1
|
Mettman D, Saeed A, Shold J, Laury R, Ly A, Khan I, Golem S, Olyaee M, O'Neil M. Refined pancreatobiliary UroVysion criteria and an approach for further optimization. Cancer Med 2021; 10:5725-5738. [PMID: 34374212 PMCID: PMC8419786 DOI: 10.1002/cam4.4043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/12/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatobiliary strictures are a common source of false negatives for malignancy detection. UroVysion is more sensitive than any other method but remains underutilized because of conflicting sensitivities and specificities due to a lack of standardized cutoff criteria and confusion in interpreting results in the context of primary sclerosing cholangitis. We set out to determine the sensitivities and specificities of UroVysion, brushing cytology, forceps biopsies, and fine needle aspiration (FNAs) for pancreatobiliary stricture malignancy detection. A retrospective review was performed of all biopsied pancreatobiliary strictures at our institution over 5 years. UroVysion was unquestionably the most sensitive method and all methods were highly specific. Sensitivity was highest while maintaining specificity when a malignant interpretation was limited to cases with 5+ cells with the same polysomic signal pattern and/or loss of one or both 9p21 signals. Only UroVysion detected the metastases and a neuroendocrine tumor. In reviewing and analyzing the signal patterns, we noticed trends according to location and diagnosis. Herein we describe our method for analyzing signal patterns and propose cutoff criteria based upon observations gleaned from such analysis.
Collapse
Affiliation(s)
- Daniel Mettman
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Azhar Saeed
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Janna Shold
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Raquele Laury
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Andrew Ly
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Irfan Khan
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Shivani Golem
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Mojtaba Olyaee
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Maura O'Neil
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| |
Collapse
|
2
|
Wang Y, Wang F, He J, Du J, Zhang H, Shi H, Chen Y, Wei Y, Xue W, Yan J, Feng Y, Gao Y, Li D, Han J, Zhang J. miR-30a-3p Targets MAD2L1 and Regulates Proliferation of Gastric Cancer Cells. Onco Targets Ther 2019; 12:11313-11324. [PMID: 31908496 PMCID: PMC6927793 DOI: 10.2147/ott.s222854] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose This study was done to investigate the inhibition effects of miR-30a-3p on mitotic arrest deficient 2 like 1 (MAD2L1) expression and the proliferation of gastric cancer cells. Patients and methods Cluster analysis and the TCGA database were used to screen the key genes highly expressed in gastric cancer. Based on the LinkedOmics website, the correlation between the miR-30a-3p and the cell cycle-related target gene MAD2L1 in gastric cancer was analyzed. The mRNA and protein expression levels were detected with the quantitative real-time PCR and Western blot analysis. The cell proliferation and cell cycle were also detected and analyzed. Results Bioinformatics analysis showed that MAD2L1 was highly expressed in tumor tissues compared with normal tissues. Compared with normal tissues, the miR-30a-3p was significantly decreased in the gastric cancer tissues. Moreover, MAD2L1 was significantly negatively correlated with the miR-30a-3p expression. Furthermore, over-expression of miR-30a-3p decreased the expression of MAD2L1 at the protein level, which inhibited the proliferation of AGS and BGC-823 gastric cancer cells. In addition, the cell cycles of AGS and BGC-823 cells were arrested at the G0/G1 phase. Conclusion MAD2L1 is a pro-oncogene which is up-regulated in gastric cancer. The miR-30a-3p can down-regulate the MAD2L1 expression, inhibiting the proliferation of gastric cancer cells and affect the cell cycle.
