1
|
Carruthers T, Sun M, Baker WJ, Smith SA, de Vos JM, Eiserhardt WL. The Implications of Incongruence between Gene Tree and Species Tree Topologies for Divergence Time Estimation. Syst Biol 2022; 71:1124-1146. [PMID: 35167690 PMCID: PMC9366463 DOI: 10.1093/sysbio/syac012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/14/2022] Open
Abstract
Phylogenetic analyses are increasingly being performed with data sets that incorporate hundreds of loci. Due to incomplete lineage sorting, hybridization, and horizontal gene transfer, the gene trees for these loci may often have topologies that differ from each other and from the species tree. The effect of these topological incongruences on divergence time estimation has not been fully investigated. Using a series of simulation experiments and empirical analyses, we demonstrate that when topological incongruence between gene trees and the species tree is not accounted for, the temporal duration of branches in regions of the species tree that are affected by incongruence is underestimated, whilst the duration of other branches is considerably overestimated. This effect becomes more pronounced with higher levels of topological incongruence. We show that this pattern results from the erroneous estimation of the number of substitutions along branches in the species tree, although the effect is modulated by the assumptions inherent to divergence time estimation, such as those relating to the fossil record or among-branch-substitution-rate variation. By only analyzing loci with gene trees that are topologically congruent with the species tree, or only taking into account the branches from each gene tree that are topologically congruent with the species tree, we demonstrate that the effects of topological incongruence can be ameliorated. Nonetheless, even when topologically congruent gene trees or topologically congruent branches are selected, error in divergence time estimates remains. This stems from temporal incongruences between divergence times in species trees and divergence times in gene trees, and more importantly, the difficulty of incorporating necessary assumptions for divergence time estimation. [Divergence time estimation; gene trees; species tree; topological incongruence.].
Collapse
Affiliation(s)
- Tom Carruthers
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Miao Sun
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Jurriaan M de Vos
- Department of Environmental Sciences – Botany, University of Basel, 4056 Basel, Switzerland
| | - Wolf L Eiserhardt
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Zeb U, Wang X, AzizUllah A, Fiaz S, Khan H, Ullah S, Ali H, Shahzad K. Comparative genome sequence and phylogenetic analysis of chloroplast for evolutionary relationship among Pinus species. Saudi J Biol Sci 2022; 29:1618-1627. [PMID: 35280541 PMCID: PMC8913380 DOI: 10.1016/j.sjbs.2021.10.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/24/2021] [Accepted: 10/31/2021] [Indexed: 01/02/2023] Open
Abstract
Genus Pinus is a widely dispersed genus of conifer plants in the Northern Hemisphere. However, the inadequate accessibility of genomic knowledge limits our understanding of molecular phylogeny and evolution of Pinus species. In this study, the evolutionary features of complete plastid genome and the phylogeny of the Pinus genus were studied. A total of thirteen divergent hotspot regions (trnk-UUU, matK, trnQ-UUG, atpF, atpH, rpoC1, rpoC2, rpoB, ycf2, ycf1, trnD-GUC, trnY-GUA, and trnH-GUG) were identified that would be utilized as possible genetic markers for determination of phylogeny and population genetics analysis of Pinus species. Furthermore, seven genes (petD, psaI, psaM, matK, rps18, ycf1, and ycf2) with positive selection site in Pinus species were identified. Based on the whole genome this phylogenetic study showed that twenty-four Pinus species form a significant genealogical clade. Divergence time showed that the Pinus species originated about 100 million years ago (MYA) (95% HPD, 101.76.35–109.79 MYA), in lateral stages of Cretaceous. Moreover, two of the subgenera are consequently originated in 85.05 MYA (95% HPD, 81.04–88.02 MYA). This study provides a phylogenetic relationship and a chronological framework for the future study of the molecular evolution of the Pinus species.
Collapse
Affiliation(s)
- Umar Zeb
- Department of Biology, The University of Haripur, 22620, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, Shaanxi, China
- Corresponding authors.
| | | | - Sajid Fiaz
- Department of Plant Breeding anf Genetics, The University of Haripur, 22620 Haripur, Pakistan
- Corresponding authors.
| | - Hanif Khan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Shariat Ullah
- Department of Botany University of Malakand, Pakistan
| | - Habib Ali
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Khurram Shahzad
- Department of Plant Breeding anf Genetics, The University of Haripur, 22620 Haripur, Pakistan
| |
Collapse
|
3
|
Tao Q, Barba-Montoya J, Kumar S. Data-driven speciation tree prior for better species divergence times in calibration-poor molecular phylogenies. Bioinformatics 2021; 37:i102-i110. [PMID: 34252953 PMCID: PMC8275332 DOI: 10.1093/bioinformatics/btab307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Precise time calibrations needed to estimate ages of species divergence are not always available due to fossil records' incompleteness. Consequently, clock calibrations available for Bayesian dating analyses can be few and diffused, i.e. phylogenies are calibration-poor, impeding reliable inference of the timetree of life. We examined the role of speciation birth-death (BD) tree prior on Bayesian node age estimates in calibration-poor phylogenies and tested the usefulness of an informative, data-driven tree prior to enhancing the accuracy and precision of estimated times. RESULTS We present a simple method to estimate parameters of the BD tree prior from the molecular phylogeny for use in Bayesian dating analyses. The use of a data-driven birth-death (ddBD) tree prior leads to improvement in Bayesian node age estimates for calibration-poor phylogenies. We show that the ddBD tree prior, along with only a few well-constrained calibrations, can produce excellent node ages and credibility intervals, whereas the use of an uninformative, uniform (flat) tree prior may require more calibrations. Relaxed clock dating with ddBD tree prior also produced better results than a flat tree prior when using diffused node calibrations. We also suggest using ddBD tree priors to improve the detection of outliers and influential calibrations in cross-validation analyses.These results have practical applications because the ddBD tree prior reduces the number of well-constrained calibrations necessary to obtain reliable node age estimates. This would help address key impediments in building the grand timetree of life, revealing the process of speciation and elucidating the dynamics of biological diversification. AVAILABILITY AND IMPLEMENTATION An R module for computing the ddBD tree prior, simulated datasets and empirical datasets are available at https://github.com/cathyqqtao/ddBD-tree-prior.
Collapse
Affiliation(s)
- Qiqing Tao
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.,Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Jose Barba-Montoya
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.,Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.,Department of Biology, Temple University, Philadelphia, PA 19122, USA.,Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Carruthers T, Scotland RW. The implications of interrelated assumptions on estimates of divergence times and rates of diversification. Syst Biol 2021; 70:1181-1199. [PMID: 33760070 DOI: 10.1093/sysbio/syab021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/15/2022] Open
Abstract
Phylogenies are increasingly being used as a basis to provide insight into macroevolutionary history. Here, we use simulation experiments and empirical analyses to evaluate methods that use phylogenies as a basis to make estimates of divergence times and rates of diversification. This is the first study to present a comprehensive assessment of the key variables that underpin analyses in this field - including substitution rates, speciation rates, and extinction, plus character sampling and taxon sampling. We show that in unrealistically simplistic cases (where substitution rates and speciation rates are constant, and where there is no extinction), increased character and taxon sampling lead to more accurate and precise parameter estimates. By contrast, in more complex but realistic cases (where substitution rates, speciation rates, and extinction rates vary), gains in accuracy and precision from increased character and taxon sampling are far more limited. The lack of accuracy and precision even occurs when using methods that are designed to account for more complex cases, such as relaxed clocks, fossil calibrations, and models that allow speciation rates and extinction rates to vary. The problem also persists when analysing genomic scale datasets. These results suggest two interrelated problems that occur when the processes that generated the data are more complex. First, methodological assumptions are more likely to be violated. Second, limitations in the information content of the data become more important.
Collapse
Affiliation(s)
- Tom Carruthers
- Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, United Kingdom
| | - Robert W Scotland
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, United Kingdom
| |
Collapse
|
5
|
Carruthers T, Sanderson MJ, Scotland RW. The Implications of Lineage-Specific Rates for Divergence Time Estimation. Syst Biol 2021; 69:660-670. [PMID: 31808929 PMCID: PMC7302051 DOI: 10.1093/sysbio/syz080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 11/29/2022] Open
Abstract
Rate variation adds considerable complexity to divergence time estimation in molecular phylogenies. Here, we evaluate the impact of lineage-specific rates—which we define as among-branch-rate-variation that acts consistently across the entire genome. We compare its impact to residual rates—defined as among-branch-rate-variation that shows a different pattern of rate variation at each sampled locus, and gene-specific rates—defined as variation in the average rate across all branches at each sampled locus. We show that lineage-specific rates lead to erroneous divergence time estimates, regardless of how many loci are sampled. Further, we show that stronger lineage-specific rates lead to increasing error. This contrasts to residual rates and gene-specific rates, where sampling more loci significantly reduces error. If divergence times are inferred in a Bayesian framework, we highlight that error caused by lineage-specific rates significantly reduces the probability that the 95% highest posterior density includes the correct value, and leads to sensitivity to the prior. Use of a more complex rate prior—which has recently been proposed to model rate variation more accurately—does not affect these conclusions. Finally, we show that the scale of lineage-specific rates used in our simulation experiments is comparable to that of an empirical data set for the angiosperm genus Ipomoea. Taken together, our findings demonstrate that lineage-specific rates cause error in divergence time estimates, and that this error is not overcome by analyzing genomic scale multilocus data sets. [Divergence time estimation; error; rate variation.]
