1
|
Arora UP, Dumont BL. Molecular evolution of the mammalian kinetochore complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600994. [PMID: 38979348 PMCID: PMC11230421 DOI: 10.1101/2024.06.27.600994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mammalian centromeres are satellite-rich chromatin domains that serve as sites for kinetochore complex assembly. Centromeres are highly variable in sequence and satellite organization across species, but the processes that govern the co-evolutionary dynamics between rapidly evolving centromeres and their associated kinetochore proteins remain poorly understood. Here, we pursue a course of phylogenetic analyses to investigate the molecular evolution of the complete kinetochore complex across primate and rodent species with divergent centromere repeat sequences and features. We show that many protein components of the core centromere associated network (CCAN) harbor signals of adaptive evolution, consistent with their intimate association with centromere satellite DNA and roles in the stability and recruitment of additional kinetochore proteins. Surprisingly, CCAN and outer kinetochore proteins exhibit comparable rates of adaptive divergence, suggesting that changes in centromere DNA can ripple across the kinetochore to drive adaptive protein evolution within distant domains of the complex. Our work further identifies kinetochore proteins subject to lineage-specific adaptive evolution, including rapidly evolving proteins in species with centromere satellites characterized by higher-order repeat structure and lacking CENP-B boxes. Thus, features of centromeric chromatin beyond the linear DNA sequence may drive selection on kinetochore proteins. Overall, our work spotlights adaptively evolving proteins with diverse centromere-associated functions, including centromere chromatin structure, kinetochore protein assembly, kinetochore-microtubule association, cohesion maintenance, and DNA damage response pathways. These adaptively evolving kinetochore protein candidates present compelling opportunities for future functional investigations exploring how their concerted changes with centromere DNA ensure the maintenance of genome stability.
Collapse
Affiliation(s)
- Uma P. Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor ME 04609
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston MA 02111
| | - Beth L. Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor ME 04609
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston MA 02111
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, 04469
| |
Collapse
|
2
|
Wu F, Akbar H, Wang C, Yuan X, Dou Z, Mullen M, Niu L, Zhang L, Zang J, Wang Z, Yao X, Song X, Liu X. Sgo1 interacts with CENP-A to guide accurate chromosome segregation in mitosis. J Mol Cell Biol 2024; 15:mjad061. [PMID: 37777834 PMCID: PMC11181942 DOI: 10.1093/jmcb/mjad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Shugoshin-1 (Sgo1) is necessary for maintaining sister centromere cohesion and ensuring accurate chromosome segregation during mitosis. It has been reported that the localization of Sgo1 at the centromere is dependent on Bub1-mediated phosphorylation of histone H2A at T120. However, it remains uncertain whether other centromeric proteins play a role in regulating the localization and function of Sgo1 during mitosis. Here, we show that CENP-A interacts with Sgo1 and determines the localization of Sgo1 to the centromere during mitosis. Further biochemical characterization revealed that lysine and arginine residues in the C-terminal domain of Sgo1 are critical for binding CENP-A. Interestingly, the replacement of these basic amino acids with acidic amino acids perturbed the localization of Sgo1 and Aurora B to the centromere, resulting in aberrant chromosome segregation and premature chromatid separation. Taken together, these findings reveal a previously unrecognized but direct link between Sgo1 and CENP-A in centromere plasticity control and illustrate how the Sgo1-CENP-A interaction guides accurate cell division.
Collapse
Affiliation(s)
- Fengge Wu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Hameed Akbar
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Chunyue Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Liwen Niu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Liang Zhang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Jianye Zang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| |
Collapse
|
3
|
Yang Z, Jiang Y, Wang L, Yu B, Cai H, Fan J, Zhang M. Prognosis and biological function of SGOL1 in clear cell renal cell carcinoma: a multiomics analysis. BMC Med Genomics 2024; 17:60. [PMID: 38383432 PMCID: PMC10882763 DOI: 10.1186/s12920-024-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Shugoshin-1 (SGOL1) is a mammalian ortholog of Shugoshin in yeast and is essential for precise chromosome segregation during mitosis and meiosis. Aberrant SGOL1 expression was reported to be closely correlated with the malignant progression of various tumors. However, the expression pattern and biological function of SGOL1 in clear cell renal cell carcinoma (ccRCC) are unclear. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases provide mRNA expression data and outcome information for ccRCC patients. Immunohistochemistry (IHC) of ccRCC tissue chips verified SGOL1 protein expression in ccRCC patients. Data processing and visualization were performed with the UALCAN, TISIDB, TIMER, GSCA, LinkedOmics, and starBase databases. Gene Ontology (GO) annotation and gene set enrichment analysis (GSEA) were used to identify SGOL1-related biological functions and signaling pathways. Immune infiltration analysis was performed using the TISIDB database, ssGSEA algorithm, and TCGA-KIRC cohort. The biological role of SGOL1 in ccRCC was investigated using a series of in vitro cytological assays, including the MTT assay, EdU staining assay, flow cytometry analysis, Transwell assay, and wound healing assay. RESULTS SGOL1 was highly expressed in ccRCC and linked to adverse clinicopathological parameters and unfavorable prognosis. Multivariate logistic regression and nomogram calibration suggested that SGOL1 might serve as an independent and reliable prognostic predictor of ccRCC. Functional enrichment analysis indicated that SGOL1 may be involved in the cell cycle, the p53 pathway, DNA replication, and T-cell activation. Furthermore, tumor microenvironment (TME) analysis suggested that SGOL1 was positively associated with Treg infiltration and immune checkpoint upregulation. In addition, we identified a potential SNHG17/PVT1/ZMIZ1-AS1-miR-23b-3p-SGOL1 axis correlated with ccRCC carcinogenesis and progression. Finally, we demonstrated that SGOL1 promoted ccRCC cell proliferation, migratory capacity, and invasion in vitro. CONCLUSIONS SGOL1 potentially functions as an oncogene in ccRCC progression and might contribute to the immunosuppressive TME by increasing Treg infiltration and checkpoint expression, suggesting that targeting SGOL1 could be a novel therapeutic strategy for the treatment of ccRCC patients.
Collapse
Affiliation(s)
- Zezhong Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yunzhong Jiang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Binghe Yu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University. Address: No, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University. Address: No, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
4
|
Sharma N, Setiawan D, Hamelberg D, Narayan R, Aneja R. Computational benchmarking of putative KIFC1 inhibitors. Med Res Rev 2023; 43:293-318. [PMID: 36104980 DOI: 10.1002/med.21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023]
Abstract
The centrosome in animal cells is instrumental in spindle pole formation, nucleation, proper alignment of microtubules during cell division, and distribution of chromosomes in each daughter cell. Centrosome amplification involving structural and numerical abnormalities in the centrosome can cause chromosomal instability and dysregulation of the cell cycle, leading to cancer development and metastasis. However, disturbances caused by centrosome amplification can also limit cancer cell survival by activating mitotic checkpoints and promoting mitotic catastrophe. As a smart escape, cancer cells cluster their surplus of centrosomes into pseudo-bipolar spindles and progress through the cell cycle. This phenomenon, known as centrosome clustering (CC), involves many proteins and has garnered considerable attention as a specific cancer cell-targeting weapon. The kinesin-14 motor protein KIFC1 is a minus end-directed motor protein that is involved in CC. Because KIFC1 is upregulated in various cancers and modulates oncogenic signaling cascades, it has emerged as a potential chemotherapeutic target. Many molecules have been identified as KIFC1 inhibitors because of their centrosome declustering activity in cancer cells. Despite the ever-increasing literature in this field, there have been few efforts to review the progress. The current review aims to collate and present an in-depth analysis of known KIFC1 inhibitors and their biological activities. Additionally, we present computational docking data of putative KIFC1 inhibitors with their binding sites and binding affinities. This first-of-kind comparative analysis involving experimental biology, chemistry, and computational docking of different KIFC1 inhibitors may help guide decision-making in the selection and design of potent inhibitors.
Collapse
Affiliation(s)
- Nivya Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Dani Setiawan
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa, India.,School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Goa, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA.,Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Hu Q, Liu Q, Zhao Y, Zhang L, Li L. SGOL2 is a novel prognostic marker and fosters disease progression via a MAD2-mediated pathway in hepatocellular carcinoma. Biomark Res 2022; 10:82. [PMCID: PMC9664666 DOI: 10.1186/s40364-022-00422-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. Here, we examined the potential role of SGOL2 in cancers, especially in hepatocellular carcinoma (HCC). Methods One hundred ninety-nine normal adjacent tissues and 202 HCC samples were collected in this study. Human HCC cells (SK-HEP-1 and HEP-3B) were employed in the present study. Immunohistochemistry, immunofluorescence, western blot, Co-Immunoprecipitation technique, and bioinformatic analysis were utilized to assess the role of SGOL2 in HCC development process. Results Overexpression of SGOL2 predicted an unfavorable prognosis in HCC by The Cancer Genome Atlas database (TCGA), which were further validated in our two independent cohorts. Next, 47 differentially expressed genes positively related to both SGOL2 and MAD2 were identified to be associated with the cell cycle. Subsequently, we demonstrated that SGOL2 downregulation suppressed the malignant activities of HCC in vitro and in vivo. Further investigation showed that SGOL2 promoted tumor proliferation by regulating MAD2-induced cell-cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. Consistently, MAD2 upregulation reversed the knockdown effects of SGOL2-shRNA in HCC. Moreover, we demonstrated that SGOL2 regulated MAD2 expression level by forming a SGOL2-MAD2 complex, which led to cell cycle dysreuglation of HCC cells. Conclusion SGOL2 acts as an oncogene in HCC cells by regulating MAD2 and then dysregulating the cell cycle, providing a potential therapeutic target in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00422-z.