Collapse
Affiliation(s)
- Yu Wang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Fenghui Wang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jing He
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Juan Du
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Huahua Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Haiyan Shi
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yani Chen
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yameng Wei
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Wanjuan Xue
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jing Yan
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yun Feng
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yi Gao
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Dan Li
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jiming Han
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jing Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| |
Collapse
|
3
|
Raynes Y, Weinreich DM. Genomic clustering of fitness-affecting mutations favors the evolution of chromosomal instability. Evol Appl 2019; 12:301-313. [PMID: 30697341 PMCID: PMC6346662 DOI: 10.1111/eva.12717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/16/2018] [Accepted: 09/16/2018] [Indexed: 12/19/2022] Open
Abstract
Most solid cancers are characterized by chromosomal instability (CIN)-an elevated rate of large-scale chromosomal aberrations and ploidy changes. Chromosomal instability may arise through mutations in a range of genomic integrity loci and is commonly associated with fast disease progression, poor prognosis, and multidrug resistance. However, the evolutionary forces promoting CIN-inducing alleles (hereafter, CIN mutators) during carcinogenesis remain poorly understood. Here, we develop a stochastic, individual-based model of indirect selection experienced by CIN mutators via genomic associations with fitness-affecting mutations. Because mutations associated with CIN affect large swaths of the genome and have the potential to simultaneously comprise many individual loci, we show that indirect selection on CIN mutators is critically influenced by genome organization. In particular, we find strong support for a key role played by the spatial clustering of loci with either beneficial or deleterious mutational effects. Genomic clustering of selected loci allows CIN mutators to generate favorable chromosomal changes that facilitate their rapid expansion within a neoplasm and, in turn, accelerate carcinogenesis. We then examine the distribution of oncogenic and tumor-suppressing loci in the human genome and find both to be potentially more clustered along the chromosome than expected, leading us to speculate that human genome may be susceptible to CIN hitchhiking. More quantitative data on fitness effects of individual mutations will be necessary, though, to assess the true levels of clustering in the human genome and the effectiveness of indirect selection for CIN. Finally, we use our model to examine how therapeutic strategies that increase the deleterious burden of genetically unstable cells by raising either the rate of CIN or the cost of deleterious mutations affect CIN evolution. We find that both can inhibit CIN hitchhiking and delay carcinogenesis in some circumstances, yet, in line with earlier work, we find the latter to be considerably more effective.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular BiologyBrown UniversityProvidenceRhode Island
| | - Daniel M. Weinreich
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular BiologyBrown UniversityProvidenceRhode Island
| |
Collapse
|
4
|
Pavanello S, Varesco L, Gismondi V, Bruzzi P, Bolognesi C. Leucocytes telomere length and breast cancer risk/ susceptibility: A case-control study. PLoS One 2018; 13:e0197522. [PMID: 29782524 PMCID: PMC5962062 DOI: 10.1371/journal.pone.0197522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Telomere length in peripheral blood leukocytes (PBL-TL) was proposed as a biomarker of cancer risk. Recent scientific evidence suggested PBL-TL plays a diverse role in different cancers. Inconsistent results were obtained on PBL-TL in relation to breast cancer risk and specifically to the presence of BRCA1 and BRCA2 mutations. The aim of the present case-control study was to analyse the correlation between family history of breast cancer or presence of a BRCA mutation and PBL-TL in the hypothesis that TL is a modifier of cancer risk. METHODS PBL-TL was measured using the real-time quantitative PCR method in DNA for 142 cases and 239 controls. All the women enrolled were characterized for cancer family history. A subgroup of 48 women were classified for the presence of a BRCA mutation. PBL-TL were summarized as means and standard deviations, and compared by standard analysis of variance. A multivariable Generalised Linear Model was fitted to the data with PBL-TL as the dependent variable, case/control status and presence of a BRCA/VUS mutation as factors, and age in 4 strata as a covariate. RESULTS Age was significantly associated with decreasing PBL-TL in controls (p = 0.01), but not in BC cases. The telomere length is shorter in cases than in controls after adjusting for age. No effect on PBL-TL of BMI, smoke nor of the most common risk factors for breast cancer was observed. No association between PBL-TL and family history was detected both in BC cases and controls. In the multivariate model, no association was observed between BRCA mutation and decreased PBL-TL. A statistically significant interaction (p = 0.031) between case-control status and a BRCA-mutation/VUS was observed, but no effect was detected for the interaction of cancer status and BRCA or VUS. CONCLUSION Our study fails to provide support to the hypothesis that PBL-TL is associated with the risk of hereditary BC, or that is a marker of inherited mutations in BRCA genes.
Collapse
Affiliation(s)
- Sofia Pavanello
- Unit of Occupational Medicine, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Liliana Varesco
- Unit of Hereditary Cancer Ospedale Policlinico San Martino, Genova, Italy
| | - Viviana Gismondi
- Unit of Hereditary Cancer Ospedale Policlinico San Martino, Genova, Italy
| | - Paolo Bruzzi
- Unit of Clinical Epidemiology, Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Bolognesi
- Unit of Environmental Carcinogenesis Ospedale Policlinico San Martino, Genova, Italy
- * E-mail:
| |
Collapse
|
5
|
Cheng F, Liu C, Lin CC, Zhao J, Jia P, Li WH, Zhao Z. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types. PLoS Comput Biol 2015; 11:e1004497. [PMID: 26352260 PMCID: PMC4564226 DOI: 10.1371/journal.pcbi.1004497] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.