Collapse
Affiliation(s)
- Tom Carruthers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 East Lowell, Tucson, AZ 85721-0088, USA
| | - Robert W Scotland
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
6
|
Hime PM, Lemmon AR, Lemmon ECM, Prendini E, Brown JM, Thomson RC, Kratovil JD, Noonan BP, Pyron RA, Peloso PLV, Kortyna ML, Keogh JS, Donnellan SC, Mueller RL, Raxworthy CJ, Kunte K, Ron SR, Das S, Gaitonde N, Green DM, Labisko J, Che J, Weisrock DW. Phylogenomics Reveals Ancient Gene Tree Discordance in the Amphibian Tree of Life. Syst Biol 2021; 70:49-66. [PMID: 32359157 PMCID: PMC7823230 DOI: 10.1093/sysbio/syaa034] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022] Open
Abstract
Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, but poor support for the resolution of deeper nodes, including relationships among families and orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting hundreds of conserved exons which are effective across the class. After obtaining data from 220 loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a phylogeny for extant amphibians and identify gene tree-species tree conflict across the deepest branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of alternative topological hypotheses for amphibian monophyly, focusing on interordinal relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species tree analyses converge on a small set of topological hypotheses for the relationships among extant amphibian families. These results clarify several contentious portions of the amphibian Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly younger timescale for crown and ordinal amphibian diversification than previously reported. More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of support across loci in phylogenomic data sets.[AIC; Amphibia; Batrachia; Phylogeny; gene tree-species tree discordance; genomics; information theory.].
Collapse
Affiliation(s)
- Paul M Hime
- Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
| | | | - Elizabeth Prendini
- Division of Vertebrate Zoology: Herpetology, American Museum of Natural History, New York, NY 10024, USA
| | - Jeremy M Brown
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Robert C Thomson
- School of Life Sciences, University of Hawai’i, Honolulu, HI 96822, USA
| | - Justin D Kratovil
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Brice P Noonan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Pedro L V Peloso
- Division of Vertebrate Zoology: Herpetology, American Museum of Natural History, New York, NY 10024, USA
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-750, Brazil
| | - Michelle L Kortyna
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601, Australia
| | - Stephen C Donnellan
- South Australian Museum, North Terrace, Adelaide 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | | | - Christopher J Raxworthy
- Division of Vertebrate Zoology: Herpetology, American Museum of Natural History, New York, NY 10024, USA
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sandeep Das
- Forest Ecology and Biodiversity Conservation Division, Kerala Forest Research Institute, Peechi, Kerala 680653, India
| | - Nikhil Gaitonde
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - David M Green
- Redpath Museum, McGill University, Montreal, Quebec H3A 0C4, Canada
| | - Jim Labisko
- The Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, The University of Kent, Canterbury, Kent, CT2 7NR, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, PO Box 1348, Anse Royale, Mahé, Seychelles
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
7
|
Abstract
Understanding and representing uncertainty is crucial in academic research because it enables studies to build on the conclusions of previous studies, leading to robust advances in a particular field. Here, we evaluate the nature of uncertainty and the manner by which it is represented in divergence time estimation, a field that is fundamental to many aspects of macroevolutionary research, and where there is evidence that uncertainty has been seriously underestimated. We address this issue in the context of methods used in divergence time estimation, and with respect to the manner by which time-calibrated phylogenies are interpreted. With respect to methods, we discuss how the assumptions underlying different methods may not adequately reflect uncertainty about molecular evolution, the fossil record, or diversification rates. Therefore, divergence time estimates may not adequately reflect uncertainty and may be directly contradicted by subsequent findings. For the interpretation of time-calibrated phylogenies, we discuss how the use of time-calibrated phylogenies for reconstructing general evolutionary timescales leads to inferences about macroevolution that are highly sensitive to methodological limitations in how uncertainty is accounted for. By contrast, we discuss how the use of time-calibrated phylogenies to test specific hypotheses leads to inferences about macroevolution that are less sensitive to methodological limitations. Given that many biologists wish to use time-calibrated phylogenies to reconstruct general evolutionary timescales, we conclude that the development of methods of divergence time estimation that adequately account for uncertainty is necessary. [Divergence time estimation; macroevolution; uncertainty.].
Collapse
Affiliation(s)
- Tom Carruthers
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK
| | - Robert W Scotland
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
8
|
Pardo JD, Lennie K, Anderson JS. Can We Reliably Calibrate Deep Nodes in the Tetrapod Tree? Case Studies in Deep Tetrapod Divergences. Front Genet 2020; 11:506749. [PMID: 33193596 PMCID: PMC7596322 DOI: 10.3389/fgene.2020.506749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Recent efforts have led to the development of extremely sophisticated methods for incorporating tree-wide data and accommodating uncertainty when estimating the temporal patterns of phylogenetic trees, but assignment of prior constraints on node age remains the most important factor. This depends largely on understanding substantive disagreements between specialists (paleontologists, geologists, and comparative anatomists), which are often opaque to phylogeneticists and molecular biologists who rely on these data as downstream users. This often leads to misunderstandings of how the uncertainty associated with node age minima arises, leading to inappropriate treatments of that uncertainty by phylogeneticists. In order to promote dialogue on this subject, we here review factors (phylogeny, preservational megabiases, spatial and temporal patterns in the tetrapod fossil record) that complicate assignment of prior node age constraints for deep divergences in the tetrapod tree, focusing on the origin of crown-group Amniota, crown-group Amphibia, and crown-group Tetrapoda. We find that node priors for amphibians and tetrapods show high phylogenetic lability and different phylogenetic treatments identifying disparate taxa as the earliest representatives of these crown groups. This corresponds partially to the well-known problem of lissamphibian origins but increasingly reflects deeper instabilities in early tetrapod phylogeny. Conversely, differences in phylogenetic treatment do not affect our ability to recognize the earliest crown-group amniotes but do affect how diverse we understand the earliest amniote faunas to be. Preservational megabiases and spatiotemporal heterogeneity of the early tetrapod fossil record present unrecognized challenges in reliably estimating the ages of tetrapod nodes; the tetrapod record throughout the relevant interval is spatially restricted and disrupted by several major intervals of minimal sampling coincident with the emergence of all three crown groups. Going forward, researchers attempting to calibrate the ages for these nodes, and other similar deep nodes in the metazoan fossil record, should consciously consider major phylogenetic uncertainty, preservational megabias, and spatiotemporal heterogeneity, preferably examining the impact of working hypotheses from multiple research groups. We emphasize a need for major tetrapod collection effort outside of classic European and North American sections, particularly from the southern hemisphere, and suggest that such sampling may dramatically change our timelines of tetrapod evolution.
Collapse
Affiliation(s)
- Jason D. Pardo
- Department of Comparative and Experimental Biology, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Kendra Lennie
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jason S. Anderson
- Department of Comparative and Experimental Biology, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Carruthers T, Scotland RW. Insights from Empirical Analyses and Simulations on Using Multiple Fossil Calibrations with Relaxed Clocks to Estimate Divergence Times. Mol Biol Evol 2020; 37:1508-1529. [DOI: 10.1093/molbev/msz310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Relaxed clock methods account for among-branch-rate-variation when estimating divergence times by inferring different rates for individual branches. In order to infer different rates for individual branches, important assumptions are required. This is because molecular sequence data do not provide direct information about rates but instead provide direct information about the total number of substitutions along any branch, which is a product of the rate and time for that branch. Often, the assumptions required for estimating rates for individual branches depend heavily on the implementation of multiple fossil calibrations in a single phylogeny. Here, we show that the basis of these assumptions is often critically undermined. First, we highlight that the temporal distribution of the fossil record often violates key assumptions of methods that use multiple fossil calibrations with relaxed clocks. With respect to “node calibration” methods, this conclusion is based on our inference that different fossil calibrations are unlikely to reflect the relative ages of different clades. With respect to the fossilized birth–death process, this conclusion is based on our inference that the fossil recovery rate is often highly heterogeneous. We then demonstrate that methods of divergence time estimation that use multiple fossil calibrations are highly sensitive to assumptions about the fossil record and among-branch-rate-variation. Given the problems associated with these assumptions, our results highlight that using multiple fossil calibrations with relaxed clocks often does little to improve the accuracy of divergence time estimates.
Collapse
Affiliation(s)
- Tom Carruthers
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Robert W Scotland
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Marshall CR. Using the Fossil Record to Evaluate Timetree Timescales. Front Genet 2019; 10:1049. [PMID: 31803226 PMCID: PMC6871265 DOI: 10.3389/fgene.2019.01049] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
The fossil and geologic records provide the primary data used to established absolute timescales for timetrees. For the paleontological evaluation of proposed timetree timescales, and for node-based methods for constructing timetrees, the fossil record is used to bracket divergence times. Minimum brackets (minimum ages) can be established robustly using well-dated fossils that can be reliably assigned to lineages based on positive morphological evidence. Maximum brackets are much harder to establish, largely because it is difficult to establish definitive evidence that the absence of a taxon in the fossil record is real and not just due to the incompleteness of the fossil and rock records. Five primary methods have been developed to estimate maximum age brackets, each of which is discussed. The fact that the fossilization potential of a group typically decreases the closer one approaches its time of origin increases the challenge of estimating maximum age brackets. Additional complications arise: 1) because fossil data actually bracket the time of origin of the first relevant fossilizable morphology (apomorphy), not the divergence time itself; 2) due to the phylogenetic uncertainty in the placement of fossils; 3) because of idiosyncratic temporal and geographic gaps in the rock and fossil records; and 4) if the preservation potential of a group changed significantly during its history. In contrast, uncertainties in the absolute ages of fossils are typically relatively unimportant, even though the vast majority of fossil cannot be dated directly. These issues and relevant quantitative methods are reviewed, and their relative magnitudes assessed, which typically correlate with the age of the group, its geographic range, and species richness.