Collapse
Affiliation(s)
- Qingqing Hu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Qiuhong Liu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Yalei Zhao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Lingjian Zhang
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| |
Collapse
|
6
|
Rillo-Bohn R, Adilardi R, Mitros T, Avşaroğlu B, Stevens L, Köhler S, Bayes J, Wang C, Lin S, Baskevitch KA, Rokhsar DS, Dernburg AF. Analysis of meiosis in Pristionchus pacificus reveals plasticity in homolog pairing and synapsis in the nematode lineage. eLife 2021; 10:70990. [PMID: 34427184 PMCID: PMC8455136 DOI: 10.7554/elife.70990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Meiosis is conserved across eukaryotes yet varies in the details of its execution. Here we describe a new comparative model system for molecular analysis of meiosis, the nematode Pristionchus pacificus, a distant relative of the widely studied model organism Caenorhabditis elegans. P. pacificus shares many anatomical and other features that facilitate analysis of meiosis in C. elegans. However, while C. elegans has lost the meiosis-specific recombinase Dmc1 and evolved a recombination-independent mechanism to synapse its chromosomes, P. pacificus expresses both DMC-1 and RAD-51. We find that SPO-11 and DMC-1 are required for stable homolog pairing, synapsis, and crossover formation, while RAD-51 is dispensable for these key meiotic processes. RAD-51 and DMC-1 localize sequentially to chromosomes during meiotic prophase and show nonoverlapping functions. We also present a new genetic map for P. pacificus that reveals a crossover landscape very similar to that of C. elegans, despite marked divergence in the regulation of synapsis and crossing-over between these lineages.
Collapse
Affiliation(s)
- Regina Rillo-Bohn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Renzo Adilardi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Therese Mitros
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Barış Avşaroğlu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Lewis Stevens
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Darwin Tree of Life Project, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Simone Köhler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Joshua Bayes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Clara Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Sabrina Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - K Alienor Baskevitch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Energy Joint Genome Institute, Berkeley, United States.,Okinawa Institute of Science and Technology Graduate University, Onna, Japan.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,California Institute for Quantitative Biosciences, Berkeley, United States
| |
Collapse
|
7
|
Sato-Carlton A, Nakamura-Tabuchi C, Li X, Boog H, Lehmer MK, Rosenberg SC, Barroso C, Martinez-Perez E, Corbett KD, Carlton PM. Phosphoregulation of HORMA domain protein HIM-3 promotes asymmetric synaptonemal complex disassembly in meiotic prophase in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008968. [PMID: 33175901 PMCID: PMC7717579 DOI: 10.1371/journal.pgen.1008968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/04/2020] [Accepted: 10/17/2020] [Indexed: 11/27/2022] Open
Abstract
In the two cell divisions of meiosis, diploid genomes are reduced into complementary haploid sets through the discrete, two-step removal of chromosome cohesion, a task carried out in most eukaryotes by protecting cohesion at the centromere until the second division. In eukaryotes without defined centromeres, however, alternative strategies have been innovated. The best-understood of these is found in the nematode Caenorhabditis elegans: after the single off-center crossover divides the chromosome into two segments, or arms, several chromosome-associated proteins or post-translational modifications become specifically partitioned to either the shorter or longer arm, where they promote the correct timing of cohesion loss through as-yet unknown mechanisms. Here, we investigate the meiotic axis HORMA-domain protein HIM-3 and show that it becomes phosphorylated at its C-terminus, within the conserved “closure motif” region bound by the related HORMA-domain proteins HTP-1 and HTP-2. Binding of HTP-2 is abrogated by phosphorylation of the closure motif in in vitro assays, strongly suggesting that in vivo phosphorylation of HIM-3 likely modulates the hierarchical structure of the chromosome axis. Phosphorylation of HIM-3 only occurs on synapsed chromosomes, and similarly to other previously-described phosphorylated proteins of the synaptonemal complex, becomes restricted to the short arm after designation of crossover sites. Regulation of HIM-3 phosphorylation status is required for timely disassembly of synaptonemal complex central elements from the long arm, and is also required for proper timing of HTP-1 and HTP-2 dissociation from the short arm. Phosphorylation of HIM-3 thus plays a role in establishing the identity of short and long arms, thereby contributing to the robustness of the two-step chromosome segregation. To segregate properly in meiosis, cohesion between replicated chromosomes must remain after the first meiotic cell division, so chromosomes can be held together until they finally separate in the second division. While the majority of organisms use centromeres to protect chromosome cohesion in the first division, the nematode worm C. elegans, which lacks single centromeres, instead protects cohesion only on a segment of the chromosome known as the “long arm”. The long arm (and its complement, the short arm) are known to accumulate specific proteins and protein modifications, but it is not known how the short and long arms are first distinguished, nor how their separate functions are carried out. We report here that the chromosome axis protein HIM-3 and its modification by phosphorylation is important for ensuring the robust establishment of short and long arm functions. We show that phosphorylated HIM-3 partitions to the short arms after crossover recombination sites are designated, and HIM-3 mutants that mimic constitutive phosphorylation delay the normal establishment of the two complementary arm domains. Our findings reveal another layer of regulation to an outstanding mystery in chromosome biology.
Collapse
Affiliation(s)
| | | | - Xuan Li
- Kyoto University, Graduate School of Biostudies, Japan
| | - Hendrik Boog
- Kyoto University, Graduate School of Biostudies, Japan
| | - Madison K. Lehmer
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
| | - Scott C. Rosenberg
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
| | - Consuelo Barroso
- MRC London Institute of Medical Sciences, Imperial College, London
| | | | - Kevin D. Corbett
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States of America
- Ludwig Institute for Cancer Research, San Diego Branch, United States of America
| | - Peter Mark Carlton
- Kyoto University, Graduate School of Biostudies, Japan
- Kyoto University, Radiation Biology Center, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Japan
- * E-mail:
| |
Collapse
|
8
|
Rizzo M, du Preez N, Ducheyne KD, Deelen C, Beitsma MM, Stout TAE, de Ruijter-Villani M. The horse as a natural model to study reproductive aging-induced aneuploidy and weakened centromeric cohesion in oocytes. Aging (Albany NY) 2020; 12:22220-22232. [PMID: 33139583 PMCID: PMC7695376 DOI: 10.18632/aging.104159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Aneuploidy of meiotic origin is a major contributor to age-related subfertility and an increased risk of miscarriage in women. Although age-related aneuploidy has been studied in rodents, the mare may be a more appropriate animal model to study reproductive aging. Similar to women, aged mares show reduced fertility and an increased incidence of early pregnancy loss; however, it is not known whether aging predisposes to aneuploidy in equine oocytes. We evaluated the effect of advanced mare age on (1) gene expression for cohesin components, (2) incidence of aneuploidy and (3) chromosome centromere cohesion (measured as the distance between sister kinetochores) in oocytes matured in vitro. Oocytes from aged mares showed reduced gene expression for the centromere cohesion stabilizing protein, Shugoshin 1. Moreover, in vitro matured oocytes from aged mares showed a higher incidence of aneuploidy and premature sister chromatid separation, and weakened centromeric cohesion. We therefore propose the mare as a valid model for studying effects of aging on centromeric cohesion; cohesion loss predisposes to disintegration of bivalents and premature separation of sister chromatids during the first meiotic division, leading to embryonic aneuploidy; this probably contributes to the reduced fertility and increased incidence of pregnancy loss observed in aged mares.
Collapse
Affiliation(s)
- Marilena Rizzo
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Nikola du Preez
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Kaatje D. Ducheyne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
- Sussex Equine Hospital, Ashington, RH20 3BB, United Kingdom
| | - Claudia Deelen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Mabel M. Beitsma
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Tom A. E. Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
- Department of Production Animal Studies, University of Pretoria, Pretoria, 0110, South Africa
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| |
Collapse
|
9
|
Corless S, Höcker S, Erhardt S. Centromeric RNA and Its Function at and Beyond Centromeric Chromatin. J Mol Biol 2020; 432:4257-4269. [DOI: 10.1016/j.jmb.2020.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
|
10
|
Mastro TL, Tripathi VP, Forsburg SL. Translesion synthesis polymerases contribute to meiotic chromosome segregation and cohesin dynamics in Schizosaccharomycespombe. J Cell Sci 2020; 133:jcs238709. [PMID: 32317395 PMCID: PMC7325440 DOI: 10.1242/jcs.238709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Translesion synthesis polymerases (TLSPs) are non-essential error-prone enzymes that ensure cell survival by facilitating DNA replication in the presence of DNA damage. In addition to their role in bypassing lesions, TLSPs have been implicated in meiotic double-strand break repair in several systems. Here, we examine the joint contribution of four TLSPs to meiotic progression in the fission yeast Schizosaccharomyces pombe. We observed a dramatic loss of spore viability in fission yeast lacking all four TLSPs, which is accompanied by disruptions in chromosome segregation during meiosis I and II. Rec8 cohesin dynamics are altered in the absence of the TLSPs. These data suggest that the TLSPs contribute to multiple aspects of meiotic chromosome dynamics.