Collapse
Affiliation(s)
- Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Chuang Liu
- Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chen-Ching Lin
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Junfei Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Peilin Jia
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Wen-Hsiung Li
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Biodiversity Research Center and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
The fight against cancer has drawn researchers from a wide variety of disciplines, ranging from molecular biology to physics, but the perspective of an ecological theorist has been mostly overlooked. By thinking about the cells that make up a tumour as an endangered species, cancer vulnerabilities become more apparent. Studies in conservation biology and microbial experiments indicate that extinction is a complex phenomenon, which is often driven by the interaction of ecological and evolutionary processes. Recent advances in cancer research have shown that tumours, like species striving for survival, harbour intricate population dynamics, which suggests the possibility to exploit the ecology of tumours for treatment.
Collapse
Affiliation(s)
- Kirill S Korolev
- Bioinformatics Program, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, USA
| | - Joao B Xavier
- Memorial Sloan-Kettering Cancer Center, Computational Biology Program, New York, New York, USA
| | - Jeff Gore
- Massachusetts Institute of Technology, 400 Technology Square, NE46-609 Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Lu L, Hu S, Wei R, Qiu X, Lu K, Fu Y, Li H, Xing G, Li D, Peng R, He F, Zhang L. The HECT type ubiquitin ligase NEDL2 is degraded by anaphase-promoting complex/cyclosome (APC/C)-Cdh1, and its tight regulation maintains the metaphase to anaphase transition. J Biol Chem 2013; 288:35637-50. [PMID: 24163370 DOI: 10.1074/jbc.m113.472076] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NEDD4-like ubiquitin ligase 2 (NEDL2) is a HECT type ubiquitin ligase. NEDL2 enhances p73 transcriptional activity and degrades ATR kinase in lamin misexpressed cells. Compared with the important functions of other HECT type ubiquitin ligase, there is less study concerning the function and regulation of NEDL2. Using primary antibody immunoprecipitation and mass spectrometry, we identify a list of potential proteins that are putative NEDL2-interacting proteins. The candidate list contains many of mitotic proteins, especially including several subunits of anaphase-promoting complex/cyclosome (APC/C) and Cdh1, an activator of APC/C. Cdh1 can interact with NEDL2 in vivo and in vitro. Cdh1 recognizes one of the NEDL2 destruction boxes (R(740)GSL(743)) and targets it for degradation in an APC/C-dependent manner during mitotic exit. Overexpression of Cdh1 reduces the protein level of NEDL2, whereas knockdown of Cdh1 increases the protein level of NEDL2 but has no effect on the NEDL2 mRNA level. NEDL2 associates with mitotic spindles, and its protein level reaches a maximum in mitosis. The function of NEDL2 during mitosis is essential because NEDL2 depletion prolongs metaphase, and overexpression of NEDL2 induces chromosomal lagging. Elevated expression of NEDL2 protein and mRNA are both found in colon cancer and cervix cancer. We conclude that NEDL2 is a novel substrate of APC/C-Cdh1 as cells exit mitosis and functions as a regulator of the metaphase to anaphase transition. Its overexpression may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Li Lu
- From the State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
WEE1 inhibition and genomic instability in cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:227-35. [PMID: 23727417 DOI: 10.1016/j.bbcan.2013.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 01/23/2023]
Abstract
One of the hallmarks of cancer is genomic instability controlled by cell cycle checkpoints. The G1 and G2 checkpoints allow DNA damage responses, whereas the mitotic checkpoint enables correct seggregation of the sister chromosomes to prevent aneuploidy. Cancer cells often lack a functional G1 arrest and rely on G2 arrest for DNA damage responses. WEE1 kinase is an important regulator of the G2 checkpoint and is overexpressed in various cancer types. Inhibition of WEE1 is a promising strategy in cancer therapy in combination with DNA-damaging agents, especially when cancer cells harbor p53 mutations, as it causes mitotic catastrophy when DNA is not repaired during G2 arrest. Cancer cell response to WEE1 inhibition monotherapy has also been demonstrated in various types of cancer, including p53 wild-type cancers. We postulate that chromosomal instability can explain tumor response to WEE1 monotherapy. Therefore, chromosomal instability may need to be taken into account when determining the most effective strategy for the use of WEE1 inhibitors in cancer therapy.