Collapse
Affiliation(s)
- Charles R. Marshall
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
11
|
Samarakoon MC, Hyde KD, Hongsanan S, McKenzie EHC, Ariyawansa HA, Promputtha I, Zeng XY, Tian Q, Liu JK(J. Divergence time calibrations for ancient lineages of Ascomycota classification based on a modern review of estimations. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00423-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Reconstructing evolution at the community level: A case study on Mediterranean amphibians. Mol Phylogenet Evol 2019; 134:211-225. [PMID: 30797941 DOI: 10.1016/j.ympev.2019.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 11/22/2022]
Abstract
Reconstructing reliable timescales for species evolution is an important and indispensable goal of modern biogeography. However, many factors influence the estimation of divergence times, and uncertainty in the inferred time trees remains a major issue that is often insufficiently acknowledged. We here focus on a fundamental problem of time tree analysis: the combination of slow-evolving (nuclear DNA) and fast-evolving (mitochondrial DNA) markers in a single time tree. Both markers differ in their suitability to infer divergences at different time scales (the 'genome-timescale-dilemma'). However, strategies to infer shallow and deep divergences in a single time tree have rarely been compared empirically. Using Mediterranean amphibians as model system that is exceptional in its geographic and taxonomic completeness of available genetic information, we analyze 202 lineages of western Palearctic amphibians across the entire Mediterranean region. We compiled data of four nuclear and five mitochondrial genes and used twelve fossil calibration points widely acknowledged for amphibian evolution. We reconstruct time trees for an extensive lineage-level data set and compare the performances of the different trees: the first tree is based on primary fossil calibration and mitochondrial DNA, while the second tree is based on a combination of primary fossil and on secondary calibrations taken from a nuclear tree using mitochondrial DNA (two-step protocol). Focusing on a set of nodes that are most likely explained by vicariance, we statistically compare the reconstructed alternative time trees by applying a biogeographical plausibility test. Our two-step protocol outperformed the alternative approach in terms of spatial and temporal plausibility. It allows us to infer scenarios for Mediterranean amphibian evolution in eight geographic provinces. We identified several tectonic and climatic events explaining the majority of Mediterranean amphibian divergences, with Plio-Pleistocene climatic fluctuations being the dominant driver for intrageneric evolution. However, often more than one event could be invoked for a specific split. We give recommendations for the use of secondary calibrations in future molecular clock analyses at the community level.
Collapse
|
13
|
Aghová T, Kimura Y, Bryja J, Dobigny G, Granjon L, Kergoat GJ. Fossils know it best: Using a new set of fossil calibrations to improve the temporal phylogenetic framework of murid rodents (Rodentia: Muridae). Mol Phylogenet Evol 2018; 128:98-111. [PMID: 30030180 DOI: 10.1016/j.ympev.2018.07.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022]
Abstract
Murid rodents (Rodentia: Muridae) represent the most diverse and abundant mammalian family. In this study, we provide a refined set of fossil calibrations which is used to reconstruct a dated phylogeny of the family using a multilocus dataset (six nuclear and nine mitochondrial gene fragments) encompassing 161 species representing 82 murid genera from four extant subfamilies (Deomyinae, Gerbillinae, Lophiomyinae and Murinae). In comparison with previous studies on murid or muroid rodents, our work stands out for the implementation of nine robust fossil constraints within the Muridae thanks to a thorough review of the fossil record. Before being assigned to specific nodes of the phylogeny, all potential fossil constraints were carefully assessed; they were also subjected to several cross-validation analyses. The resulting phylogeny is consistent with previous phylogenetic studies on murids, and recovers the monophyly of all sampled murid subfamilies and tribes. Based on nine controlled fossil calibrations, our inferred temporal timeframe indicates that the murid family likely originated in the course of the Early Miocene, 22.0-17.0 million years ago (Ma), and that most major lineages (i.e. tribes) started diversifying ca. 10 Ma. Historical biogeography analyses support the tropical origin for the family, with an initial internal split (vicariance event) between Afrotropical and Oriental (Indomalaya and Philippines) lineages. During the course of their diversification, the biogeographic pattern of murids is marked by several dispersal events toward the Australasian and the Palearctic regions. The Afrotropical region was also secondarily colonized at least three times from the Indomalaya, indicating that the latter region has acted as a major centre of diversification for the family.
Collapse
Affiliation(s)
- Tatiana Aghová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; Department of Zoology, National Museum, Václavské náměstí 68, 115 79 Prague, Czech Republic.
| | - Yuri Kimura
- Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Ibaraki, Japan
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Gauthier Dobigny
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ. Montpellier, Montpellier, France; Ecole Polytechnique d'Abomey-Calavi, Abomey-Calavi University, 01BP2009 Cotonou, Benin
| | - Laurent Granjon
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Gael J Kergoat
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| |
Collapse
|
14
|
Steppan SJ, Schenk JJ. Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. PLoS One 2017; 12:e0183070. [PMID: 28813483 PMCID: PMC5559066 DOI: 10.1371/journal.pone.0183070] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/29/2017] [Indexed: 11/18/2022] Open
Abstract
We combined new sequence data for more than 300 muroid rodent species with our previously published sequences for up to five nuclear and one mitochondrial genes to generate the most widely and densely sampled hypothesis of evolutionary relationships across Muroidea. An exhaustive screening procedure for publically available sequences was implemented to avoid the propagation of taxonomic errors that are common to supermatrix studies. The combined data set of carefully screened sequences derived from all available sequences on GenBank with our new data resulted in a robust maximum likelihood phylogeny for 900 of the approximately 1,620 muroids. Several regions that were equivocally resolved in previous studies are now more decisively resolved, and we estimated a chronogram using 28 fossil calibrations for the most integrated age and topological estimates to date. The results were used to update muroid classification and highlight questions needing additional data. We also compared the results of multigene supermatrix studies like this one with the principal published supertrees and concluded that the latter are unreliable for any comparative study in muroids. In addition, we explored diversification patterns as an explanation for why muroid rodents represent one of the most species-rich groups of mammals by detecting evidence for increasing net diversification rates through time across the muroid tree. We suggest the observation of increasing rates may be due to a combination of parallel increases in rate across clades and high average extinction rates. Five increased diversification-rate-shifts were inferred, suggesting that multiple, but perhaps not independent, events have led to the remarkable species diversity in the superfamily. Our results provide a phylogenetic framework for comparative studies that is not highly dependent upon the signal from any one gene.
Collapse
Affiliation(s)
- Scott J. Steppan
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - John J. Schenk
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Biology, Georgia Southern University, Statesboro, Georgia, United States of America
| |
Collapse
|
15
|
Machado A, Rodríguez-Expósito E, López M, Hernández M. Phylogenetic analysis of the genus Laparocerus, with comments on colonisation and diversification in Macaronesia (Coleoptera, Curculionidae, Entiminae). Zookeys 2017:1-77. [PMID: 28331386 PMCID: PMC5345357 DOI: 10.3897/zookeys.651.10097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/08/2017] [Indexed: 01/02/2023] Open
Abstract
The flightless Entiminae weevil genus Laparocerus is the species-richest genus, with 237 species and subspecies, inhabiting Macaronesia (Madeira archipelago, Selvagens, Canary Islands) and the continental 'Macaronesian enclave' in Morocco (one single polytypic species). This is the second contribution to gain insight of the genus and assist in its systematic revision with a mitochondrial phylogenetic analysis. It centres on the Canarian clade, adding the 12S rRNA gene to the combined set of COII and 16S rRNA used in our first contribution on the Madeiran clade (here re-analysed). The nuclear 28S rRNA was also used to produce an additional 4-gene tree to check coherency with the 3-gene tree. A total of 225 taxa (95%) has been sequenced, mostly one individual per taxa. Plausible explanations for incoherent data (mitochondrial introgressions, admixture, incomplete lineage sorting, etc.) are discussed for each of the monophyletic subclades that are coincident with established subgenera, or are restructured or newly described. The overall mean genetic divergence (p-distance) among species is 8.2%; the mean divergence within groups (subgenera) ranks from 2.9 to 7.0% (average 4.6%), and between groups, from 5.4% to 12.0% (average 9.2%). A trustful radiation event within a young island (1.72 Ma) was used to calibrate and produce a chronogram using the software RelTime. These results confirm the monophyly of both the Madeiran (36 species and subspecies) and the Canarian (196 species and subspecies) clades, which originated ca. 11.2 Ma ago, and started to radiate in their respective archipelagos ca. 8.5 and 7.7 Ma ago. The Madeiran clade seems to have begun in Porto Santo, and from there it jumped to the Desertas and to Madeira, with additional radiations. The Canarian clade shows a sequential star-shape radiation process generating subclades with a clear shift from East to West in coherence with the decreasing age of the islands. Laparocerus garretai from the Selvagens belongs to a Canarian subclade, and Laparocerus susicus from Morocco does not represent the ancestral continental lineage, but a back-colonisation from the Canaries to Africa. Dispersal processes, colonisation patterns, and ecological remarks are amply discussed. Diversification has been adaptive as well as non-adaptive, and the role of 'geological turbulence' is highlighted as one of the principal drivers of intra-island allopatric speciation. Based on the phylogenetic results, morphological features and distribution, five new monophyletic subgenera are described: Aridotroxsubg. n., Belicariussubg. n., Bencomiussubg. n., Canariotroxsubg. n., and Purpuraniussubg. n., totalling twenty subgenera in Laparocerus.