Collapse
Affiliation(s)
- Tara L Mastro
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Vishnu P Tripathi
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Susan L Forsburg
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
11
|
Jusino S, Saavedra HI. Role of E2Fs and mitotic regulators controlled by E2Fs in the epithelial to mesenchymal transition. Exp Biol Med (Maywood) 2019; 244:1419-1429. [PMID: 31575294 DOI: 10.1177/1535370219881360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a complex cellular process in which epithelial cells acquire mesenchymal properties. EMT occurs in three biological settings: development, wound healing and fibrosis, and tumor progression. Despite occurring in three independent biological settings, EMT signaling shares some molecular mechanisms that allow epithelial cells to de-differentiate and acquire mesenchymal characteristics that confer cells invasive and migratory capacity to distant sites. Here we summarize the molecular mechanism that delineates EMT and we will focus on the role of E2 promoter binding factors (E2Fs) in EMT during tumor progression. Since the E2Fs are presently undruggable due to their control in numerous pivotal cellular functions and due to the lack of selectivity against individual E2Fs, we will also discuss the role of three mitotic regulators and/or mitotic kinases controlled by the E2Fs (NEK2, Mps1/TTK, and SGO1) in EMT that can be useful as drug targets. Impact statement The study of the epithelial to mesenchymal transition (EMT) is an active area of research since it is one of the early intermediates to invasion and metastasis—a state of the cancer cells that ultimately kills many cancer patients. We will present in this review that besides their canonical roles as regulators of proliferation, unregulated expression of the E2F transcription factors may contribute to cancer initiation and progression to metastasis by signaling centrosome amplification, chromosome instability, and EMT. Since our discovery that the E2F activators control centrosome amplification and mitosis in cancer cells, we have identified centrosome and mitotic regulators that may represent actionable targets against EMT and metastasis in cancer cells. This is impactful to all of the cancer patients in which the Cdk/Rb/E2F pathway is deregulated, which has been estimated to be most cancer patients with solid tumors.
Collapse
Affiliation(s)
- Shirley Jusino
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| | - Harold I Saavedra
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| |
Collapse
|
12
|
Moronta-Gines M, van Staveren TRH, Wendt KS. One ring to bind them - Cohesin's interaction with chromatin fibers. Essays Biochem 2019; 63:167-176. [PMID: 31015387 DOI: 10.1042/ebc20180064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2023]
Abstract
In the nuclei of eukaryotic cells, the genetic information is organized at several levels. First, the DNA is wound around the histone proteins, to form a structure termed as chromatin fiber. This fiber is then arranged into chromatin loops that can cluster together and form higher order structures. This packaging of chromatin provides on one side compaction but also functional compartmentalization. The cohesin complex is a multifunctional ring-shaped multiprotein complex that organizes the chromatin fiber to establish functional domains important for transcriptional regulation, help with DNA damage repair, and ascertain stable inheritance of the genome during cell division. Our current model for cohesin function suggests that cohesin tethers chromatin strands by topologically entrapping them within its ring. To achieve this, cohesin's association with chromatin needs to be very precisely regulated in timing and position on the chromatin strand. Here we will review the current insight in when and where cohesin associates with chromatin and which factors regulate this. Further, we will discuss the latest insights into where and how the cohesin ring opens to embrace chromatin and also the current knowledge about the 'exit gates' when cohesin is released from chromatin.
Collapse
Affiliation(s)
| | | | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Cho Y, Ideue T, Nagayama M, Araki N, Tani T. RBMX is a component of the centromere noncoding RNP complex involved in cohesion regulation. Genes Cells 2018; 23:172-184. [PMID: 29383807 DOI: 10.1111/gtc.12562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/25/2017] [Indexed: 12/31/2022]
Abstract
Satellite I RNA, a noncoding (nc)RNA transcribed from repetitive regions in human centromeres, binds to Aurora kinase B and forms a ncRNP complex required for chromosome segregation. To examine its function in this process, we purified satellite I ncRNP complex from nuclear extracts prepared from asynchronized or mitotic (M) phase-arrested HeLa cells and then carried out LC/MS to identify proteins bound to satellite I RNA. RBMX (RNA-binding motif protein, X-linked), which was isolated from M phase-arrested cells, was selected for further characterization. We found that RBMX associates with satellite I RNA only during M phase. Knockdown of RBMX induced premature separation of sister chromatid cohesion and abnormal nuclear division. Likewise, knockdown of satellite I RNA also caused premature separation of sister chromatids during M phase. The amounts of RBMX and Sororin, a cohesion regulator, were reduced in satellite I RNA-depleted cells. These results suggest that satellite I RNA plays a role in stabilizing RBMX and Sororin in the ncRNP complex to maintain proper sister chromatid cohesion.
Collapse
Affiliation(s)
- Yukiko Cho
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takashi Ideue
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Megumi Nagayama
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tokio Tani
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
Mishra PK, Thapa KS, Chen P, Wang S, Hazbun TR, Basrai MA. Budding yeast CENP-A Cse4 interacts with the N-terminus of Sgo1 and regulates its association with centromeric chromatin. Cell Cycle 2018; 17:11-23. [PMID: 28980861 DOI: 10.1080/15384101.2017.1380129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Shugoshin is an evolutionarily conserved protein, which is involved in tension sensing on mitotic chromosomes, kinetochore biorientation, and protection of centromeric (CEN) cohesin for faithful chromosome segregation. Interaction of the C-terminus of Sgo1 with phosphorylated histone H2A regulates its association with CEN and pericentromeric (peri-CEN) chromatin, whereas mutations in histone H3 selectively compromise the association of Sgo1 with peri-CEN but not CEN chromatin. Given that histone H3 is absent from CEN and is replaced by a histone H3 variant CENP-ACse4, we investigated if CENP-ACse4 interacts with Sgo1 and promotes its association with the CEN chromatin. In this study, we found that Sgo1 interacts with CENP-ACse4 in vivo and in vitro. The N-terminus coiled-coil domain of Sgo1 without the C-terminus (sgo1-NT) is sufficient for its interaction with CENP-ACse4, association with CEN but not the peri-CEN, and this CEN association is cell cycle dependent with maximum enrichment in mitosis. In agreement with the role of CENP-ACse4 in CEN maintenance of Sgo1, depletion of CENP-ACse4 results in the loss of Sgo1 and sgo1-NT from the CEN chromatin. The N-terminus of Sgo1 is required for genome stability as a mutant lacking the N-terminus (sgo1-CT) exhibits increased chromosome missegregation when compared to a sgo1-NT mutant. In summary, our results define a novel role for the N-terminus of Sgo1 in CENP-ACse4 mediated recruitment of Sgo1 to CEN chromatin for faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K Mishra
- a Genetics Branch , National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Kriti S Thapa
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Panyue Chen
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Suyu Wang
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Tony R Hazbun
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Munira A Basrai
- a Genetics Branch , National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
15
|
Lee M, Rivera-Rivera Y, Moreno CS, Saavedra HI. The E2F activators control multiple mitotic regulators and maintain genomic integrity through Sgo1 and BubR1. Oncotarget 2017; 8:77649-77672. [PMID: 29100415 PMCID: PMC5652806 DOI: 10.18632/oncotarget.20765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/14/2017] [Indexed: 02/01/2023] Open
Abstract
The E2F1, E2F2, and E2F3a transcriptional activators control proliferation. However, how the E2F activators regulate mitosis to maintain genomic integrity is unclear. Centrosome amplification (CA) and unregulated spindle assembly checkpoint (SAC) are major generators of aneuploidy and chromosome instability (CIN) in cancer. Previously, we showed that overexpression of single E2F activators induced CA and CIN in mammary epithelial cells, and here we show that combined overexpression of E2F activators did not enhance CA. Instead, the E2F activators elevated expression of multiple mitotic regulators, including Sgo1, Nek2, Hec1, BubR1, and Mps1/TTK. cBioPortal analyses of the TCGA database showed that E2F overexpression in lobular invasive breast tumors correlates with overexpression of multiple regulators of chromosome segregation, centrosome homeostasis, and the SAC. Kaplan-Meier plots identified correlations between individual or combined overexpression of E2F1, E2F3a, Mps1/TTK, Nek2, BubR1, or Hec1 and poor overall and relapse-free survival of breast cancer patients. In MCF10A normal mammary epithelial cells co-overexpressing E2Fs, transient Sgo1 knockdown induced CA, high percentages of premature sister chromatid separation, chromosome losses, increased apoptosis, and decreased cell clonogenicity. BubR1 silencing resulted in chromosome losses without CA, demonstrating that Sgo1 and BubR1 maintain genomic integrity through two distinct mechanisms. Our results suggest that deregulated activation of the E2Fs in mammary epithelial cells is counteracted by activation of a Sgo1-dependent mitotic checkpoint.
Collapse
Affiliation(s)
- Miyoung Lee
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Program of Pharmacology, Ponce Health Sciences University-School of Medicine/Ponce Research Institute, Ponce, 00716-2348 Puerto Rico
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Program of Pharmacology, Ponce Health Sciences University-School of Medicine/Ponce Research Institute, Ponce, 00716-2348 Puerto Rico
| |
Collapse
|
16
|
Abstract
Genome haploidization involves two meiotic divisions following a single round of DNA replication. In this issue of Developmental Cell, Argüello-Miranda et al. (2017) show that production and packaging of the single-copy genome into gametes during the second meiotic division is coordinated by a conserved casein kinase 1.
