavioral efficacy. The current study examines the relationship between the effects of fluoxetine treatment on behavior, cell proliferation and the neurotrophin BDNF in females. Female MRL/MpJ mice were treated acutely (5 and 10mg/kg) or chronically (2.5, 5 and 10mg/kg b.i.d.) with fluoxetine and tested in the tail suspension test (TST) and or novelty-induced hypophagia test (NIH), respectively. Mice treated chronically with fluoxetine received 4 (100mg/kg) injections of 5-bromo-2'-deoxyuridine (BrdU) on the last 4 days of treatment to measure DNA synthesis. The other half of the hippocampus and the frontal cortex was removed and examined for BDNF levels. Fluoxetine treatment decreased immobility in the TST and latency to eat in the NIH test, but only the highest dose of fluoxetine significantly altered behavior in both tests. Chronic treatment with 5 and 10mg/kg of fluoxetine significantly increased cell proliferation and BDNF levels in the hippocampus. Only chronic treatment with the highest of fluoxetine increased BDNF levels in the frontal cortex. Behavioral measures in the NIH test correlated with BDNF levels in the frontal cortex but not in the hippocampus or with cell proliferation in the hippocampus. These data suggest that females require high doses of fluoxetine for behavioral efficacy regardless of elevations of neurogenesis and BDNF mobilization in the hippocampus. Elevations in BDNF levels in the frontal cortex are related to the behavioral efficacy of fluoxetine.
Collapse
|
24
|
|
25
|
Palatinus JA, Rhett JM, Gourdie RG. Translational lessons from scarless healing of cutaneous wounds and regenerative repair of the myocardium. J Mol Cell Cardiol 2009; 48:550-7. [PMID: 19560469 DOI: 10.1016/j.yjmcc.2009.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/30/2009] [Accepted: 06/16/2009] [Indexed: 02/06/2023]
Abstract
Regenerative healing is the process by which injured tissues are restored to their original structure and function. Many species are capable of healing in this manner. However, in mammals the healing response in most tissues is marked by fibroblast proliferation and scar tissue deposition. While scarring contributes to efficient resolution of mammalian wounds and restoration of at least partial structural and functional support, the final result of scar formation can be more deleterious than the initial insult. This is especially true in the heart, which is sensitive to electrical heterogeneities and altered mechanical properties produced by scarring. Several therapeutic modalities promoting regeneration in skin wounds have been developed that modulate various aspects of the healing process. Targets include cytokine stimulation, control of fibroblast activation, modulation of gap junctions, and stem cell differentiation. Here, we review and compare mechanisms of injury, repair, and scarring in the skin and heart and discuss the promise and caveats of future therapies that may translate to improving repair of myocardial tissues.
Collapse
Affiliation(s)
- Joseph A Palatinus
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | | | |
Collapse
|
26
|
Enhanced sensitivity of the MRL/MpJ mouse to the neuroplastic and behavioral effects of chronic antidepressant treatments. Neuropsychopharmacology 2009; 34:1764-73. [PMID: 19177066 PMCID: PMC2680932 DOI: 10.1038/npp.2008.234] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic administration of antidepressant drugs produce changes in neuroplasticity and behavior in rodents, effects that may be associated with the slow emergence of clinical therapeutic effects. Owing to the uncertainty over the effects of chronic antidepressant treatments in mice, these experiments compared the regulation of neurogenesis, neurotrophin levels, and behavior produced by chronic antidepressant treatments between two inbred mouse strains, MRL/MpJ and C57BL/6J. The MRL/MpJ strain is associated with enhanced wound healing and tissue regeneration, whereas C57BL/6J mice are used commonly for behavioral