Collapse
Affiliation(s)
| | - Eduardo Rodríguez-Expósito
- Chopin 1, 38208 La Laguna, Tenerife, Canary Islands, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias
| | - Mercedes López
- Chopin 1, 38208 La Laguna, Tenerife, Canary Islands, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias
| | - Mariano Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias; Departamento de Bioquímica, Microbiología, Biología Celular y Genética. Universidad de La Laguna. Avda. Astrofisico Fco. Sánchez s/n 38207 La Laguna, Tenerife, Spain
| |
Collapse
|
16
|
Kuo LY, Ebihara A, Shinohara W, Rouhan G, Wood KR, Wang CN, Chiou WL. Historical biogeography of the fern genus Deparia (Athyriaceae) and its relation with polyploidy. Mol Phylogenet Evol 2016; 104:123-134. [DOI: 10.1016/j.ympev.2016.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/14/2022]
|
17
|
Soares AER, Novak BJ, Haile J, Heupink TH, Fjeldså J, Gilbert MTP, Poinar H, Church GM, Shapiro B. Complete mitochondrial genomes of living and extinct pigeons revise the timing of the columbiform radiation. BMC Evol Biol 2016; 16:230. [PMID: 27782796 PMCID: PMC5080718 DOI: 10.1186/s12862-016-0800-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pigeons and doves (Columbiformes) are one of the oldest and most diverse extant lineages of birds. However, the nature and timing of the group's evolutionary radiation remains poorly resolved, despite recent advances in DNA sequencing and assembly and the growing database of pigeon mitochondrial genomes. One challenge has been to generate comparative data from the large number of extinct pigeon lineages, some of which are morphologically unique and therefore difficult to place in a phylogenetic context. RESULTS We used ancient DNA and next generation sequencing approaches to assemble complete mitochondrial genomes for eleven pigeons, including the extinct Ryukyu wood pigeon (Columba jouyi), the thick-billed ground dove (Alopecoenas salamonis), the spotted green pigeon (Caloenas maculata), the Rodrigues solitaire (Pezophaps solitaria), and the dodo (Raphus cucullatus). We used a Bayesian approach to infer the evolutionary relationships among 24 species of living and extinct pigeons and doves. CONCLUSIONS Our analyses indicate that the earliest radiation of the Columbidae crown group most likely occurred during the Oligocene, with continued divergence of major clades into the Miocene, suggesting that diversification within the Columbidae occurred more recently than has been reported previously.
Collapse
Affiliation(s)
- André E. R. Soares
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| | - Ben J. Novak
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
- Revive & Restore, The Long Now Foundation, San Francisco, CA 94123 USA
| | - James Haile
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Tim H. Heupink
- Environmental Futures Research Institute, Griffith University, 170 Kessels Road QLD 4111, Nathan, Australia
| | - Jon Fjeldså
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - M. Thomas P. Gilbert
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology and Biology, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 L9 Canada
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115 USA
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| |
Collapse
|
18
|
Up high and down low: Molecular systematics and insight into the diversification of the ground beetle genus Rhadine LeConte. Mol Phylogenet Evol 2016; 98:161-75. [DOI: 10.1016/j.ympev.2016.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/10/2015] [Accepted: 01/14/2016] [Indexed: 11/24/2022]
|
19
|
Abstract
Molecular dating has become central to placing a temporal dimension on the tree of life. Methods for estimating divergence times have been developed for over 50 years, beginning with the proposal of molecular clock in 1962. We categorize the chronological development of these methods into four generations based on the timing of their origin. In the first generation approaches (1960s-1980s), a strict molecular clock was assumed to date divergences. In the second generation approaches (1990s), the equality of evolutionary rates between species was first tested and then a strict molecular clock applied to estimate divergence times. The third generation approaches (since ∼2000) account for differences in evolutionary rates across the tree by using a statistical model, obviating the need to assume a clock or to test the equality of evolutionary rates among species. Bayesian methods in the third generation require a specific or uniform prior on the speciation-process and enable the inclusion of uncertainty in clock calibrations. The fourth generation approaches (since 2012) allow rates to vary from branch to branch, but do not need prior selection of a statistical model to describe the rate variation or the specification of speciation model. With high accuracy, comparable to Bayesian approaches, and speeds that are orders of magnitude faster, fourth generation methods are able to produce reliable timetrees of thousands of species using genome scale data. We found that early time estimates from second generation studies are similar to those of third and fourth generation studies, indicating that methodological advances have not fundamentally altered the timetree of life, but rather have facilitated time estimation by enabling the inclusion of more species. Nonetheless, we feel an urgent need for testing the accuracy and precision of third and fourth generation methods, including their robustness to misspecification of priors in the analysis of large phylogenies and data sets.
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University Center for Biodiversity, Temple University Department of Biology, Temple University
| | - S Blair Hedges
- Institute for Genomics and Evolutionary Medicine, Temple University Center for Biodiversity, Temple University Department of Biology, Temple University
| |
Collapse
|
20
|
Schenk JJ. Consequences of Secondary Calibrations on Divergence Time Estimates. PLoS One 2016; 11:e0148228. [PMID: 26824760 PMCID: PMC4732660 DOI: 10.1371/journal.pone.0148228] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/14/2016] [Indexed: 11/19/2022] Open
Abstract
Secondary calibrations (calibrations based on the results of previous molecular dating studies) are commonly applied in divergence time analyses in groups that lack fossil data; however, the consequences of applying secondary calibrations in a relaxed-clock approach are not fully understood. I tested whether applying the posterior estimate from a primary study as a prior distribution in a secondary study results in consistent age and uncertainty estimates. I compared age estimates from simulations with 100 randomly replicated secondary trees. On average, the 95% credible intervals of node ages for secondary estimates were significantly younger and narrower than primary estimates. The primary and secondary age estimates were significantly different in 97% of the replicates after Bonferroni corrections. Greater error in magnitude was associated with deeper than shallower nodes, but the opposite was found when standardized by median node age, and a significant positive relationship was determined between the number of tips/age of secondary trees and the total amount of error. When two secondary calibrated nodes were analyzed, estimates remained significantly different, and although the minimum and median estimates were associated with less error, maximum age estimates and credible interval widths had greater error. The shape of the prior also influenced error, in which applying a normal, rather than uniform, prior distribution resulted in greater error. Secondary calibrations, in summary, lead to a false impression of precision and the distribution of age estimates shift away from those that would be inferred by the primary analysis. These results suggest that secondary calibrations should not be applied as the only source of calibration in divergence time analyses that test time-dependent hypotheses until the additional error associated with secondary calibrations is more properly modeled to take into account increased uncertainty in age estimates.
Collapse
Affiliation(s)
- John J. Schenk
- Department of Biology, Georgia Southern University, Statesboro, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Blaimer BB, Brady SG, Schultz TR, Lloyd MW, Fisher BL, Ward PS. Phylogenomic methods outperform traditional multi-locus approaches in resolving deep evolutionary history: a case study of formicine ants. BMC Evol Biol 2015; 15:271. [PMID: 26637372 PMCID: PMC4670518 DOI: 10.1186/s12862-015-0552-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/26/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Ultraconserved elements (UCEs) have been successfully used in phylogenomics for a variety of taxa, but their power in phylogenetic inference has yet to be extensively compared with that of traditional Sanger sequencing data sets. Moreover, UCE data on invertebrates, including insects, are sparse. We compared the phylogenetic informativeness of 959 UCE loci with a multi-locus data set of ten nuclear markers obtained via Sanger sequencing, testing the ability of these two types of data to resolve and date the evolutionary history of the second most species-rich subfamily of ants in the world, the Formicinae. RESULTS Phylogenetic analyses show that UCEs are superior in resolving ancient and shallow relationships in formicine ants, demonstrated by increased node support and a more resolved phylogeny. Phylogenetic informativeness metrics indicate a twofold improvement relative to the 10-gene data matrix generated from the identical set of taxa. We were able to significantly improve formicine classification based on our comprehensive UCE phylogeny. Our divergence age estimations, using both UCE and Sanger data, indicate that crown-group Formicinae are older (104-117 Ma) than previously suggested. Biogeographic analyses infer that the diversification of the subfamily has occurred on all continents with no particular hub of cladogenesis. CONCLUSIONS We found UCEs to be far superior to the multi-locus data set in estimating formicine relationships. The early history of the clade remains uncertain due to ancient rapid divergence events that are unresolvable even with our genomic-scale data, although this might be largely an effect of several problematic taxa subtended by long branches. Our comparison of divergence ages from both Sanger and UCE data demonstrates the effectiveness of UCEs for dating analyses. This comparative study highlights both the promise and limitations of UCEs for insect phylogenomics, and will prove useful to the growing number of evolutionary biologists considering the transition from Sanger to next-generation sequencing approaches.
Collapse
Affiliation(s)
- Bonnie B Blaimer
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA.