Collapse
Affiliation(s)
- Mary Herbert
- Newcastle Fertility Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Times Square, Newcastle upon Tyne NE1 4EP, UK.
| | - Attila Toth
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany.
| |
Collapse
|
17
|
Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis II. Nat Commun 2017; 8:15346. [PMID: 28516917 PMCID: PMC5454377 DOI: 10.1038/ncomms15346] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/21/2017] [Indexed: 12/27/2022] Open
Abstract
Sister chromatid attachment during meiosis II (MII) is maintained by securin-mediated inhibition of separase. In maternal ageing, oocytes show increased inter-sister kinetochore distance and premature sister chromatid separation (PSCS), suggesting aberrant separase activity. Here, we find that MII oocytes from aged mice have less securin than oocytes from young mice and that this reduction is mediated by increased destruction by the anaphase promoting complex/cyclosome (APC/C) during meiosis I (MI) exit. Inhibition of the spindle assembly checkpoint (SAC) kinase, Mps1, during MI exit in young oocytes replicates this phenotype. Further, over-expression of securin or Mps1 protects against the age-related increase in inter-sister kinetochore distance and PSCS. These findings show that maternal ageing compromises the oocyte SAC–APC/C axis leading to a decrease in securin that ultimately causes sister chromatid cohesion loss. Manipulating this axis and/or increasing securin may provide novel therapeutic approaches to alleviating the risk of oocyte aneuploidy in maternal ageing. Sister chromatid cohesion during meiosis II (MII), maintained by securin-mediated inhibition of separase, is reduced in aged mouse oocytes. Here the authors show that, in MII oocytes, securin levels are reduced by increased destruction by the anaphase promoting complex/cyclosome.
Collapse
|
18
|
Abstract
During the cell cycle, duplicated sister chromatids become physically connected during S phase through a process called sister-chromatid cohesion. Cohesion is terminated during the metaphase-to-anaphase transition to trigger sister-chromatid segregation. The establishment and dissolution of cohesion are highly regulated by the cohesin complex and its multitude of regulators. In particular, the cohesin regulator Wapl promotes the release of cohesin from chromosomes during both interphase and mitosis. Here, we describe in vitro protein binding assays between Wapl and a cohesin subcomplex, and cellular assays in human cells that probe the functions of Wapl in cohesin release.
Collapse
Affiliation(s)
- Ge Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Zhuqing Ouyang
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Grishaeva TM, Kulichenko D, Bogdanov YF. Bioinformatical analysis of eukaryotic shugoshins reveals meiosis-specific features of vertebrate shugoshins. PeerJ 2016; 4:e2736. [PMID: 27917322 PMCID: PMC5134366 DOI: 10.7717/peerj.2736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/31/2016] [Indexed: 11/24/2022] Open
Abstract
Background Shugoshins (SGOs) are proteins that protect cohesins located at the centromeres of sister chromatids from their early cleavage during mitosis and meiosis in plants, fungi, and animals. Their function is to prevent premature sister-chromatid disjunction and segregation. The study focused on the structural differences among SGOs acting during mitosis and meiosis that cause differences in chromosome behavior in these two types of cell division in different organisms. Methods A bioinformatical analysis of protein domains, conserved amino acid motifs, and physicochemical properties of 32 proteins from 25 species of plants, fungi, and animals was performed. Results We identified a C-terminal amino acid motif that is highly evolutionarily conserved among the SGOs protecting centromere cohesion of sister chromatids in meiotic anaphase I, but not among mitotic SGOs. This meiotic motif is arginine-rich in vertebrates. SGOs differ in different eukaryotic kingdoms by the sets and locations of amino acid motifs and the number of α-helical regions in the protein molecule. Discussion These structural differences between meiotic and mitotic SGOs probably could be responsible for the prolonged SGOs resistance to degradation during meiotic metaphase I and anaphase I. We suggest that the “arginine comb” in C-end meiotic motifs is capable of interaction by hydrogen bonds with guanine bases in the minor groove of DNA helix, thus protecting SGOs from hydrolysis. Our findings support independent evolution of meiosis in different lineages of multicellular organisms.
Collapse
Affiliation(s)
- Tatiana M Grishaeva
- Laboratory of Cytogenetics, Department of Genomics and Human Genetics, N.I. Vavilov Institute of General Genetics , Moscow , Russia
| | - Darya Kulichenko
- Laboratory of Cytogenetics, Department of Genomics and Human Genetics, N.I. Vavilov Institute of General Genetics , Moscow , Russia
| | - Yuri F Bogdanov
- Laboratory of Cytogenetics, Department of Genomics and Human Genetics, N.I. Vavilov Institute of General Genetics , Moscow , Russia
| |
Collapse
|
20
|
SGO1 is involved in the DNA damage response in MYCN-amplified neuroblastoma cells. Sci Rep 2016; 6:31615. [PMID: 27539729 PMCID: PMC4990925 DOI: 10.1038/srep31615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/25/2016] [Indexed: 11/08/2022] Open
Abstract
Shugoshin 1 (SGO1) is required for accurate chromosome segregation during mitosis and meiosis; however, its other functions, especially at interphase, are not clearly understood. Here, we found that downregulation of SGO1 caused a synergistic phenotype in cells overexpressing MYCN. Downregulation of SGO1 impaired proliferation and induced DNA damage followed by a senescence-like phenotype only in MYCN-overexpressing neuroblastoma cells. In these cells, SGO1 knockdown induced DNA damage, even during interphase, and this effect was independent of cohesin. Furthermore, MYCN-promoted SGO1 transcription and SGO1 expression tended to be higher in MYCN- or MYC-overexpressing cancers. Together, these findings indicate that SGO1 plays a role in the DNA damage response in interphase. Therefore, we propose that SGO1 represents a potential molecular target for treatment of MYCN-amplified neuroblastoma.
Collapse
|
21
|
Lee SB, Kim JJ, Nam HJ, Gao B, Yin P, Qin B, Yi SY, Ham H, Evans D, Kim SH, Zhang J, Deng M, Liu T, Zhang H, Billadeau DD, Wang L, Giaime E, Shen J, Pang YP, Jen J, van Deursen JM, Lou Z. Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1. Mol Cell 2015; 60:21-34. [PMID: 26387737 PMCID: PMC4592523 DOI: 10.1016/j.molcel.2015.08.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/04/2015] [Accepted: 08/12/2015] [Indexed: 01/04/2023]
Abstract
Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C. We demonstrate that ordered progression through mitosis is orchestrated by two distinct E3 ligases through the shared use of Cdc20 and Cdh1. Furthermore, Parkin is phosphorylated and activated by polo-like kinase 1 (Plk1) during mitosis. Parkin deficiency results in overexpression of its substrates, mitotic defects, genomic instability, and tumorigenesis. These results suggest that the Parkin-Cdc20/Cdh1 complex is an important regulator of mitosis.
Collapse
Affiliation(s)
- Seung Baek Lee
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Jung Jin Kim
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyun-Ja Nam
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bowen Gao
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Ping Yin
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Bo Qin
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Sang-Yeop Yi
- Department of Pathology, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 404 834, Republic of Korea
| | - Hyoungjun Ham
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Debra Evans
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sun-Hyun Kim
- Department of Family Medicine, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 404 834, Republic of Korea
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Tongzheng Liu
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Haoxing Zhang
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D. Billadeau
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Oncology Research and Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Emilie Giaime
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Shen
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jin Jen
- Division of Pulmonary and Critical Care Medicine, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Silkova OG, Loginova DB. Structural and functional organization of centromeres in plant chromosomes. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414120114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Hamasaki M, Matsumura S, Satou A, Takahashi C, Oda Y, Higashiura C, Ishihama Y, Toyoshima F. Pregnenolone functions in centriole cohesion during mitosis. CHEMISTRY & BIOLOGY 2014; 21:1707-21. [PMID: 25525990 DOI: 10.1016/j.chembiol.2014.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/26/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022]
Abstract
Cell division is controlled by a multitude of protein enzymes, but little is known about roles of metabolites in this mechanism. Here, we show that pregnenolone (P5), a steroid that is produced from cholesterol by the steroidogenic enzyme Cyp11a1, has an essential role in centriole cohesion during mitosis. During prometa-metaphase, P5 is accumulated around the spindle poles. Depletion of P5 induces multipolar spindles that result from premature centriole disengagement, which are rescued by ectopic introduction of P5, but not its downstream metabolites, into the cells. Premature centriole disengagement, induced by loss of P5, is not a result of precocious activation of separase, a key factor for the centriole disengagement in anaphase. Rather, P5 directly binds to the N-terminal coiled-coil domain of short-form of shugoshin 1 (sSgo1), a protector for centriole cohesion and recruits it to spindle poles in mitosis. Our results thus reveal a steroid-mediated centriole protection mechanism.
Collapse
Affiliation(s)
- Mayumi Hamasaki
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigeru Matsumura
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ayaka Satou
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chisato Takahashi
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukako Oda
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chika Higashiura
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiko Toyoshima
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
24
|
Brownlow N, Pike T, Zicha D, Collinson L, Parker PJ. Mitotic catenation is monitored and resolved by a PKCε-regulated pathway. Nat Commun 2014; 5:5685. [PMID: 25483024 PMCID: PMC4272242 DOI: 10.1038/ncomms6685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022] Open
Abstract
Exit from mitosis is controlled by silencing of the spindle assembly checkpoint (SAC). It is important that preceding exit, all sister chromatid pairs are correctly bioriented, and that residual catenation is resolved, permitting complete sister chromatid separation in the ensuing anaphase. Here we determine that the metaphase response to catenation in mammalian cells operates through PKCε. The PKCε-controlled pathway regulates exit from the SAC only when mitotic cells are challenged by retained catenation and this delayed exit is characterized by BubR1-high and Mad2-low kinetochores. In addition, we show that this pathway is necessary to facilitate resolution of retained catenanes in mitosis. When delayed by catenation in mitosis, inhibition of PKCε results in premature entry into anaphase with PICH-positive strands and chromosome bridging. These findings demonstrate the importance of PKCε-mediated regulation in protection from loss of chromosome integrity in cells failing to resolve catenation in G2.