studies. Proliferation and survival of hippocampal progenitor cells were measured using flow cytometry, a new platform that rapidly quantifies the incorporation of 5-bromo-2-deoxyuridine (BrdU). Hippocampal cell proliferation was increased significantly after chronic administration of fluoxetine (FLX: 5, 10 mg/kg, intraperitoneal (i.p.), b.i.d.) or desipramine (DMI: 5, 10 mg/kg, i.p., b.i.d.) for 21 days in MRL/MpJ mice, but not in C57BL/6J mice. Hippocampal progenitor cells born prior to chronic antidepressant treatments were not affected in either mouse strain. Protein levels of brain-derived neurotrophic factor (BDNF) in MRL/MpJ mice were elevated significantly in the frontal cortex, hippocampus, and amygdala after chronic FLX treatment, but increased only in the frontal cortex by chronic DMI. In contrast, BDNF levels in C57BL/6J mice were decreased in the hippocampus and increased in the amygdala after chronic FLX, and were decreased in the brain stem after chronic DMI. Novelty-induced hypophagia (NIH) was used to examine a behavioral effect produced by chronic antidepressant treatment. MRL/MpJ mice, chronically administered FLX or DMI, had significantly shorter latencies to consume food when exposed to a novel environment than untreated mice, whereas there were no effects on the behavior of C57BL/6J mice. In conclusion, robust effects of chronic antidepressant treatments on hippocampal cell proliferation and BDNF levels paralleled the ability of these drugs to produce changes in NIH behavior in MRL/MpJ, while none of these effects were produced in C57BL/6J mice. The greater responsiveness of MRL/MpJ mice may be important for drug discovery, for genetic studies, and for understanding the neural mechanisms underlying the physiological and behavioral effects of chronic antidepressant treatments.
Collapse
|
27
|
Naviaux RK, Le TP, Bedelbaeva K, Leferovich J, Gourevitch D, Sachadyn P, Zhang XM, Clark L, Heber-Katz E. Retained features of embryonic metabolism in the adult MRL mouse. Mol Genet Metab 2009; 96:133-44. [PMID: 19131261 PMCID: PMC3646557 DOI: 10.1016/j.ymgme.2008.11.164] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 12/11/2022]
Abstract
The MRL mouse is an inbred laboratory strain that was derived by selective breeding in 1960 from the rapidly growing LG/J (Large) strain. MRL mice grow to nearly twice the size of other commonly used mouse strains, display uncommonly robust healing and regeneration properties, and express later onset autoimmune traits similar to Systemic Lupus Erythematosis. The regeneration trait (heal) in the MRL mouse maps to 14-20 quantitative trait loci and the autoimmune traits map to 5-8 loci. In this paper we report the metabolic and biochemical features that characterize the adult MRL mouse and distinguish it from C57BL/6 control animals. We found that adult MRL mice have retained a number of features of embryonic metabolism that are normally lost during development in other strains. These include an emphasis on aerobic glycolytic energy metabolism, increased glutamate oxidation, and a reduced capacity for fatty acid oxidation. MRL tissues, including the heart, liver, and regenerating ear hole margins, showed considerable mitochondrial genetic and physiologic reserve, decreased mitochondrial transmembrane potential (DeltaPsi(m)), decreased reactive oxygen species (ROS), and decreased oxidative phosphorylation, yet increased mitochondrial DNA and protein content. The discovery of embryonic metabolic features led us to look for cells that express markers of embryonic stem cells. We found that the adult MRL mouse has retained populations of cells that express the stem cell markers Nanog, Islet-1, and Sox2. These are present in the heart at baseline and highly induced after myocardial injury. The retention of embryonic features of metabolism in adulthood is rare in mammals. The MRL mouse provides a unique experimental window into the relationship between metabolism, stem cell biology, and regeneration.