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA.
| | - Ted R Schultz
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA.
| | - Michael W Lloyd
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA.
| | - Brian L Fisher
- Department of Entomology, California Academy of Sciences, San Francisco, CA, 94118, USA.
| | - Philip S Ward
- Department of Entomology and Nematology, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|
22
|
Warnock RCM, Parham JF, Joyce WG, Lyson TR, Donoghue PCJ. Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc Biol Sci 2015; 282:20141013. [PMID: 25429012 PMCID: PMC4262156 DOI: 10.1098/rspb.2014.1013] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Calibration is the rate-determining step in every molecular clock analysis and, hence, considerable effort has been expended in the development of approaches to distinguish good from bad calibrations. These can be categorized into a priori evaluation of the intrinsic fossil evidence, and a posteriori evaluation of congruence through cross-validation. We contrasted these competing approaches and explored the impact of different interpretations of the fossil evidence upon Bayesian divergence time estimation. The results demonstrate that a posteriori approaches can lead to the selection of erroneous calibrations. Bayesian posterior estimates are also shown to be extremely sensitive to the probabilistic interpretation of temporal constraints. Furthermore, the effective time priors implemented within an analysis differ for individual calibrations when employed alone and in differing combination with others. This compromises the implicit assumption of all calibration consistency methods, that the impact of an individual calibration is the same when used alone or in unison with others. Thus, the most effective means of establishing the quality of fossil-based calibrations is through a priori evaluation of the intrinsic palaeontological, stratigraphic, geochronological and phylogenetic data. However, effort expended in establishing calibrations will not be rewarded unless they are implemented faithfully in divergence time analyses.
Collapse
Affiliation(s)
- Rachel C M Warnock
- School of Earth Sciences, University of Bristol, Bristol, UK National Evolutionary Synthesis Center, Durham, NC, USA Department of Paleobiology, Smithsonian Institution, Washington DC, USA
| | - James F Parham
- John D. Cooper Archaeological and Paleontological Center, Department of Geological Sciences, California State University, Fullerton, CA, USA
| | - Walter G Joyce
- Department of Geosciences, University of Fribourg/Freiburg, Switzerland
| | - Tyler R Lyson
- Denver Museum of Nature and Science, Denver, CO, USA
| | | |
Collapse
|
23
|
Condamine FL, Nagalingum NS, Marshall CR, Morlon H. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol Biol 2015; 15:65. [PMID: 25884423 PMCID: PMC4449600 DOI: 10.1186/s12862-015-0347-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/02/2015] [Indexed: 01/21/2023] Open
Abstract
Background Bayesian relaxed-clock dating has significantly influenced our understanding of the timeline of biotic evolution. This approach requires the use of priors on the branching process, yet little is known about their impact on divergence time estimates. We investigated the effect of branching priors using the iconic cycads. We conducted phylogenetic estimations for 237 cycad species using three genes and two calibration strategies incorporating up to six fossil constraints to (i) test the impact of two different branching process priors on age estimates, (ii) assess which branching prior better fits the data, (iii) investigate branching prior impacts on diversification analyses, and (iv) provide insights into the diversification history of cycads. Results Using Bayes factors, we compared divergence time estimates and the inferred dynamics of diversification when using Yule versus birth-death priors. Bayes factors were calculated with marginal likelihood estimated with stepping-stone sampling. We found striking differences in age estimates and diversification dynamics depending on prior choice. Dating with the Yule prior suggested that extant cycad genera diversified in the Paleogene and with two diversification rate shifts. In contrast, dating with the birth-death prior yielded Neogene diversifications, and four rate shifts, one for each of the four richest genera. Nonetheless, dating with the two priors provided similar age estimates for the divergence of cycads from Ginkgo (Carboniferous) and their crown age (Permian). Of these, Bayes factors clearly supported the birth-death prior. Conclusions These results suggest the choice of the branching process prior can have a drastic influence on our understanding of evolutionary radiations. Therefore, all dating analyses must involve a model selection process using Bayes factors to select between a Yule or birth-death prior, in particular on ancient clades with a potential pattern of high extinction. We also provide new insights into the history of cycad diversification because we found (i) periods of extinction along the long branches of the genera consistent with fossil data, and (ii) high diversification rates within the Miocene genus radiations. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0347-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabien L Condamine
- CNRS, UMR 7641 Centre de Mathématiques Appliquées (École Polytechnique), Route de Saclay, 91128, Palaiseau, France. .,Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30, Göteborg, Sweden.
| | - Nathalie S Nagalingum
- National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Mrs Macquaries Road, Sydney, NSW, 2000, Australia.
| | - Charles R Marshall
- Department of Integrative Biology and Museum of Paleontology, University of California, 1101 Valley Life Sciences Building, Berkeley, CA, 94720-4780, USA.
| | - Hélène Morlon
- CNRS, UMR 8197 Institut de Biologie de l'École Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
24
|
Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S. A Protocol for Diagnosing the Effect of Calibration Priors on Posterior Time Estimates: A Case Study for the Cambrian Explosion of Animal Phyla. Mol Biol Evol 2015; 32:1907-12. [PMID: 25808541 DOI: 10.1093/molbev/msv075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We present a procedure to test the effect of calibration priors on estimated times, which applies a recently developed calibration-free approach (RelTime) method that produces relative divergence times for all nodes in the tree. We illustrate this protocol by applying it to a timetree of metazoan diversification (Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091-1097.), which placed the divergence of animal phyla close to the time of the Cambrian explosion inferred from the fossil record. These analyses revealed that the two maximum-only calibration priors in the pre-Cambrian are the primary determinants of the young divergence times among animal phyla in this study. In fact, these two maximum-only calibrations produce divergence times that severely violate minimum boundaries of almost all of the other 22 calibration constraints. The use of these 22 calibrations produces dates for metazoan divergences that are hundreds of millions of years earlier in the Proterozoic. Our results encourage the use of calibration-free approaches to identify most influential calibration constraints and to evaluate their impact in order to achieve biologically robust interpretations.
Collapse
Affiliation(s)
| | - Paul Billing-Ross
- Department of Molecular Biology and Genetics, College of Human Ecology, Cornell University
| | - Oscar Murillo
- Institute for Genomics and Evolutionary Medicine, Temple University
| | - Alan Filipski
- Institute for Genomics and Evolutionary Medicine, Temple University
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University Department of Biology, Temple University Center for Genomic Medicine and Research, King Abdulaziz University, Jddah, Saudi Arabia
| |
Collapse
|
25
|
Zheng Y, Wiens JJ. Do missing data influence the accuracy of divergence-time estimation with BEAST? Mol Phylogenet Evol 2015; 85:41-9. [PMID: 25681677 DOI: 10.1016/j.ympev.2015.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/26/2015] [Accepted: 02/01/2015] [Indexed: 10/24/2022]
Abstract
Time-calibrated phylogenies have become essential to evolutionary biology. A recurrent and unresolved question for dating analyses is whether genes with missing data cells should be included or excluded. This issue is particularly unclear for the most widely used dating method, the uncorrelated lognormal approach implemented in BEAST. Here, we test the robustness of this method to missing data. We compare divergence-time estimates from a nearly complete dataset (20 nuclear genes for 32 species of squamate reptiles) to those from subsampled matrices, including those with 5 or 2 complete loci only and those with 5 or 8 incomplete loci added. In general, missing data had little impact on estimated dates (mean error of ∼5Myr per node or less, given an overall age of ∼220Myr in squamates), even when 80% of sampled genes had 75% missing data. Mean errors were somewhat higher when all genes were 75% incomplete (∼17Myr). However, errors increased dramatically when only 2 of 9 fossil calibration points were included (∼40Myr), regardless of missing data. Overall, missing data (and even numbers of genes sampled) may have only minor impacts on the accuracy of divergence dating with BEAST, relative to the dramatic effects of fossil calibrations.
Collapse
Affiliation(s)
- Yuchi Zheng
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-088, USA.
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-088, USA.
| |
Collapse
|
26
|
Acosta MC, Mathiasen P, Premoli AC. Retracing the evolutionary history of Nothofagus in its geo-climatic context: new developments in the emerging field of phylogeology. GEOBIOLOGY 2014; 12:497-510. [PMID: 25040174 DOI: 10.1111/gbi.12098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Phylogeographic studies have made a significant contribution to the interpretation of genetic lineage distribution in response to climate changes, such as during glaciation events of the Neogene. However, the effects of ancient landscapes associated with global sea level rises, tectonic processes, and climatology driving lineage evolution have been largely overlooked. These effects can be tested in widespread lineages of cold-tolerant species that have endured cooling, and thus, phylogeographic patterns may reflect large-scale processes that were not reset by the ice ages. We hereby combine geological evidence from marine sedimentary basins, Andean orogeny, and climatology with molecular dating and statistical phylogeography to infer how geological and climatic processes affected the distribution of lineages in cold-tolerant Nothofagus species during the Cenozoic. A total of 239 populations along the entire range of all species within the genus Nothofagus (N. antarctica, N. betuloides, N. dombeyi, N. nitida, and N. pumilio) were sampled and analyzed by sequencing three non-coding regions of the chloroplast. We found 30 chloroplast DNA haplotypes that were geographically structured. Molecular dating calibrated with fossils revealed that ancestral lineages appeared in Eocene/Oligocene, whereas most divergences took place during the Miocene; in turn, Bayesian skyline plots showed that population expansion occurred in the Early Pleistocene (1.5-1 million years ago). Lineage divergence from all wide-ranging Nothofagus was spatially and temporally concordant with episodic marine transgressions and warmer times in Patagonia during Eocene/Miocene Epochs. Long-lasting stable raised areas preserved haplotype diversity throughout Patagonia, from where cold-tolerant taxa expanded their ranges during pre-Quaternary times. The detailed study of such ancient divergences is novel and allows us to infer the effects of geological processes on distribution patterns of ancient lineages, that is, phylogeology.