Collapse
Affiliation(s)
- Nicola Brownlow
- Protein Phosphorylation Laboratory, Cancer Research UK London
Research Institute, 44 Lincolns Inn Fields, London
WC2A 3LY, UK
| | - Tanya Pike
- Protein Phosphorylation Laboratory, Cancer Research UK London
Research Institute, 44 Lincolns Inn Fields, London
WC2A 3LY, UK
| | - Daniel Zicha
- Light Microscopy, Cancer Research UK London Research
Institute, London, WC2A 3LY, UK
| | - Lucy Collinson
- Electron Microscopy, Cancer Research UK London Research
Institute, London
WC2A 3LY, UK
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, Cancer Research UK London
Research Institute, 44 Lincolns Inn Fields, London
WC2A 3LY, UK
- Division of Cancer Studies, King’s College London,
New Hunt’s House, Guy’s Campus, London
SE1 1UL, UK
| |
Collapse
|
25
|
Mailhes JB, Marchetti F. Advances in understanding the genetic causes and mechanisms of female germ cell aneuploidy. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.10.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Carretero M, Ruiz-Torres M, Rodríguez-Corsino M, Barthelemy I, Losada A. Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres. EMBO J 2013; 32:2938-49. [PMID: 24141881 PMCID: PMC3831313 DOI: 10.1038/emboj.2013.230] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/02/2013] [Indexed: 12/23/2022] Open
Abstract
Cohesin mediates sister chromatid cohesion and contributes to the organization of interphase chromatin through DNA looping. In vertebrate somatic cells, cohesin consists of Smc1, Smc3, Rad21, and either SA1 or SA2. Three additional factors Pds5, Wapl, and Sororin bind to cohesin and modulate its dynamic association with chromatin. There are two Pds5 proteins in vertebrates, Pds5A and Pds5B, but their functional specificity remains unclear. Here, we demonstrate that Pds5 proteins are essential for cohesion establishment by allowing Smc3 acetylation by the cohesin acetyl transferases (CoATs) Esco1/2 and binding of Sororin. While both proteins contribute to telomere and arm cohesion, Pds5B is specifically required for centromeric cohesion. Furthermore, reduced accumulation of Aurora B at the inner centromere region in cells lacking Pds5B impairs its error correction function, promoting chromosome mis-segregation and aneuploidy. Our work supports a model in which the composition and function of cohesin complexes differs between different chromosomal regions.
Collapse
Affiliation(s)
- María Carretero
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Ruiz-Torres
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Isabel Barthelemy
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
27
|
Zamariola L, De Storme N, Tiang CL, Armstrong SJ, Franklin FCH, Geelen D. SGO1 but not SGO2 is required for maintenance of centromere cohesion in Arabidopsis thaliana meiosis. PLANT REPRODUCTION 2013; 26:197-208. [PMID: 23884434 DOI: 10.1007/s00497-013-0231-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/11/2013] [Indexed: 05/23/2023]
Abstract
Shugoshin is a protein conserved in eukaryotes and protects sister chromatid cohesion at centromeres in meiosis. In our study, we identified the homologs of SGO1 and SGO2 in Arabidopsis thaliana. We show that AtSGO1 is necessary for the maintenance of centromere cohesion in meiosis I since atsgo1 mutants display premature separation of sister chromatids starting from anaphase I. Furthermore, we show that the localization of the specific centromeric cohesin AtSYN1 is not affected in atsgo1, suggesting that SGO1 centromere cohesion maintenance is not mediated by protection of SYN1 from cleavage. Finally, we show that AtSGO2 is dispensable for both meiotic and mitotic cell progression in Arabidopsis.
Collapse
Affiliation(s)
- L Zamariola
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Rao CV, Yamada HY. Genomic instability and colon carcinogenesis: from the perspective of genes. Front Oncol 2013; 3:130. [PMID: 23734346 PMCID: PMC3659308 DOI: 10.3389/fonc.2013.00130] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/07/2013] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is the second most lethal cancer; approximately 600,000 people die of it annually in the world. Colon carcinogenesis generally follows a slow and stepwise process of accumulation of mutations under the influence of environmental and epigenetic factors. To adopt a personalized (tailored) cancer therapy approach and to improve current strategies for prevention, diagnosis, prognosis, and therapy overall, advanced understanding of molecular events associated with colon carcinogenesis is necessary. A contemporary approach that combines genetics, epigenomics, and signaling pathways has revealed many genetic/genomic alterations associated with colon cancer progression and their relationships to a genomic instability phenotype prevalent in colon cancer. In this review, we describe the relationship between gene mutations associated with colon carcinogenesis and a genomic instability phenotype, and we discuss possible clinical applications of genomic instability studies. Colon carcinogenesis is associated with frequent mutations in several pathways that include phosphatidylinositol 3-kinase, adenomatous polyposis coli, p53 (TP53), F-box and WD repeat domain containing 7, transforming growth factor-β, chromosome cohesion, and K-RAS. These genes frequently mutated in pathways affecting colon cancer were designated colon cancer (CAN) genes. Aberrations in major colon CAN genes have a causal relationship to genomic instability. Conversely, genomic instability itself plays a role in colon carcinogenesis in experimental settings, as demonstrated in transgenic mouse models with high genomic instability. Thus, there is a feedback-type relationship between CAN gene mutations and genomic instability. These genetic/genomic studies have led to emerging efforts to apply the knowledge to colon cancer prognosis and to targeted therapy.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Department of Medicine, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| | | |
Collapse
|
29
|
Theobald B, Bonness K, Musiyenko A, Andrews JF, Urban G, Huang X, Dean NM, Honkanen RE. Suppression of Ser/Thr phosphatase 4 (PP4C/PPP4C) mimics a novel post-mitotic action of fostriecin, producing mitotic slippage followed by tetraploid cell death. Mol Cancer Res 2013; 11:845-55. [PMID: 23671329 DOI: 10.1158/1541-7786.mcr-13-0032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Fostriecin is a natural product purified from Sterptomyces extracts with antitumor activity sufficient to warrant human clinical trials. Unfortunately, difficulties associated with supply and stable drug formulation stalled further development. At a molecular level, fostriecin is known to act as a catalytic inhibitor of four PPP-family phosphatases, and reports describing the design of molecules in this class suggest derivatives targeting enzymes within the fostriecin-sensitive subfamily can be successful. However, it is not clear if the tumor-selective cytotoxicity of fostriecin results from the inhibition of a specific phosphatase, multiple phosphatases, or a limited subset of fostriecin sensitive phosphatases. How the inhibition of sensitive phosphatases contributes to tumor-selective cytotoxicity is also not clear. Here, high-content time-lapse imaging of live cells revealed novel insight into the cellular actions of fostriecin, showing that fostriecin-induced apoptosis is not simply induced following a sustained mitotic arrest. Rather, apoptosis occurred in an apparent second interphase produced when tetraploid cells undergo mitotic slippage. Comparison of the actions of fostriecin and antisense-oligonucleotides specifically targeting human fostriecin-sensitive phosphatases revealed that the suppression PP4C alone is sufficient to mimic many actions of fostriecin. Importantly, targeted suppression of PP4C induced apoptosis, with death occurring in tetraploid cells following mitotic slippage. This effect was not observed following the suppression of PP1C, PP2AC, or PP5C. These data clarify PP4C as a fostriecin-sensitive phosphatase and demonstrate that the suppression of PP4C triggers mitotic slippage/apoptosis. IMPLICATIONS Future development of fostriecin class inhibitors should consider PP4C as a potentially important target. Mol Cancer Res; 11(8); 845-55. ©2013 AACR.
Collapse
Affiliation(s)
- Benjamin Theobald
- Department of Biochemistry and Molecular Biology, MSB 2362, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang Y, Liu L, Liu X, Zhang H, Liu J, Feng B, Shang Y, Zhou L, Wu K, Nie Y, Zhang H, Fan D. Shugoshin1 enhances multidrug resistance of gastric cancer cells by regulating MRP1, Bcl-2, and Bax genes. Tumour Biol 2013; 34:2205-14. [PMID: 23564482 DOI: 10.1007/s13277-013-0758-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/20/2013] [Indexed: 12/26/2022] Open
Abstract
Multidrug resistance (MDR) is a major clinical obstacle in treatment of gastric cancer (GC) and it accounts for the majority of cancer-related mortalities. Shugoshin1 (SGO1) is an important player in appropriate chromosome segregation and is involved in tumorigenesis. In this study, we found endogenous SGO1 overexpression in the multidrug-resistant GC cell lines SGC7901/VCR and SGC7901/ADR compared with their parental cell line SGC7901. By enhancing expression of SGO1, sensitivity of SGC7901 cells to vincristine (VCR), adriamycin, 5-fluorouracil (5-FU), and cisplatin (CDDP) was significantly diminished. Silencing its expression resulted in enhanced sensitivity of SGC7901/VCR and SGC7901/ADR cells to these antitumor drugs. Additionally, we confirmed that SGO1 increased capacity of cells to enable adriamycin (ADR) efflux and inhibit drug-induced apoptosis by regulating MRP 1, Bcl-2, and Bax genes so as to confer a MDR phenotype to GC cells. In brief, these findings suggest that SGO1 promotes MDR of GC cells and may be useful as a novel therapeutic target for preventing or reversing MDR.