Collapse
|
9
|
Rübben A, Nordhoff O. A systems approach defining constraints of the genome architecture on lineage selection and evolvability during somatic cancer evolution. Biol Open 2012; 2:49-62. [PMID: 23336076 PMCID: PMC3545268 DOI: 10.1242/bio.20122543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
Most clinically distinguishable malignant tumors are characterized by specific mutations, specific patterns of chromosomal rearrangements and a predominant mechanism of genetic instability but it remains unsolved whether modifications of cancer genomes can be explained solely by mutations and selection through the cancer microenvironment. It has been suggested that internal dynamics of genomic modifications as opposed to the external evolutionary forces have a significant and complex impact on Darwinian species evolution. A similar situation can be expected for somatic cancer evolution as molecular key mechanisms encountered in species evolution also constitute prevalent mutation mechanisms in human cancers. This assumption is developed into a systems approach of carcinogenesis which focuses on possible inner constraints of the genome architecture on lineage selection during somatic cancer evolution. The proposed systems approach can be considered an analogy to the concept of evolvability in species evolution. The principal hypothesis is that permissive or restrictive effects of the genome architecture on lineage selection during somatic cancer evolution exist and have a measurable impact. The systems approach postulates three classes of lineage selection effects of the genome architecture on somatic cancer evolution: i) effects mediated by changes of fitness of cells of cancer lineage, ii) effects mediated by changes of mutation probabilities and iii) effects mediated by changes of gene designation and physical and functional genome redundancy. Physical genome redundancy is the copy number of identical genetic sequences. Functional genome redundancy of a gene or a regulatory element is defined as the number of different genetic elements, regardless of copy number, coding for the same specific biological function within a cancer cell. Complex interactions of the genome architecture on lineage selection may be expected when modifications of the genome architecture have multiple and possibly opposed effects which manifest themselves at disparate times and progression stages. Dissection of putative mechanisms mediating constraints exerted by the genome architecture on somatic cancer evolution may provide an algorithm for understanding and predicting as well as modifying somatic cancer evolution in individual patients.
Collapse
Affiliation(s)
- Albert Rübben
- Independent Institute of Systems Sciences Aachen , 52064 Aachen , Germany ; Department of Dermatology, RWTH Aachen University , 52074 Aachen , Germany
| | | |
Collapse
|
10
|
Ponomaryova AA, Rykova EY, Cherdyntseva NV, Choinzonov EL, Laktionov PP, Vlassov VV. Molecular genetic markers in diagnosis of lung cancer. Mol Biol 2011. [DOI: 10.1134/s0026893310061056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Detección de aneuploidías del cromosoma 17 y deleción del gen TP53 en una amplia variedad de tumores sólidos mediante hibridación in situ fluorescente bicolor. BIOMEDICA 2010. [DOI: 10.7705/biomedica.v30i3.273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Aberrations of chromosome 13q in gastrointestinal stromal tumors: analysis of 91 cases by fluorescence in situ hybridization (FISH). ACTA ACUST UNITED AC 2009; 18:72-80. [PMID: 19430298 DOI: 10.1097/pdm.0b013e318181fa1f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The clinical behavior of gastrointestinal stromal tumors (GISTs) ranges from benign to malignant. Recent studies suggest that loss of 13q could be correlated with GIST progression. Our objectives were: (1) to detect chromosome 13q aberrations and determine the corresponding gene status in GISTs; and (2) to assess potential roles of 13q aberrations in GIST by correlating various 13q aberrations with various histologic parameters and disease-free survival in a group of GIST patients. Ninety-one cases of primary GISTs in Chinese patients were studied by dual color fluorescence in situ hybridization (FISH), through use of a panel of bacterial artificial chromosome clones RP11-685I15, RP11-352N7, and RP11-505F3 covering the Rb, RFP2, KCNRG, and KLF5 genes, respectively. Loss of RP11-685I15 was detected in 17/91 (18.7%) cases, loss of RP11-352N7 in 11/91 (12.1%) cases, and loss of RP11-505F3 in 5/91 (5.5%) cases. Chromosome 13 polysomy was observed in 22/91 (24.2%) cases. The frequency of RP11-685I15 deletion was positively correlated with tumor risk (P=0.0460). The frequency of RP11-352N7 deletion, RP11-505F3 deletion, and chromosome 13 polysomy tended to be higher in the high-risk GISTs. Shorter disease-free survival was significantly associated with RP11-352N7 deletion (P=0.0361) and high-risk grade (P=0.0003). Chromosome 13 instability of GISTs may play a role in tumor progression. Loss of 13q, especially loss of Rb, RFP2, KCNRG, and KLF5 genes are frequent events in high-risk GISTs. Loss of 13q may be associated with tumor progression.