Collapse
Affiliation(s)
- M C Acosta
- Laboratorio Ecotono, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET- Universidad Nacional del Comahue, Bariloche, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
27
|
Clarke JA, Boyd CA. Methods for the quantitative comparison of molecular estimates of clade age and the fossil record. Syst Biol 2014; 64:25-41. [PMID: 25281846 DOI: 10.1093/sysbio/syu068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Approaches quantifying the relative congruence, or incongruence, of molecular divergence estimates and the fossil record have been limited. Previously proposed methods are largely node specific, assessing incongruence at particular nodes for which both fossil data and molecular divergence estimates are available. These existing metrics, and other methods that quantify incongruence across topologies including entirely extinct clades, have so far not taken into account uncertainty surrounding both the divergence estimates and the ages of fossils. They have also treated molecular divergence estimates younger than previously assessed fossil minimum estimates of clade age as if they were the same as cases in which they were older. However, these cases are not the same. Recovered divergence dates younger than compared oldest known occurrences require prior hypotheses regarding the phylogenetic position of the compared fossil record and standard assumptions about the relative timing of morphological and molecular change to be incorrect. Older molecular dates, by contrast, are consistent with an incomplete fossil record and do not require prior assessments of the fossil record to be unreliable in some way. Here, we compare previous approaches and introduce two new descriptive metrics. Both metrics explicitly incorporate information on uncertainty by utilizing the 95% confidence intervals on estimated divergence dates and data on stratigraphic uncertainty concerning the age of the compared fossils. Metric scores are maximized when these ranges are overlapping. MDI (minimum divergence incongruence) discriminates between situations where molecular estimates are younger or older than known fossils reporting both absolute fit values and a number score for incompatible nodes. DIG range (divergence implied gap range) allows quantification of the minimum increase in implied missing fossil record induced by enforcing a given set of molecular-based estimates. These metrics are used together to describe the relationship between time trees and a set of fossil data, which we recommend be phylogenetically vetted and referred on the basis of apomorphy. Differences from previously proposed metrics and the utility of MDI and DIG range are illustrated in three empirical case studies from angiosperms, ostracods, and birds. These case studies also illustrate the ways in which MDI and DIG range may be used to assess time trees resultant from analyses varying in calibration regime, divergence dating approach or molecular sequence data analyzed.
Collapse
Affiliation(s)
- Julia A Clarke
- Jackson School of Geosciences, The University of Texas at Austin, 1 University Station C1100, Austin, TX 78712; Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Clint A Boyd
- Jackson School of Geosciences, The University of Texas at Austin, 1 University Station C1100, Austin, TX 78712; Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| |
Collapse
|
28
|
Toussaint EF, Condamine FL, Hawlitschek O, Watts CH, Porch N, Hendrich L, Balke M. Unveiling the Diversification Dynamics of Australasian Predaceous Diving Beetles in the Cenozoic. Syst Biol 2014; 64:3-24. [DOI: 10.1093/sysbio/syu067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Emmanuel F.A. Toussaint
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Fabien L. Condamine
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Oliver Hawlitschek
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Chris H. Watts
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Nick Porch
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Lars Hendrich
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| | - Michael Balke
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
- SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany; 2CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Route de Saclay, 91128 Palaiseau cedex, France; 3South Australian Museum, Adelaide, South Australia, Australia; 4Centre for Integrated Ecology & School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia; and 5GeoBioCenter, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
29
|
Eme L, Sharpe SC, Brown MW, Roger AJ. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb Perspect Biol 2014; 6:6/8/a016139. [PMID: 25085908 DOI: 10.1101/cshperspect.a016139] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Our understanding of the phylogenetic relationships among eukaryotic lineages has improved dramatically over the few past decades thanks to the development of sophisticated phylogenetic methods and models of evolution, in combination with the increasing availability of sequence data for a variety of eukaryotic lineages. Concurrently, efforts have been made to infer the age of major evolutionary events along the tree of eukaryotes using fossil-calibrated molecular clock-based methods. Here, we review the progress and pitfalls in estimating the age of the last eukaryotic common ancestor (LECA) and major lineages. After reviewing previous attempts to date deep eukaryote divergences, we present the results of a Bayesian relaxed-molecular clock analysis of a large dataset (159 proteins, 85 taxa) using 19 fossil calibrations. We show that for major eukaryote groups estimated dates of divergence, as well as their credible intervals, are heavily influenced by the relaxed molecular clock models and methods used, and by the nature and treatment of fossil calibrations. Whereas the estimated age of LECA varied widely, ranging from 1007 (943-1102) Ma to 1898 (1655-2094) Ma, all analyses suggested that the eukaryotic supergroups subsequently diverged rapidly (i.e., within 300 Ma of LECA). The extreme variability of these and previously published analyses preclude definitive conclusions regarding the age of major eukaryote clades at this time. As more reliable fossil data on eukaryotes from the Proterozoic become available and improvements are made in relaxed molecular clock modeling, we may be able to date the age of extant eukaryotes more precisely.
Collapse
Affiliation(s)
- Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Canada
| | - Susan C Sharpe
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Canada
| | - Matthew W Brown
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Canada
| |
Collapse
|
30
|
Duchêne S, Lanfear R, Ho SYW. The impact of calibration and clock-model choice on molecular estimates of divergence times. Mol Phylogenet Evol 2014; 78:277-89. [PMID: 24910154 DOI: 10.1016/j.ympev.2014.05.032] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 11/26/2022]
Abstract
Phylogenetic estimates of evolutionary timescales can be obtained from nucleotide sequence data using the molecular clock. These estimates are important for our understanding of evolutionary processes across all taxonomic levels. The molecular clock needs to be calibrated with an independent source of information, such as fossil evidence, to allow absolute ages to be inferred. Calibration typically involves fixing or constraining the age of at least one node in the phylogeny, enabling the ages of the remaining nodes to be estimated. We conducted an extensive simulation study to investigate the effects of the position and number of calibrations on the resulting estimate of the timescale. Our analyses focused on Bayesian estimates obtained using relaxed molecular clocks. Our findings suggest that an effective strategy is to include multiple calibrations and to prefer those that are close to the root of the phylogeny. Under these conditions, we found that evolutionary timescales could be estimated accurately even when the relaxed-clock model was misspecified and when the sequence data were relatively uninformative. We tested these findings in a case study of simian foamy virus, where we found that shallow calibrations caused the overall timescale to be underestimated by up to three orders of magnitude. Finally, we provide some recommendations for improving the practice of molecular-clock calibration.
Collapse
Affiliation(s)
- Sebastián Duchêne
- School of Biological Sciences, University of Sydney, NSW 2006, Australia.
| | - Robert Lanfear
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
31
|
Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 2014; 75:165-83. [PMID: 24583291 PMCID: PMC4059600 DOI: 10.1016/j.ympev.2014.02.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled.
Collapse
Affiliation(s)
- Luca Pozzi
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany.
| | - Jason A Hodgson
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Andrew S Burrell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States.
| | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, OR, United States.
| | - Ryan L Raaum
- New York Consortium in Evolutionary Primatology, United States; Department of Anthropology, Lehman College & The Graduate Center, City University of New York, Bronx, NY, United States.
| | - Todd R Disotell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States.
| |
Collapse
|
32
|
Andújar C, Soria-Carrasco V, Serrano J, Gómez-Zurita J. Congruence test of molecular clock calibration hypotheses based on Bayes factor comparisons. Methods Ecol Evol 2014. [DOI: 10.1111/2041-210x.12151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carmelo Andújar
- Departamento de Zoología y Antropología Física; Facultad de Veterinaria; Universidad de Murcia; 30071 Murcia Spain
| | - Víctor Soria-Carrasco
- Animal Biodiversity and Evolution; Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra); Pg. Marítim de la Barceloneta 37 08003 Barcelona Spain
| | - José Serrano
- Departamento de Zoología y Antropología Física; Facultad de Veterinaria; Universidad de Murcia; 30071 Murcia Spain
| | - Jesús Gómez-Zurita
- Animal Biodiversity and Evolution; Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra); Pg. Marítim de la Barceloneta 37 08003 Barcelona Spain
| |
Collapse
|
33
|
Arroyave J, Denton JSS, Stiassny MLJ. Are characiform fishes Gondwanan in origin? Insights from a time-scaled molecular phylogeny of the Citharinoidei (Ostariophysi: Characiformes). PLoS One 2013; 8:e77269. [PMID: 24116219 PMCID: PMC3792904 DOI: 10.1371/journal.pone.0077269] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/31/2013] [Indexed: 11/18/2022] Open
Abstract
Fishes of the order Characiformes are a diverse and economically important teleost clade whose extant members are found exclusively in African and Neotropical freshwaters. Although their transatlantic distribution has been primarily attributed to the Early Cretaceous fragmentation of western Gondwana, vicariance has not been tested with temporal information beyond that contained in their fragmentary fossil record and a recent time-scaled phylogeny focused on the African family Alestidae. Because members of the suborder Citharinoidei constitute the sister lineage to the entire remaining Afro-Neotropical characiform radiation, we inferred a time-calibrated molecular phylogeny of citharinoids using a popular Bayesian approach to molecular dating in order to assess the adequacy of current vicariance hypotheses and shed light on the early biogeographic history of characiform fishes. Given that the only comprehensive phylogenetic treatment of the Citharinoidei has been a morphology-based analysis published over three decades ago, the present study also provided an opportunity to further investigate citharinoid relationships and update the evolutionary framework that has laid the foundations for the current classification of the group. The inferred chronogram is robust to changes in calibration priors and suggests that the origins of citharinoids date back to the Turonian (ca 90 Ma) of the Late Cretaceous. Most modern citharinoid genera, however, appear to have originated and diversified much more recently, mainly during the Miocene. By reconciling molecular-clock- with fossil-based estimates for the origins of the Characiformes, our results provide further support for the hypothesis that attributes the disjunct distribution of the order to the opening of the South Atlantic Ocean. The striking overlap in tempo of diversification and biogeographic patterns between citharinoids and the African-endemic family Alestidae suggests that their evolutionary histories could have been strongly and similarly influenced by Miocene geotectonic events that modified the landscape and produced the drainage pattern of Central Africa seen today.