Collapse
Affiliation(s)
- Robert K. Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine and Pediatrics University of California, San Diego, CA
- Communicating Authors: RKN, , phone: 619-543-2904, fax: 619-543-7868; EH-K, , phone: 215-898-3710, fax: 215-898-3868
| | - Thuy P. Le
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine and Pediatrics University of California, San Diego, CA
| | | | | | | | | | | | | | - Ellen Heber-Katz
- The Wistar Institute, Philadelphia, PA
- Communicating Authors: RKN, , phone: 619-543-2904, fax: 619-543-7868; EH-K, , phone: 215-898-3710, fax: 215-898-3868
| |
Collapse
|
28
|
The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci U S A 2008; 105:18366-71. [PMID: 19017790 DOI: 10.1073/pnas.0803437105] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cell-based therapies, using multipotent mesenchymal stem cells (MSCs) for organ regeneration, are being pursued for cardiac disease, orthopedic injuries and biomaterial fabrication. The molecular pathways that regulate MSC-mediated regeneration or enhance their therapeutic efficacy are, however, poorly understood. We compared MSCs isolated from MRL/MpJ mice, known to demonstrate enhanced regenerative capacity, to those from C57BL/6 (WT) mice. Compared with WT-MSCs, MRL-MSCs demonstrated increased proliferation, in vivo engraftment, experimental granulation tissue reconstitution, and tissue vascularity in a murine model of repair stimulation. The MRL-MSCs also reduced infarct size and improved function in a murine myocardial infarct model compared with WT-MSCs. Genomic and functional analysis indicated a downregulation of the canonical Wnt pathway in MRL-MSCs characterized by significant up-regulation of specific secreted frizzled-related proteins (sFRPs). Specific knockdown of sFRP2 by shRNA in MRL-MSCs decreased their proliferation and their engraftment in and the vascular density of MRL-MSC-generated experimental granulation tissue. These results led us to generate WT-MSCs overexpressing sFRP2 (sFRP2-MSCs) by retroviral transduction. sFRP2-MSCs maintained their ability for multilineage differentiation in vitro and, when implanted in vivo, recapitulated the MRL phenotype. Peri-infarct intramyocardial injection of sFRP2-MSCs resulted in enhanced engraftment, vascular density, reduced infarct size, and increased cardiac function after myocardial injury in mice. These findings implicate sFRP2 as a key molecule for the biogenesis of a superior regenerative phenotype in MSCs.
Collapse
|
29
|
Abstract
Augmentation of regenerative ability is a powerful strategy being pursued for the biomedical management of traumatic injury, cancer, and degeneration. While considerable attention has been focused on embryonic stem cells, it is clear that much remains to be learned about how somatic cells may be controlled in the adult organism. The tadpole of the frog Xenopus laevis is a powerful model system within which fundamental mechanisms of regeneration are being addressed. The tadpole tail contains spinal cord, muscle, vasculature, and other terminally differentiated cell types and can fully regenerate itself through tissue renewal--a process that is most relevant to mammalian healing. Recent insight into this process has uncovered fascinating molecular details of how a complex appendage senses injury and rapidly repairs the necessary morphology. Here, we review what is known about the chemical and bioelectric signals underlying this process and draw analogies to evolutionarily conserved pathways in other patterning systems. The understanding of this process is not only of fundamental interest for the evolutionary and cell biology of morphogenesis, but will also generate information that is crucial to the development of regenerative therapies for human tissues and organs.
Collapse
Affiliation(s)
- A.-S. Tseng
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - M. Levin
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| |
Collapse
|
30
|
Sachadyn P, Zhang XM, Clark LD, Naviaux RK, Heber-Katz E. Naturally occurring mitochondrial DNA heteroplasmy in the MRL mouse. Mitochondrion 2008; 8:358-66. [PMID: 18761428 DOI: 10.1016/j.mito.2008.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/21/2008] [Accepted: 07/23/2008] [Indexed: 11/30/2022]
Abstract
The MRL/MpJ mouse is an inbred laboratory strain of Mus musculus, known to exhibit enhanced autoimmunity, increased wound healing, and increased regeneration properties. We report the full-length mitochondrial DNA (mtDNA) sequence of the MRL mouse (Accession # EU450583), and characterize the discovery of two naturally occurring heteroplasmic sites. The first is a T3900C substitution in the TPsiC loop of the tRNA methionine gene (tRNA-Met; mt-Tm). The second is a heteroplasmic insertion of 1-6 adenine nucleotides in the A-tract of the tRNA arginine gene (tRNA-Arg; mt-Tr) at positions 9821-9826. The level of heteroplasmy varied independently at these two sites in MRL individuals. The length of the tRNA-Arg A-tract increased with age, but heteroplasmy at the tRNA-Met site did not change with age. The finding of naturally occurring mtDNA heteroplasmy in an inbred strain of mouse makes the MRL mouse a powerful new experimental model for studies designed to explore therapeutic measures to alter the cellular burden of heteroplasmy.