Collapse
|
13
|
Downs JA. Chromatin structure and DNA double-strand break responses in cancer progression and therapy. Oncogene 2008; 26:7765-72. [PMID: 18066089 DOI: 10.1038/sj.onc.1210874] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Defects in the detection and repair of DNA double-strand breaks (DSBs) have been causatively linked to tumourigenesis. Moreover, inhibition of DNA damage responses (DDR) can increase the efficacy of cancer therapies that rely on generation of damaged DNA. DDR must occur within the context of chromatin, and there have been significant advances in recent years in understanding how the modulation and manipulation of chromatin contribute to this activity. One particular covalent modification of a histone variant--the phosphorylation of H2AX--has been investigated in great detail and has been shown to have important roles in DNA DSB responses and in preventing tumourigenesis. These studies are reviewed here in the context of their relevance to cancer therapy and diagnostics. In addition, there is emerging evidence for contributions by proteins involved in mediating higher order structure to DNA DSB responses. The contributions of a subset of these proteins--linker histones and high-mobility group box (HMGB) proteins--to DDR and their potential significance in tumourigenesis are discussed.
Collapse
Affiliation(s)
- J A Downs
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, UK.
| |
Collapse
|
14
|
Abstract
Modern techniques are revealing that repetition of segments of the genome, called amplification or gene amplification, is very common. Amplification is found in all domains of life, and occurs under conditions where enhanced expression of the amplified genes is advantageous. Amplification extends the range of gene expression beyond that which is achieved by control systems. It also is reversible because it is unstable, breaking down by homologous recombination. Amplification is believed to be the driving force in the clustering of related functions, in that it allows them to be amplified together. Amplification provides the extra copies of genes that allow evolution of functions to occur while retaining the original function. Amplification can be induced in response to cellular stressors. In many cases, it has been shown that the genomic regions that are amplified include those genes that are appropriate to upregulate for a specific stressor. There is some evidence that amplification occurs as part of a broad, general stress response, suggesting that organisms have the capacity to induce structural changes in the genome. This then allows adaptation to the stressful conditions. The mechanisms by which amplification arises are now being studied at the molecular level, but much is still unknown about the mechanisms in all organisms. Recent advances in our understanding of amplification in bacteria suggests new interpretations of events leading to human copy number variation, as well as evolution in general.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
15
|
Crespi BJ, Summers K. Positive selection in the evolution of cancer. Biol Rev Camb Philos Soc 2006; 81:407-24. [PMID: 16762098 DOI: 10.1017/s1464793106007056] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 03/27/2006] [Accepted: 03/29/2006] [Indexed: 01/29/2023]
Abstract
We hypothesize that forms of antagonistic coevolution have forged strong links between positive selection at the molecular level and increased cancer risk. By this hypothesis, evolutionary conflict between males and females, mothers and foetuses, hosts and parasites, and other parties with divergent fitness interests has led to rapid evolution of genetic systems involved in control over fertilization and cellular resources. The genes involved in such systems promote cancer risk as a secondary effect of their roles in antagonistic coevolution, which generates evolutionary disequilibrium and maladaptation. Evidence from two sources: (1) studies on specific genes, including SPANX cancer/testis antigen genes, several Y-linked genes, the pem homebox gene, centromeric histone genes, the breast cancer gene BRCA1, the angiogenesis gene ANG, cadherin genes, cytochrome P450 genes, and viral oncogenes; and (2) large-scale database studies of selection on different functional categories of genes, supports our hypothesis. These results have important implications for understanding the evolutionary underpinnings of cancer and the dynamics of antagonistically-coevolving molecular systems.
Collapse
Affiliation(s)
- Bernard J Crespi
- Behavioural Ecology Research Group, Department of Biology, Simon Fraser University, Burnaby, BC V5A 1 S6 Canada.
| | | |
Collapse
|
16
|
Abstract
We now have firm evidence that the basic mechanism of chromosome segregation is similar among diverse eukaryotes as the same genes are employed. Even in prokaryotes, the very basic feature of chromosome segregation has similarities to that of eukaryotes. Many aspects of chromosome segregation are closely related to a cell cycle control that includes stage-specific protein modification and proteolysis. Destruction of mitotic cyclin and securin leads to mitotic exit and separase activation, respectively. Key players in chromosome segregation are SMC-containing cohesin and condensin, DNA topoisomerase II, APC/C ubiquitin ligase, securin-separase complex, aurora passengers, and kinetochore microtubule destabilizers or regulators. In addition, the formation of mitotic kinetochore and spindle apparatus is absolutely essential. The roles of principal players in basic chromosome segregation are discussed: most players have interphase as well as mitotic functions. A view on how the centromere/kinetochore is formed is described.
Collapse
Affiliation(s)
- Mitsuhiro Yanagida
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|