Collapse
Affiliation(s)
- Jairo Arroyave
- Department of Ichthyology, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
- Department of Biology, the Graduate School and University Center, the City University of New York, New York, New York, United States of America
| | - John S. S. Denton
- Department of Ichthyology, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
- Richard Gilder Graduate School, American Museum of Natural History, New York, New York, United States of America
| | - Melanie L. J. Stiassny
- Department of Ichthyology, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| |
Collapse
|
34
|
Jones MEH, Anderson CL, Hipsley CA, Müller J, Evans SE, Schoch RR. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol Biol 2013; 13:208. [PMID: 24063680 PMCID: PMC4016551 DOI: 10.1186/1471-2148-13-208] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. RESULTS Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). CONCLUSION A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.
Collapse
Affiliation(s)
- Marc EH Jones
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK
- School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Cajsa Lisa Anderson
- University of Gothenburg, Department of Plant and Environmental Sciences, Gothenburg, Sweden
| | - Christy A Hipsley
- Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Müller
- Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Susan E Evans
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK
| | - Rainer R Schoch
- Staatliches Museum für Naturkunde, Rosenstein 1, D-70191, Stuttgart, Germany
| |
Collapse
|
35
|
Jones MEH, Anderson CL, Hipsley CA, Müller J, Evans SE, Schoch RR. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol Biol 2013. [PMID: 24063680 DOI: 10.1186/1471-2148-23-208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. RESULTS Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). CONCLUSION A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.
Collapse
Affiliation(s)
- Marc E H Jones
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Schenk JJ, Rowe KC, Steppan SJ. Ecological Opportunity and Incumbency in the Diversification of Repeated Continental Colonizations by Muroid Rodents. Syst Biol 2013; 62:837-64. [DOI: 10.1093/sysbio/syt050] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- John J. Schenk
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; and 2Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| | - Kevin C. Rowe
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; and 2Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| | - Scott J. Steppan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; and 2Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| |
Collapse
|
37
|
Martin CH, Wainwright PC. On the measurement of ecological novelty: scale-eating pupfish are separated by 168 my from other scale-eating fishes. PLoS One 2013; 8:e71164. [PMID: 23976994 PMCID: PMC3747246 DOI: 10.1371/journal.pone.0071164] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/03/2013] [Indexed: 11/28/2022] Open
Abstract
The colonization of new adaptive zones is widely recognized as one of the hallmarks of adaptive radiation. However, the adoption of novel resources during this process is rarely distinguished from phenotypic change because morphology is a common proxy for ecology. How can we quantify ecological novelty independent of phenotype? Our study is split into two parts: we first document a remarkable example of ecological novelty, scale-eating (lepidophagy), within a rapidly-evolving adaptive radiation of Cyprinodon pupfishes on San Salvador Island, Bahamas. This specialized predatory niche is known in several other fish groups, but is not found elsewhere among the 1,500 species of atherinomorphs. Second, we quantify this ecological novelty by measuring the time-calibrated phylogenetic distance in years to the most closely-related species with convergent ecology. We find that scale-eating pupfish are separated by 168 million years of evolution from the nearest scale-eating fish. We apply this approach to a variety of examples and highlight the frequent decoupling of ecological novelty from phenotypic divergence. We observe that novel ecology is not always tightly correlated with rates of phenotypic or species diversification, particularly within recent adaptive radiations, necessitating the use of additional measures of ecological novelty independent of phenotype.
Collapse
Affiliation(s)
- Christopher H. Martin
- Department of Evolution and Ecology and Center for Population Biology, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Peter C. Wainwright
- Department of Evolution and Ecology and Center for Population Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
38
|
Arrigo N, Therrien J, Anderson CL, Windham MD, Haufler CH, Barker MS. A total evidence approach to understanding phylogenetic relationships and ecological diversity in Selaginella subg. Tetragonostachys. AMERICAN JOURNAL OF BOTANY 2013; 100:1672-82. [PMID: 23935110 DOI: 10.3732/ajb.1200426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PREMISE OF THE STUDY Several members of Selaginella are renowned for their ability to survive extreme drought and "resurrect" when conditions improve. Many of these belong to subgenus Tetragonostachys, a group of ∼45 species primarily found in North and Central America, with substantial diversity in the Sonoran and Chihuahuan Deserts. We evaluated the monophyly and the age of subgenus Tetragonostachys and assess how drought tolerance contributed to the evolution of this clade. METHODS Our study included most Tetragonostachys species, using plastid and nuclear sequences, fossil and herbarium records, and climate variables to describe the species diversity, phylogenetic relationships, divergence times, and climatic niche evolution in the subgenus. KEY RESULTS We found that subgenus Tetragonostachys forms a monophyletic group sister to Selaginella lepidophylla and may have diverged from other Selaginella because of a Gondwanan-Laurasian vicariance event ca. 240 mya. The North American radiation of Tetragonostachys appears to be much more recent and to have occurred during the Early Cretaceous-late Paleocene interval. We identified two significant and nested ecological niche shifts during the evolution of Tetragonostachys associated with extreme drought tolerance and a more recent shift to cold climates. Our analyses suggest that drought tolerance evolved in the warm deserts of southwest North America and may have been advantageous for colonization of cold and dry boreal climates. CONCLUSIONS Our investigation provides a foundation for future research addressing the genomics of ecological niche evolution and the potential role of reticulate evolution in Selaginella subgenus Tetragonostachys.
Collapse
Affiliation(s)
- Nils Arrigo
- Department of Ecology and Evolutionary Biology, University of Arizona, P.O. Box 210088, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
39
|
Claverie T, Patek SN. MODULARITY AND RATES OF EVOLUTIONARY CHANGE IN A POWER-AMPLIFIED PREY CAPTURE SYSTEM. Evolution 2013; 67:3191-207. [DOI: 10.1111/evo.12185] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 05/23/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Thomas Claverie
- Department of Biology; Organismic and Evolutionary Biology Graduate Program; University of Massachusetts; Amherst Massachusetts
| | - S. N. Patek
- Department of Biology; Organismic and Evolutionary Biology Graduate Program; University of Massachusetts; Amherst Massachusetts
| |
Collapse
|
40
|
Prieto M, Wedin M. Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One 2013; 8:e65576. [PMID: 23799026 PMCID: PMC3683012 DOI: 10.1371/journal.pone.0065576] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/26/2013] [Indexed: 11/28/2022] Open
Abstract
Establishing the dates for the origin and main diversification events in the phylogeny of Ascomycota is among the most crucial remaining goals in understanding the evolution of Fungi. There have been several analyses of divergence times in the fungal tree of life in the last two decades, but most have yielded contrasting results for the origin of the major lineages. Moreover, very few studies have provided temporal estimates for a large set of clades within Ascomycota. We performed molecular dating to estimate the divergence times of most of the major groups of Ascomycota. To account for paleontological uncertainty, we included alternative fossil constraints as different scenarios to enable a discussion of the effect of selection of fossils. We used data from 6 molecular markers and 121 extant taxa within Ascomycota. Our various 'relaxed clock' scenarios suggest that the origin and diversification of the Pezizomycotina occurred in the Cambrian. The main lineages of lichen-forming Ascomycota originated at least as early as the Carboniferous, with successive radiations in the Jurassic and Cretaceous generating the diversity of the main modern groups. Our study provides new information about the timing of the main diversification events in Ascomycota, including estimates for classes, orders and families of both lichenized and non-lichenized Ascomycota, many of which had not been previously dated.
Collapse
Affiliation(s)
- María Prieto
- Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden.
| | | |
Collapse
|
41
|
Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP. A total-evidence approach to dating with fossils, applied to the early radiation of the hymenoptera. Syst Biol 2012; 61:973-99. [PMID: 22723471 PMCID: PMC3478566 DOI: 10.1093/sysbio/sys058] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/19/2011] [Accepted: 06/07/2012] [Indexed: 12/04/2022] Open
Abstract
Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.].
Collapse
Affiliation(s)
- Fredrik Ronquist
- Department of Biodiversity Informatics, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Molecular dating of species divergences has become an important means to add a temporal dimension to the Tree of Life. Increasingly larger datasets encompassing greater taxonomic diversity are becoming available to generate molecular timetrees by using sophisticated methods that model rate variation among lineages. However, the practical application of these methods is challenging because of the exorbitant calculation times required by current methods for contemporary data sizes, the difficulty in correctly modeling the rate heterogeneity in highly diverse taxonomic groups, and the lack of reliable clock calibrations and their uncertainty distributions for most groups of species. Here, we present a method that estimates relative times of divergences for all branching points (nodes) in very large phylogenetic trees without assuming a specific model for lineage rate variation or specifying any clock calibrations. The method (RelTime) performed better than existing methods when applied to very large computer simulated datasets where evolutionary rates were varied extensively among lineages by following autocorrelated and uncorrelated models. On average, RelTime completed calculations 1,000 times faster than the fastest Bayesian method, with even greater speed difference for larger number of sequences. This speed and accuracy will enable molecular dating analysis of very large datasets. Relative time estimates will be useful for determining the relative ordering and spacing of speciation events, identifying lineages with significantly slower or faster evolutionary rates, diagnosing the effect of selected calibrations on absolute divergence times, and estimating absolute times of divergence when highly reliable calibration points are available.