Collapse
Affiliation(s)
- Paweł Sachadyn
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
31
|
Tucker B, Klassen H, Yang L, Chen DF, Young MJ. Elevated MMP Expression in the MRL Mouse Retina Creates a Permissive Environment for Retinal Regeneration. Invest Ophthalmol Vis Sci 2008; 49:1686-95. [PMID: 18385092 DOI: 10.1167/iovs.07-1058] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE The MRL/MpJ (healer) mouse is an established model for autoimmune studies and was recently identified as having a profound ability to undergo scarless regeneration of the tissue in the ear and heart. This regenerative capacity has been linked to elevated matrix metalloproteinase (MMP)-2 and -9 expression, giving this mouse the ability to degrade and remove inhibitory basement membrane molecules. Although elevated MMP expression has been reported in somatic tissues in this strain, little is known about MMP expression and the response to injury in the MRL/MpJ mouse retina. The purpose of this study was to investigate whether increased MMP expression and subsequent decreased inhibitory extracellular matrix molecule deposition in the MRL/MpJ mouse retina produces a permissive regenerative environment. METHODS Experiments were performed using 3- to 4-week-old MRL/MpJ, retinal degenerative (rd1), and C57BL/6 (wild-type) mice. Western blotting, oligo-microarray, and immunohistochemical analyses were used to determine the level and location of MMP and extracellular matrix (ECM) protein expression. Retinal responses to injury were modeled by retinal detachment in vivo and in retinal explantation in vitro. The capacity of the retinal environment to support photoreceptor cell migration, integration, or regeneration was analyzed using hematoxylin-eosin, immunohistochemical staining, and cell counting. RESULTS Compared with C57BL/6J animals, MRL/MpJ mice exhibit elevated levels of MMP-2, -9, and -14 and decreased levels of the inhibitory proteins neurocan and CD44 within the retina. Although similar increases in MMP-2, -9, and CD44s (CD44 degradation product) were observed in the rd1 retina, elevated levels of the inhibitory ECM molecules (neurocan and CD44) remained. Thus, the MRL retinal environment, which expresses lower levels of inhibitory ECM molecules after injury, was more conducive to regeneration and enhanced photoreceptor integration in vitro than C57BL/6J or rd1 controls. CONCLUSIONS The MRL mouse retina shows elevated MMP expression and decreased levels of scar-related inhibitory molecules, which leads to a retinal environment that is more permissive for neural regeneration and cell integration after in vitro retinal explantation.
Collapse
Affiliation(s)
- Budd Tucker
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
32
|
|
33
|
The MRL mouse heart does not recover ventricular function after a myocardial infarction. Cardiovasc Pathol 2008; 17:32-9. [DOI: 10.1016/j.carpath.2007.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 04/20/2007] [Accepted: 06/28/2007] [Indexed: 01/04/2023] Open
|
34
|
Abstract
Regenerative medicine aims to restore homeostasis of diseased tissues and organs. With time, engineered replacement tissue constructs will play an increasingly important role in achieving this goal. Equally important, however, will be the ability to resolve disease-associated inflammation and to optimize tissue regenerative capacity by specifically patterning the host tissue microenvironment. The tools of bioengineering are uniquely suited to meet these challenges. Here, the candidate molecular and cellular targets for manipulating the host's inflammatory environment and tissue regenerative capacity are briefly discussed within the context of current and emerging bioengineering strategies. The objective is to draw the attention of basic scientists and engineers to the importance of regulating inflammation in achieving the goals of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Nadya L Lumelsky
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
35
|
Abstract
The involvement of the immune system in the response to tissue injury has raised the possibility that it might influence tissue, organ or appendage regeneration following injury. One hypothesis that has been discussed is that inflammatory aspects may preclude the occurrence of regeneration, but there is also evidence for more positive roles of immune components. The vertebrate eye is an immunoprivileged site where inflammatory aspects are inhibited by several immunomodulatory mechanisms. In various newt species the ocular tissues such as the lens are regenerative and it has recently been shown that the response to local injury of the lens involves activation of antigen-presenting cells which traffic to the spleen and return to displace and engulf the lens, thereby inducing regeneration from the dorsal iris. The activation of thrombin from prothrombin in the dorsal iris is one aspect of the injury response that is important in the initiation of regeneration. The possible relationships between the immune response and the regenerative response are considered with respect to phylogenetic variation of regeneration in general, and lens regeneration in particular.