Collapse
Affiliation(s)
- Yafang Wang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu XJ. Polar body emission. Cytoskeleton (Hoboken) 2012; 69:670-85. [PMID: 22730245 DOI: 10.1002/cm.21041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 12/13/2022]
Abstract
Generation of a haploid female germ cell, the egg, consists of two rounds of asymmetric cell division (meiosis I and meiosis II), yielding two diminutive and nonviable polar bodies and a large haploid egg. Animal eggs are also unique in the lack of centrioles and therefore form meiotic spindles without the pre-existence of the two dominant microtubule organizing centers (centrosomes) found in mitosis. Meiotic spindle assembly is further complicated by the unique requirement of sister chromatid mono-oriented in meiosis I. Nonetheless, the eggs appear to adopt many of the same proteins and mechanisms described in mitosis, with necessary modifications to accommodate their special needs. Unraveling these special modifications will not only help understanding animal reproduction, but should also enhance our understanding of cell division in general.
Collapse
Affiliation(s)
- X Johné Liu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa Hospital Civic Campus, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada.
| |
Collapse
|
32
|
Yamada HY, Yao Y, Wang X, Zhang Y, Huang Y, Dai W, Rao CV. Haploinsufficiency of SGO1 results in deregulated centrosome dynamics, enhanced chromosomal instability and colon tumorigenesis. Cell Cycle 2012; 11:479-88. [PMID: 22262168 PMCID: PMC3315092 DOI: 10.4161/cc.11.3.18994] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/01/2011] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
Abstract
Chromosome instability (CIN) is found in 85% of colorectal cancers. Defects in mitotic processes are implicated in high CIN and may be critical events in colorectal tumorigenesis. Shugoshin-1 (SGO1) aids in the maintenance of chromosome cohesion and prevents premature chromosome separation and CIN. In addition, integrity of the centrosome may be compromised due to the deficiency of Cohesin and Sgo1 through the disengagement of centrioles. We report here the generation and characterization of SGO1-mutant mice and show that haploinsufficiency of SGO1 leads to enhanced colonic tumorigenesis. Complete disruption of SGO1 results in embryonic lethality, whereas SGO1+/- mice are viable and fertile. Haploinsufficiency of SGO1 results in genomic instability manifested as missegregation of chromosomes and formation of extra centrosomal foci in both murine embryonic fibroblasts and adult bone marrow cells. Enhanced CIN observed in SGO1-deficient mice resulted in an increase in formation of aberrant crypt foci (ACF) and accelerated development of tumors after exposure to azoxymethane (AOM), a colon carcinogen. Together, these results suggest that haploinsufficiency of SGO1 causes enhanced CIN, colonic preneoplastic lesions and tumorigenesis in mice. SGO1 is essential for the suppression of CIN and tumor formation.
Collapse
Affiliation(s)
- Hiroshi Y Yamada
- Center for Chemoprevention and Cancer Drug Development; Department of Medicine; Medical Oncology Section; University of Oklahoma Health Sciences Center; PCS Oklahoma Cancer Center; Oklahoma City, OK USA
| | - Yixin Yao
- Department of Environmental Medicine; New York University School of Medicine; Tuxedo, NY USA
| | - Xiaoxing Wang
- Dana-Farber Cancer Institute; Harvard Medical School; Boston, MA USA
| | - Yuting Zhang
- Center for Chemoprevention and Cancer Drug Development; Department of Medicine; Medical Oncology Section; University of Oklahoma Health Sciences Center; PCS Oklahoma Cancer Center; Oklahoma City, OK USA
| | - Ying Huang
- Department of Environmental Medicine; New York University School of Medicine; Tuxedo, NY USA
| | - Wei Dai
- Department of Environmental Medicine; New York University School of Medicine; Tuxedo, NY USA
| | - Chinthalapally V Rao
- Center for Chemoprevention and Cancer Drug Development; Department of Medicine; Medical Oncology Section; University of Oklahoma Health Sciences Center; PCS Oklahoma Cancer Center; Oklahoma City, OK USA
| |
Collapse
|
33
|
Suppression of scant identifies Endos as a substrate of greatwall kinase and a negative regulator of protein phosphatase 2A in mitosis. PLoS Genet 2011; 7:e1002225. [PMID: 21852956 PMCID: PMC3154957 DOI: 10.1371/journal.pgen.1002225] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/18/2011] [Indexed: 12/02/2022] Open
Abstract
Protein phosphatase 2A (PP2A) plays a major role in dephosphorylating the targets of the major mitotic kinase Cdk1 at mitotic exit, yet how it is regulated in mitotic progression is poorly understood. Here we show that mutations in either the catalytic or regulatory twins/B55 subunit of PP2A act as enhancers of gwlScant, a gain-of-function allele of the Greatwall kinase gene that leads to embryonic lethality in Drosophila when the maternal dosage of the mitotic kinase Polo is reduced. We also show that heterozygous mutant endos alleles suppress heterozygous gwlScant; many more embryos survive. Furthermore, heterozygous PP2A mutations make females heterozygous for the strong mutation polo11 partially sterile, even in the absence of gwlScant. Heterozygosity for an endos mutation suppresses this PP2A/polo11 sterility. Homozygous mutation or knockdown of endos leads to phenotypes suggestive of defects in maintaining the mitotic state. In accord with the genetic interactions shown by the gwlScant dominant mutant, the mitotic defects of Endos knockdown in cultured cells can be suppressed by knockdown of either the catalytic or the Twins/B55 regulatory subunits of PP2A but not by the other three regulatory B subunits of Drosophila PP2A. Greatwall phosphorylates Endos at a single site, Ser68, and this is essential for Endos function. Together these interactions suggest that Greatwall and Endos act to promote the inactivation of PP2A-Twins/B55 in Drosophila. We discuss the involvement of Polo kinase in such a regulatory loop. Progression through mitosis requires the addition of phosphate groups onto specific proteins by enzymes collectively known as mitotic protein kinases. At the end of mitosis, these phosphates are removed by protein phosphatases. Whereas we know quite a lot about the mitotic protein kinases, we know much less about the phosphatases. Here we used the fruit fly Drosophila as a model organism to identify a pathway regulating a phosphatase required for mitotic exit. Using mutations in genes for this pathway in the fly and by depleting levels of corresponding proteins from cultured cells, we established the relationships between the gene products. This has revealed that Greatwall mitotic kinase works in concert with the protein Endos to antagonise Protein Phosphatase 2A (PP2A). Specifically, Greatwall and Endos affect the activity of a particular form of PP2A that is associated with only one of the four different regulatory subunits found in Drosophila. We found that phosphorylation of Endos at a defined position by Greatwall kinase is required for its function. Together this provides genetic evidence that the Greatwall mitotic kinase inhibits the PP2A phosphatase required for mitotic exit thus complementing biochemical experiments using frog eggs and indicating the universality of this mechanism.
Collapse
|
34
|
Dyce PW, Shen W, Huynh E, Shao H, Villagómez DA, Kidder GM, King WA, Li J. Analysis of Oocyte-Like Cells Differentiated from Porcine Fetal Skin-Derived Stem Cells. Stem Cells Dev 2011; 20:809-19. [DOI: 10.1089/scd.2010.0395] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Paul W. Dyce
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Wei Shen
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
- Laboratory of Germ Cell Biology, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Evanna Huynh
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Hua Shao
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Daniel A.F. Villagómez
- Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
- Departamento de Producción Animal, Universidad de Guadalajara, Zapopan, México
| | - Gerald M. Kidder
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario and Children's Health Research Institute, London, Ontario, Canada
| | - W. Allan King
- Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
35
|
Lafont AL, Song J, Rankin S. Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion. Proc Natl Acad Sci U S A 2010; 107:20364-9. [PMID: 21059905 PMCID: PMC2996691 DOI: 10.1073/pnas.1011069107] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sister chromatids are held together, from the time they are made during S phase until they are pulled apart just before cell division, by a protein complex called cohesin. The mechanistic details by which sister chromatid cohesion is established and maintained have remained elusive, particularly in vertebrate systems. Sororin, a protein that interacts with the cohesin complex, is essential for cohesion in vertebrates, but how it participates in the process is unknown. Here we demonstrate that sororin recruitment depends on active DNA replication and that sororin loading onto chromosomes depends upon another essential cohesion factor, the acetyltransferase Eco2. We find that Eco2, like sororin, is a substrate of the anaphase-promoting complex (APC), which ensures that protein levels remain low before S phase. These findings demonstrate that sororin and Eco2 work together to form a unique regulatory module that limits cohesion to cells with replicated chromatin and support a model in which cohesion in vertebrates is not fully established until the G2 phase of the cell cycle.