Collapse
|
43
|
Crête-Lafrenière A, Weir LK, Bernatchez L. Framing the Salmonidae family phylogenetic portrait: a more complete picture from increased taxon sampling. PLoS One 2012; 7:e46662. [PMID: 23071608 PMCID: PMC3465342 DOI: 10.1371/journal.pone.0046662] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
Considerable research efforts have focused on elucidating the systematic relationships among salmonid fishes; an understanding of these patterns of relatedness will inform conservation- and fisheries-related issues, as well as provide a framework for investigating evolutionary mechanisms in the group. However, uncertainties persist in current Salmonidae phylogenies due to biological and methodological factors, and a comprehensive phylogeny including most representatives of the family could provide insight into the causes of these difficulties. Here we increase taxon sampling by including nearly all described salmonid species (n = 63) to present a time-calibrated and more complete portrait of Salmonidae using a combination of molecular markers and analytical techniques. This strategy improved resolution by increasing the signal-to-noise ratio and helped discriminate methodological and systematic errors from sources of difficulty associated with biological processes. Our results highlight novel aspects of salmonid evolution. First, we call into question the widely-accepted evolutionary relationships among sub-families and suggest that Thymallinae, rather than Coregoninae, is the sister group to the remainder of Salmonidae. Second, we find that some groups in Salmonidae are older than previously thought and that the mitochondrial rate of molecular divergence varies markedly among genes and clades. We estimate the age of the family to be 59.1 MY (CI: 63.2-58.1 MY) old, which likely corresponds to the timing of whole genome duplication in salmonids. The average, albeit highly variable, mitochondrial rate of molecular divergence was estimated as ~0.31%/MY (CI: 0.27-0.36%/MY). Finally, we suggest that some species require taxonomic revision, including two monotypic genera, Stenodus and Salvethymus. In addition, we resolve some relationships that have been notoriously difficult to discern and present a clearer picture of the evolution of the group. Our findings represent an important contribution to the systematics of Salmonidae, and provide a useful tool for addressing questions related to fundamental and applied evolutionary issues.
Collapse
Affiliation(s)
- Alexis Crête-Lafrenière
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Québec, Canada
| | - Laura K. Weir
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Québec, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Québec, Canada
| |
Collapse
|
44
|
Birch JL, Keeley SC, Morden CW. Molecular phylogeny and dating of Asteliaceae (Asparagales): Astelia s.l. evolution provides insight into the Oligocene history of New Zealand. Mol Phylogenet Evol 2012; 65:102-15. [DOI: 10.1016/j.ympev.2012.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/30/2022]
|
45
|
Mulcahy DG, Noonan BP, Moss T, Townsend TM, Reeder TW, Sites JW, Wiens JJ. Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. Mol Phylogenet Evol 2012; 65:974-91. [PMID: 22982760 DOI: 10.1016/j.ympev.2012.08.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 11/16/2022]
Abstract
Recently, phylogenetics has expanded to routinely include estimation of clade ages in addition to their relationships. Various dating methods have been used, but their relative performance remains understudied. Here, we generate and assemble an extensive phylogenomic data set for squamate reptiles (lizards and snakes) and evaluate two widely used dating methods, penalized likelihood in r8s (r8s-PL) and Bayesian estimation with uncorrelated relaxed rates among lineages (BEAST). We obtained sequence data from 25 nuclear loci (∼500-1,000 bp per gene; 19,020bp total) for 64 squamate species and nine outgroup taxa, estimated the phylogeny, and estimated divergence dates using 14 fossil calibrations. We then evaluated how well each method approximated these dates using random subsets of the nuclear loci (2, 5, 10, 15, and 20; replicated 10 times each), and using ∼1 kb of the mitochondrial ND2 gene. We find that estimates from r8s-PL based on 2, 5, or 10 loci can differ considerably from those based on 25 loci (mean absolute value of differences between 2-locus and 25-locus estimates were 9.0 Myr). Estimates from BEAST are somewhat more consistent given limited sampling of loci (mean absolute value of differences between 2 and 25-locus estimates were 5.0 Myr). Most strikingly, age estimates using r8s-PL for ND2 were ∼68-82 Myr older (mean=73.1) than those using 25 nuclear loci with r8s-PL. These results show that dates from r8s-PL with a limited number of loci (and especially mitochondrial data) can differ considerably from estimates derived from a large number of nuclear loci, whereas estimates from BEAST derived from fewer nuclear loci or mitochondrial data alone can be surprisingly similar to those from many nuclear loci. However, estimates from BEAST using relatively few loci and mitochondrial data could still show substantial deviations from the full data set (>50 Myr), suggesting the benefits of sampling many nuclear loci. Finally, we found that confidence intervals on ages from BEAST were not significantly different when sampling 2 vs. 25 loci, suggesting that adding loci decreased errors but did not increase confidence in those estimates.
Collapse
Affiliation(s)
- Daniel G Mulcahy
- Department of Biology, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PCJ, Yang Z. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc Biol Sci 2012; 279:3491-500. [PMID: 22628470 DOI: 10.1098/rspb.2012.0683] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fossil record suggests a rapid radiation of placental mammals following the Cretaceous-Paleogene (K-Pg) mass extinction 65 million years ago (Ma); nevertheless, molecular time estimates, while highly variable, are generally much older. Early molecular studies suffer from inadequate dating methods, reliance on the molecular clock, and simplistic and over-confident interpretations of the fossil record. More recent studies have used Bayesian dating methods that circumvent those issues, but the use of limited data has led to large estimation uncertainties, precluding a decisive conclusion on the timing of mammalian diversifications. Here we use a powerful Bayesian method to analyse 36 nuclear genomes and 274 mitochondrial genomes (20.6 million base pairs), combined with robust but flexible fossil calibrations. Our posterior time estimates suggest that marsupials diverged from eutherians 168-178 Ma, and crown Marsupialia diverged 64-84 Ma. Placentalia diverged 88-90 Ma, and present-day placental orders (except Primates and Xenarthra) originated in a ∼20 Myr window (45-65 Ma) after the K-Pg extinction. Therefore we reject a pre K-Pg model of placental ordinal diversification. We suggest other infamous instances of mismatch between molecular and palaeontological divergence time estimates will be resolved with this same approach.
Collapse
Affiliation(s)
- Mario dos Reis
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, UK
| | | | | | | | | | | |
Collapse
|
47
|
Thornhill AH, Popple LW, Carter RJ, Ho SY, Crisp MD. Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae. Mol Phylogenet Evol 2012; 63:15-27. [DOI: 10.1016/j.ympev.2011.12.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 11/15/2011] [Accepted: 12/02/2011] [Indexed: 11/26/2022]
|
48
|
Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, Patané JSL, Smith ND, Tarver JE, van Tuinen M, Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Müller J, Smith KT, Theodor JM, Warnock RCM, Benton MJ. Best practices for justifying fossil calibrations. Syst Biol 2012; 61:346-59. [PMID: 22105867 PMCID: PMC3280042 DOI: 10.1093/sysbio/syr107] [Citation(s) in RCA: 395] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/22/2011] [Accepted: 11/14/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- James F Parham
- Alabama Museum of Natural History, University of Alabama, 427 6th Avenue, Smith Hall, Box 870340, Tuscaloosa, AL 35487, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kenrick P, Wellman CH, Schneider H, Edgecombe GD. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philos Trans R Soc Lond B Biol Sci 2012; 367:519-36. [PMID: 22232764 PMCID: PMC3248713 DOI: 10.1098/rstb.2011.0271] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The geochemical carbon cycle is strongly influenced by life on land, principally through the effects of carbon sequestration and the weathering of calcium and magnesium silicates in surface rocks and soils. Knowing the time of origin of land plants and animals and also of key organ systems (e.g. plant vasculature, roots, wood) is crucial to understand the development of the carbon cycle and its effects on other Earth systems. Here, we compare evidence from fossils with calibrated molecular phylogenetic trees (timetrees) of living plants and arthropods. We show that different perspectives conflict in terms of the relative timing of events, the organisms involved and the pattern of diversification of various groups. Focusing on the fossil record, we highlight a number of key biases that underpin some of these conflicts, the most pervasive and far-reaching being the extent and nature of major facies changes in the rock record. These effects probably mask an earlier origin of life on land than is evident from certain classes of fossil data. If correct, this would have major implications in understanding the carbon cycle during the Early Palaeozoic.
Collapse
Affiliation(s)
- Paul Kenrick
- Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | | | | | | |
Collapse
|
50
|
Swenson U, Nylinder S, Wagstaff SJ. Are Asteraceae 1.5 billion years old? A reply to heads. Syst Biol 2012; 61:522-32. [PMID: 22213711 DOI: 10.1093/sysbio/syr121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ulf Swenson
- Department of Phanerogamic Botany, Swedish Museum of Natural History, PO Box 50007, 10405 Stockholm, Sweden.
| | | | | |
Collapse
|