Collapse
Affiliation(s)
- James W Godwin
- Department of Biochemistry & Molecular Biology, University College London, UK
| | | |
Collapse
|
36
|
Robey TE, Murry CE. Absence of regeneration in the MRL/MpJ mouse heart following infarction or cryoinjury. Cardiovasc Pathol 2007; 17:6-13. [PMID: 18160055 DOI: 10.1016/j.carpath.2007.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 11/27/2006] [Accepted: 01/10/2007] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Myocardial infarcts in mammals heal by scar formation rather than formation of new muscle tissue. The MRL/MpJ [Murphy Roths large (MRL) derived by the Murphy group of the Jackson Laboratory (MpJ)] mouse, however, has been reported to exhibit minimal scarring and subsequent cardiac regeneration after cryoinjury of the right ventricle. Other groups have reported that permanent and temporary ligation of the coronary artery resulted in scarring without regeneration. METHODS To clarify these contradictory results, we studied the temporal evolution of infarcts in MRL/MpJ and C57BL/6 control mice from 1 to 90 days post injury and the effects of intrathoracic cryoinjury to 28 days. RESULTS After infarction, the conversion from necrotic myocardium to granulation tissue and then to scar proceeded identically in the two groups. Infarct DNA synthesis, measured by incorporation of a 5-bromo-2-deoxyuridine pulse, peaked at 4 days in both strains and did not differ between strains at any time point. Endothelial cell and total vascular density in the both the infarcted and noninfarcted cardiac tissue did not differ between groups at any time. Histological analysis of directly cryoinjured right and left ventricular myocardium showed indistinguishable wound healing in both strains, and final scar size was identical in each group. CONCLUSIONS These studies demonstrate that both myocardial infarcts and cryoinjuries in MRL/MpJ mice heal by typical scar formation rather than muscle regeneration, in a manner very similar to C57BL/6 controls. We conclude that the MRL mouse is not a model for myocardial regeneration.
Collapse
Affiliation(s)
- Thomas E Robey
- Department of Bioengineering and Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
37
|
Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 257:143-79. [PMID: 17280897 DOI: 10.1016/s0074-7696(07)57004-x] [Citation(s) in RCA: 401] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The contraction of granulation tissue from skin wounds was first described in the 1960s. Later it was discovered that during tissue repair, fibroblasts undergo a change in phenotype from their normal relatively quiescent state in which they are involved in slow turnover of the extracellular matrix, to a proliferative and contractile phenotype termed myofibroblasts. These cells show some of the phenotypic characteristics of smooth muscle cells and have been shown to contract in vitro. In the 1990s, a number of researchers in different fields showed that myofibroblasts are present during tissue repair or response to injury in a variety of other tissues, including the liver, kidney, and lung. During normal repair processes, the myofibroblastic cells are lost as repair resolves to form a scar. This cell loss is via apoptosis. In pathological fibroses, myofibroblasts persist in the tissue and are responsible for fibrosis via increased matrix synthesis and for contraction of the tissue. In many cases this expansion of the extracellular matrix impedes normal function of the organ. For this reason much interest has centered on the derivation of myofibroblasts and the factors that influence their differentiation, proliferation, extracellular matrix synthesis, and survival. Further understanding of how fibroblast differentiation and myofibroblast phenotype is controlled may provide valuable insights into future therapies that can control fibrosis and scarring.