Collapse
Affiliation(s)
| | | | - Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
36
|
Orr B, Sunkel CE. Drosophila CENP-C is essential for centromere identity. Chromosoma 2010; 120:83-96. [DOI: 10.1007/s00412-010-0293-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 11/28/2022]
|
37
|
Lister LM, Kouznetsova A, Hyslop LA, Kalleas D, Pace SL, Barel JC, Nathan A, Floros V, Adelfalk C, Watanabe Y, Jessberger R, Kirkwood TB, Höög C, Herbert M. Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr Biol 2010; 20:1511-21. [PMID: 20817533 DOI: 10.1016/j.cub.2010.08.023] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/07/2010] [Accepted: 08/12/2010] [Indexed: 01/02/2023]
Abstract
BACKGROUND The growing trend for women to postpone childbearing has resulted in a dramatic increase in the incidence of trisomic pregnancies. Maternal age-related miscarriage and birth defects are predominantly a consequence of chromosome segregation errors during the first meiotic division (MI), which involves the segregation of replicated recombined homologous chromosomes. Despite the importance to human reproductive health, the events precipitating female age-related meiotic errors are poorly understood. RESULTS Here we use a long-lived wild-type mouse strain to show that the ability to segregate chromosomes synchronously during anaphase of MI declines dramatically during female aging. This is preceded by depletion of chromosome-associated cohesin in association with destabilization of chiasmata, the physical linkages between homologous chromosomes, and loss of the tight association between sister centromeres. Loss of cohesin is not due to an age-related decline in the ability of the spindle checkpoint to delay separase-mediated cleavage of cohesin until entry into anaphase I. However, we find that reduced cohesin is accompanied by depletion of Sgo2, which protects centromeric cohesin during MI. CONCLUSIONS The data indicate that cohesin declines gradually during the long prophase arrest that precedes MI in female mammals. In aged oocytes, cohesin levels fall below the level required to stabilize chiasmata and to hold sister centromeres tightly together, leading to chromosome missegregation during MI. Cohesin loss may be amplified by a concomitant decline in the levels of the centromeric cohesin protector Sgo2. These findings indicate that cohesin is a key molecular link between female aging and chromosome missegregation during MI.
Collapse
Affiliation(s)
- Lisa Martine Lister
- Institute of Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jeong K, Jeong JY, Lee HO, Choi E, Lee H. Inhibition of Plk1 induces mitotic infidelity and embryonic growth defects in developing zebrafish embryos. Dev Biol 2010; 345:34-48. [PMID: 20553902 DOI: 10.1016/j.ydbio.2010.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/29/2010] [Accepted: 06/01/2010] [Indexed: 01/29/2023]
Abstract
Polo-like kinase 1 (Plk1) is central to cell division. Here, we report that Plk1 is critical for mitosis in the embryonic development of zebrafish. Using a combination of several cell biology tools, including single-cell live imaging applied to whole embryos, we show that Plk1 is essential for progression into mitosis during embryonic development. Plk1 morphant cells displayed mitotic infidelity, such as abnormal centrosomes, irregular spindle assembly, hypercondensed chromosomes, and a failure of chromosome arm separation. Consequently, depletion of Plk1 resulted in mitotic arrest and finally death by 6days post-fertilization. In comparison, Plk2 or Plk3 morphant embryos did not display any significant abnormalities. Treatment of embryos with the Plk1 inhibitor, BI 2536, caused a block in mitosis, which was more severe when used to treat plk1 morphants. Finally, using an assay to rescue the Plk1 morphant phenotype, we found that the kinase domain and PBD domains are both necessary for Plk1 function in zebrafish development. Our studies demonstrate that Plk1 is required for embryonic proliferation because its activity is crucial for mitotic integrity. Furthermore, our study suggests that zebrafish will be an efficient and economical in vivo system for the validation of anti-mitotic drugs.
Collapse
Affiliation(s)
- Kilhun Jeong
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, College of Natural Sciences, Seoul National University, 599, Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
39
|
Okamoto N, Kuwahara K, Ohta K, Kitabatake M, Takagi K, Mizuta H, Kondo E, Sakaguchi N. Germinal center-associated nuclear protein (GANP) is involved in mRNA export of Shugoshin-1 required for centromere cohesion and in sister-chromatid exchange. Genes Cells 2010; 15:471-84. [PMID: 20384790 DOI: 10.1111/j.1365-2443.2010.01396.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Germinal center-associated nuclear protein (GANP) is a 210-kDa protein that is upregulated in rapidly proliferating B cells. GANP contains regions for RNA-primase and minichromosome maintenance 3 (MCM3)-associated activities, as well as a Sac3-homology region, which is associated with mRNA export in yeast. Here, we examined the role of GANP in mRNA export and cell proliferation in mammalian cells. The ganp small interfering RNA (siRNA) induced cell-cycle arrest at the G2/M-phase, but increased abnormal chromosome alignment of metaphase chromosomes and cell apoptosis in HeLa cells. These changes were not associated with either the abnormality of the spindle assembly checkpoint or the expression level of cohesin. ganp siRNA disrupted the assembly and localization of cohesin at the centromeres in metaphase cells, which is a quite similar phenotype caused by Shugoshin-1 (Sgo1) siRNA-treatment, which was reported previously. ganp siRNA did induce a selective decrease in Sgo1 transcript levels in the cytoplasm, resulting in a lack of cohesin at the centromeres in metaphase and premature separation of the sister chromatids at mitosis. GANP lacking the Sac3-homology region caused the dominant-negative effect with similar abnormalities and impaired mRNA export. Thus, human GANP is critically involved in cell proliferation at the mitotic phase through its selective support of Sgo1 mRNA export.
Collapse
Affiliation(s)
- Nobukazu Okamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Przewloka MR, Glover DM. The Kinetochore and the Centromere: A Working Long Distance Relationship. Annu Rev Genet 2009; 43:439-65. [DOI: 10.1146/annurev-genet-102108-134310] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marcin R. Przewloka
- University of Cambridge, Department of Genetics, Cambridge, CB2 3EH, United Kingdom; ,
| | - David M. Glover
- University of Cambridge, Department of Genetics, Cambridge, CB2 3EH, United Kingdom; ,
| |
Collapse
|
41
|
Erenpreisa J, Cragg MS, Salmina K, Hausmann M, Scherthan H. The role of meiotic cohesin REC8 in chromosome segregation in gamma irradiation-induced endopolyploid tumour cells. Exp Cell Res 2009; 315:2593-603. [PMID: 19463812 DOI: 10.1016/j.yexcr.2009.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/07/2009] [Accepted: 05/14/2009] [Indexed: 12/26/2022]
Abstract
Escape from mitotic catastrophe and generation of endopolyploid tumour cells (ETCs) represents a potential survival strategy of tumour cells in response to genotoxic treatments. ETCs that resume the mitotic cell cycle have reduced ploidy and are often resistant to these treatments. In search for a mechanism for genome reduction, we previously observed that ETCs express meiotic proteins among which REC8 (a meiotic cohesin component) is of particular interest, since it favours reductional cell division in meiosis. In the present investigation, we induced endopolyploidy in p53-dysfunctional human tumour cell lines (Namalwa, WI-L2-NS, HeLa) by gamma irradiation, and analysed the sub-cellular localisation of REC8 in the resulting ETCs. We observed by RT-PCR and Western blot that REC8 is constitutively expressed in these tumour cells, along with SGOL1 and SGOL2, and that REC8 becomes modified after irradiation. REC8 localised to paired sister centromeres in ETCs, the former co-segregating to opposite poles. Furthermore, REC8 localised to the centrosome of interphase ETCs and to the astral poles in anaphase cells where it colocalised with the microtubule-associated protein NuMA. Altogether, our observations indicate that radiation-induced ETCs express features of meiotic cell divisions and that these may facilitate chromosome segregation and genome reduction.
Collapse
|
42
|
Subramanian VV, Bickel SE. Heterochromatin-mediated association of achiasmate homologs declines with age when cohesion is compromised. Genetics 2009; 181:1207-18. [PMID: 19204374 PMCID: PMC2666492 DOI: 10.1534/genetics.108.099846] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/29/2009] [Indexed: 11/18/2022] Open
Abstract
Normally, meiotic crossovers in conjunction with sister-chromatid cohesion establish a physical connection between homologs that is required for their accurate segregation during the first meiotic division. However, in some organisms an alternative mechanism ensures the proper segregation of bivalents that fail to recombine. In Drosophila oocytes, accurate segregation of achiasmate homologs depends on pairing that is mediated by their centromere-proximal heterochromatin. Our previous work uncovered an unexpected link between sister-chromatid cohesion and the fidelity of achiasmate segregation when Drosophila oocytes are experimentally aged. Here we show that a weak mutation in the meiotic cohesion protein ORD coupled with a reduction in centromere-proximal heterochromatin causes achiasmate chromosomes to missegregate with increased frequency when oocytes undergo aging. If ORD activity is more severely disrupted, achiasmate chromosomes with the normal amount of pericentric heterochromatin exhibit increased nondisjunction when oocytes age. Significantly, even in the absence of aging, a weak ord allele reduces heterochromatin-mediated pairing of achiasmate chromosomes. Our data suggest that sister-chromatid cohesion proteins not only maintain the association of chiasmate homologs but also play a role in promoting the physical association of achiasmate homologs in Drosophila oocytes. In addition, our data support the model that deterioration of meiotic cohesion during the aging process compromises the segregation of achiasmate as well as chiasmate bivalents.
Collapse
|
43
|
Mailhes JB. Faulty spindle checkpoint and cohesion protein activities predispose oocytes to premature chromosome separation and aneuploidy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:642-58. [PMID: 18626998 DOI: 10.1002/em.20412] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aneuploidy accounts for a major proportion of human reproductive failures, mental and physical anomalies, and neoplasms. To heighten our understanding of normal and abnormal chromosome segregation, additional information is needed about the underlying molecular mechanisms of chromosome segregation. Although many hypotheses have been proposed for the etiology of human aneuploidy, there has not been general acceptance of any specific hypothesis. Moreover, it is important to recognize that many potential mechanisms exist whereby chromosome missegregation may occur. One area for investigating aneuploidy centers on the biochemical changes that take place during oocyte maturation. In this regard, recent results have shown that faulty mRNA of spindle-assembly checkpoint proteins and chromosome cohesion proteins may lead to aneuploidy. Also, postovulatory and in vitro aging of mouse oocytes has been shown to lead to decreased levels of Mad2 transcripts and elevated frequencies of premature centromere separation. The intent of this review is to highlight the major events surrounding chromosome segregation and to present the published results that support the premise that faulty chromosome cohesion proteins and spindle checkpoint proteins compromise accurate chromosome segregation.