Collapse
Affiliation(s)
- Ian A Darby
- School of Medical Sciences, RMIT University, Melbourne, Australia
| | | |
Collapse
|
38
|
Price JS, Allen S, Faucheux C, Althnaian T, Mount JG. Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals? J Anat 2006; 207:603-18. [PMID: 16313394 PMCID: PMC1571559 DOI: 10.1111/j.1469-7580.2005.00478.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many organisms are able to regenerate lost or damaged body parts that are structural and functional replicates of the original. Eventually these become fully integrated into pre-existing tissues. However, with the exception of deer, mammals have lost this ability. Each spring deer shed antlers that were used for fighting and display during the previous mating season. Their loss is triggered by a fall in circulating testosterone levels, a hormonal change that is linked to an increase in day length. A complex 'blastema-like' structure or 'antler-bud' then forms; however, unlike the regenerative process in the newt, most evidence (albeit indirect) suggests that this does not involve reversal of the differentiated state but is stem cell based. The subsequent re-growth of antlers during the spring and summer months is spectacular and represents one of the fastest rates of organogenesis in the animal kingdom. Longitudinal growth involves endochondral ossification in the tip of each antler branch and bone growth around the antler shaft is by intramembranous ossification. As androgen concentrations rise in late summer, longitudinal growth stops, the skin (velvet) covering the antler is lost and antlers are 'polished' in preparation for the mating season. Although the timing of the antler growth cycle is clearly closely linked to circulating testosterone, oestrogen may be a key cellular regulator, as it is in the skeleton of other male mammals. We still know very little about the molecular machinery required for antler regeneration, although there is evidence that developmental signalling pathways with pleiotropic functions are important and that novel 'antler-specific' molecules may not exist. Identifying these pathways and factors, deciphering their interactions and how they are regulated by environmental cues could have an important impact on human health if this knowledge is applied to the engineering of new human tissues and organs.
Collapse
Affiliation(s)
- J S Price
- Department of Basic Sciences, The Royal Veterinary College, London, UK.
| | | | | | | | | |
Collapse
|
39
|
Abstract
This review discusses current understanding of the role that endogenous and exogenous progenitor cells may have in the treatment of the diseased heart. In the last several years, a major effort has been made in an attempt to identify immature cells capable of differentiating into cell lineages different from the organ of origin to be employed for the regeneration of the damaged heart. Embryonic stem cells (ESCs) and bone marrow-derived cells (BMCs) have been extensively studied and characterized, and dramatic advances have been made in the clinical application of BMCs in heart failure of ischemic and nonischemic origin. However, a controversy exists concerning the ability of BMCs to acquire cardiac cell lineages and reconstitute the myocardium lost after infarction. The recognition that the adult heart possesses a stem cell compartment that can regenerate myocytes and coronary vessels has raised the unique possibility to rebuild dead myocardium after infarction, to repopulate the hypertrophic decompensated heart with new better functioning myocytes and vascular structures, and, perhaps, to reverse ventricular dilation and wall thinning. Cardiac stem cells may become the most important cell for cardiac repair.
Collapse
Affiliation(s)
- Annarosa Leri
- Cardiovascular Research Institute, Department of Medicine, New York Medical College, Valhalla, NY10595, USA
| | | | | |
Collapse
|
40
|
McMullen NM, Gaspard GJ, Pasumarthi KBS. Reactivation of cardiomyocyte cell cycle: A potential approach for myocardial regeneration. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200400050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Bedelbaeva K, Gourevitch D, Clark L, Chen P, Leferovich JM, Heber-Katz E. The MRL mouse heart healing response shows donor dominance in allogeneic fetal liver chimeric mice. CLONING AND STEM CELLS 2005; 6:352-63. [PMID: 15671663 DOI: 10.1089/clo.2004.6.352] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We previously demonstrated that after a severe cryoinjury to the right ventricle of the heart, adult MRL mice display structural and functional recovery with myocardial tissue replacement resembling that seen in amphibians. The control non-regenerating adult C57BL/6 (B6) mouse shows a predominant scar response. In the present study, radiation chimeras reconstituted with fetal liver cells from either healer MRL or nonhealer B6 mice were generated to test for a transfer of phenotype. Allogeneic MRL fetal liver cells were injected into x-irradiated (9 Gy) B6 mice and B6 fetal liver cells were injected into x-irradiated MRL mice. In these allogeneic chimeras, the healing response to cardiac cryoinjury was predominantly of the donor phenotype. Thus, MRL fetal liver cells transferred the healing phenotype to the B6 nonhealer with the appearance of Y-chromosome positive, donor-derived cardiomyocytes in the injury site and MRL-like healing with little scar. Similarly, B6 fetal liver cells transferred the nonhealing phenotype to the MRL with little cardiomyocyte growth and an acellular B6-like scar. These results are in contrast to the ear hole closure response which was of the recipient phenotype. We conclude that, in the case of the heart, fetal liver-derived stem cells regulate regenerative healing.
Collapse
|
42
|
Rinaldi A. The newt in us. EMBO Rep 2005; 6:113-5. [PMID: 15689938 PMCID: PMC1299253 DOI: 10.1038/sj.embor.7400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
43
|
Ferguson MWJ, O'Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 2004; 359:839-50. [PMID: 15293811 PMCID: PMC1693363 DOI: 10.1098/rstb.2004.1475] [Citation(s) in RCA: 540] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreliable and unpredictable: there are no prescription drugs for the prevention or treatment of dermal scarring. Skin wounds on early mammalian embryos heal perfectly with no scars whereas wounds to adult mammals scar. We investigated the cellular and molecular differences between scar-free healing in embryonic wounds and scar-forming healing in adult wounds. Important differences include the inflammatory response, which in embryonic wounds consists of lower numbers of less differentiated inflammatory cells. This, together with high levels of morphogenetic molecules involved in skin growth and morphogenesis, means that the growth factor profile in a healing embryonic wound is very different from that in an adult wound. Thus, embryonic wounds that heal without a scar have low levels of TGFbeta1 and TGFbeta2, low levels of platelet-derived growth factor and high levels of TGFbeta3. We have experimentally manipulated healing adult wounds in mice, rats and pigs to mimic the scar-free embryonic profile, e.g. neutralizing PDGF, neutralizing TGFbeta1 and TGFbeta2 or adding exogenous TGFbeta3. These experiments result in scar-free wound healing in the adult. Such experiments have allowed the identification of therapeutic targets to which we have developed novel pharmaceutical molecules, which markedly improve or completely prevent scarring during adult wound healing in experimental animals. Some of these new drugs have successfully completed safety and other studies, such that they have entered human clinical trials with approval from the appropriate regulatory authorities. Initial trials involve application of the drug or placebo in a double-blind randomized design, to experimental incision or punch biopsy wounds under the arms of human volunteers. Based on encouraging results from such human volunteer studies, the lead drugs have now entered human patient-based trials e.g. in skin graft donor sites. We consider the evolutionary context of wound healing, scarring and regeneration. We hypothesize that evolutionary pressures have been exerted on intermediate sized, widespread, dirty wounds with considerable tissue damage e.g. bites, bruises and contusions. Modem wounds (e.g. resulting from trauma or surgery) caused by sharp objects and healing in a clean or sterile environment with close tissue apposition are new occurrences, not previously encountered in nature and to which the evolutionary selected wound healing responses are somewhat inappropriate. We also demonstrate that both repair with scarring and regeneration can occur within the same animal, including man, and indeed within the same tissue, thereby suggesting that they share similar mechanisms and regulators. Consequently, by subtly altering the ratio of growth factors present during adult wound healing, we can induce adult wounds to heal perfectly with no scars, with accelerated healing and with no adverse effects, e.g. on wound strength or wound infection rates. This means that scarring may no longer be an inevitable consequence of modem injury or surgery and that a completely new pharmaceutical approach to the prevention of human scarring is now possible. Scarring after injury occurs in many tissues in addition to the skin. Thus scar-improving drugs could have widespread benefits and prevent complications in several tissues, e.g. prevention of blindness after scarring due to eye injury, facilitation of neuronal reconnections in the central and peripheral nervous system by the elimination of glial scarring, restitution of normal gut and reproductive function by preventing strictures and adhesions after injury to the gastrointestinal or reproductive systems, and restoration of locomotor function by preventing scarring in tendons and ligaments.
Collapse
Affiliation(s)
- Mark W J Ferguson
- UK Centre for Tissue Engineering, School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|