Collapse
Affiliation(s)
- John B Mailhes
- Department of Obstetrics and Gynecology, LSU Health Sciences Center, Shreveport, Louisiana 71130, USA.
| |
Collapse
|
44
|
McNairn AJ, Gerton JL. The chromosome glue gets a little stickier. Trends Genet 2008; 24:382-9. [PMID: 18602182 DOI: 10.1016/j.tig.2008.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 12/25/2022]
Abstract
Since their discovery, the cohesin proteins have been intensely studied in multiple model systems to determine the mechanism of chromosome cohesion. Recent studies have demonstrated that cohesin is much more than a molecular glue that holds chromosomes together in mitosis. Indeed, cohesin performs critical roles in gene regulation, possibly through the formation of higher-order chromatin structure. Moreover, this newly appreciated role is necessary for proper development in metazoan species, with mutations in the cohesin pathway resulting in human developmental disorders.
Collapse
Affiliation(s)
- Adrian J McNairn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
45
|
Solving the shugoshin puzzle. Trends Genet 2008; 24:205-7. [PMID: 18378037 DOI: 10.1016/j.tig.2008.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 02/14/2008] [Accepted: 02/14/2008] [Indexed: 01/24/2023]
Abstract
Shugoshin proteins form a complex with protein phosphatase 2A (PP2A) that protects centromeric cohesin from separase-mediated cleavage during yeast meiosis I. Recent work shows that this mechanism is conserved from yeast to mammals. Importantly, a model emerges that explains a long-standing puzzle, namely why the shugoshin-PP2A complex mediates protection of centromeric cohesin from separase cleavage specifically during meiosis I, but not during meiosis II or mitosis.
Collapse
|
46
|
Abstract
Cornelia de Lange syndrome (CdLS) is a dominant multisystem disorder caused by a disruption of cohesin function. The cohesin ring complex is composed of four protein subunits and more than 25 additional proteins involved in its regulation. The discovery that this complex also has a fundamental role in long-range regulation of transcription in Drosophila has shed light on the mechanism likely responsible for its role in development. In addition to the three cohesin proteins involved in CdLS, a second multisystem, recessively inherited, developmental disorder, Roberts-SC phocomelia, is caused by mutations in another regulator of the cohesin complex, ESCO2. Here we review the phenotypes of these disorders, collectively termed cohesinopathies, as well as the mechanism by which cohesin disruption likely causes these diseases.
Collapse
Affiliation(s)
- Jinglan Liu
- Division of Human Genetics, The Children’s Hospital of Philadelphia
| | - Ian D. Krantz
- Division of Human Genetics, The Children’s Hospital of Philadelphia
- The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
47
|
Liu L, Keefe DL. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod Biomed Online 2008; 16:103-12. [PMID: 18252055 DOI: 10.1016/s1472-6483(10)60562-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aneuploidy often results from chromosome misalignment at metaphases. Oocytes from senescence-accelerated mice (SAM) exhibit increased chromosome misalignment with age, which originates from nuclear factors. This work sought to further characterize the underlying defects of chromosome misalignments. Using immunofluorescence microscopy with specific antibodies, several specific components associated with spindles or chromosomes, including centrosomes, centromeres and cohesin complex were examined. No obvious differences were found in the distribution of centrosome focus at the spindle pole of oocytes from young and aged SAM, regardless of chromosome alignments, although cytoplasmic centrosome foci were significantly reduced in aged SAM (P < 0.0001). Oocytes from both young and aged SAM exhibited centromere-associated protein-E (CENP-E) at centromeres of all chromosomes, including misaligned chromosomes from aged SAM, demonstrating that CENP-E did not contribute to chromosome misalignments. Notably, both meiotic cohesin proteins located between sister chromatids, REC8 (recombinant 8), STAG3 (stromal antigen 3) and SMC1beta, were remarkably reduced in oocytes from aged SAM. Further, degradation of the cohesin was even more obvious in SAM than in hybrid F1 mice with age, which may explain why SAM are vulnerable to aneuploidy. This natural ageing mouse model shows that defective cohesin coincides with increased incidence of chromosome misalignment and precocious separations of sister chromatids.
Collapse
Affiliation(s)
- Lin Liu
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
| | | |
Collapse
|
48
|
Archambault V, Zhao X, White-Cooper H, Carpenter ATC, Glover DM. Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with Polo kinase. PLoS Genet 2007; 3:e200. [PMID: 17997611 PMCID: PMC2065886 DOI: 10.1371/journal.pgen.0030200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
Polo is a conserved kinase that coordinates many events of mitosis and meiosis, but how it is regulated remains unclear. Drosophila females having only one wild-type allele of the polo kinase gene and the dominant Scant mutation produce embryos in which one of the centrosomes detaches from the nuclear envelope in late prophase. We show that Scant creates a hyperactive form of Greatwall (Gwl) with altered specificity in vitro, another protein kinase recently implicated in mitotic entry in Drosophila and Xenopus. Excess Gwl activity in embryos causes developmental failure that can be rescued by increasing maternal Polo dosage, indicating that coordination between the two mitotic kinases is crucial for mitotic progression. Revertant alleles of Scant that restore fertility to polo-Scant heterozygous females are recessive alleles or deficiencies of gwl; they show chromatin condensation defects and anaphase bridges in larval neuroblasts. One recessive mutant allele specifically disrupts a Gwl isoform strongly expressed during vitellogenesis. Females hemizygous for this allele are sterile, and their oocytes fail to arrest in metaphase I of meiosis; both homologues and sister chromatids separate on elongated meiotic spindles with little or no segregation. This allelic series of gwl mutants highlights the multiple roles of Gwl in both mitotic and meiotic progression. Our results indicate that Gwl activity antagonizes Polo and thus identify an important regulatory interaction of the cell cycle.
Collapse
Affiliation(s)
- Vincent Archambault
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Xinbei Zhao
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Helen White-Cooper
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Adelaide T. C Carpenter
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David M Glover
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Khetani RS, Bickel SE. Regulation of meiotic cohesion and chromosome core morphogenesis during pachytene in Drosophila oocytes. J Cell Sci 2007; 120:3123-37. [PMID: 17698920 DOI: 10.1242/jcs.009977] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During meiosis, cohesion between sister chromatids is required for normal levels of homologous recombination, maintenance of chiasmata and accurate chromosome segregation during both divisions. In Drosophila, null mutations in the ord gene abolish meiotic cohesion, although how ORD protein promotes cohesion has remained elusive. We show that SMC subunits of the cohesin complex colocalize with ORD at centromeres of ovarian germ-line cells. In addition, cohesin SMCs and ORD are visible along the length of meiotic chromosomes during pachytene and remain associated with chromosome cores following DNase I digestion. In flies lacking ORD activity, cohesin SMCs fail to accumulate at oocyte centromeres. Although SMC1 and SMC3 localization along chromosome cores appears normal during early pachytene in ord mutant oocytes, the cores disassemble as meiosis progresses. These data suggest that cohesin loading and/or accumulation at centromeres versus arms is under differential control during Drosophila meiosis. Our experiments also reveal that the alpha-kleisin C(2)M is required for the assembly of chromosome cores during pachytene but is not involved in recruitment of cohesin SMCs to the centromeres. We present a model for how chromosome cores are assembled during Drosophila meiosis and the role of ORD in meiotic cohesion, chromosome core maintenance and homologous recombination.
Collapse
Affiliation(s)
- Radhika S Khetani
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
50
|
Hu D, Valentine M, Kidd VJ, Lahti JM. CDK11(p58) is required for the maintenance of sister chromatid cohesion. J Cell Sci 2007; 120:2424-34. [PMID: 17606997 DOI: 10.1242/jcs.007963] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cyclin-dependent kinase 11 (CDK11) mRNA produces a 110-kDa protein (CDK11(p110)) throughout the cell cycle and a 58-kDa protein (CDK11(p58)) that is specifically translated from an internal ribosome entry site sequence during G2/M. CDK11(p110) is involved in transcription and RNA processing, and CDK11(p58) is involved in centrosome maturation and spindle morphogenesis. Deletion of the CDK11 gene in mice leads to embryonic lethality at E3.5, and CDK11-deficient blastocysts exhibit both proliferative defects and mitotic arrest. Here we used hypomorphic small interfering RNAs (siRNAs) to demonstrate that, in addition to playing a role in spindle formation and structure, CDK11(p58) is also required for sister chromatid cohesion and the completion of mitosis. Moderate depletion of CDK11 causes misaligned and lagging chromosomes but does not prevent mitotic progression. Further diminution of CDK11 caused defective chromosome congression, premature sister chromatid separation, permanent mitotic arrest and cell death. These cells exhibited altered Sgo1 localization and premature dissociation of cohesion complexes. This severe phenotype was not corrected by codepletion of CDK11 and either Plk1 or Sgo1, but it was rescued by CDK11(p58). These findings are consistent with the mitotic arrest we observed in CDK11-deficient mouse embryos and establish that CDK11(p58) is required for the maintenance of chromosome cohesion and the completion of mitosis.
Collapse
Affiliation(s)
- Dongli Hu
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|