1
|
Dubach VRA, San Segundo-Acosta P, Murphy BJ. Structural and mechanistic insights into Streptococcus pneumoniae NADPH oxidase. Nat Struct Mol Biol 2024:10.1038/s41594-024-01348-w. [PMID: 39039317 DOI: 10.1038/s41594-024-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) have a major role in the physiology of eukaryotic cells by mediating reactive oxygen species production. Evolutionarily distant proteins with the NOX catalytic core have been found in bacteria, including Streptococcus pneumoniae NOX (SpNOX), which is proposed as a model for studying NOXs because of its high activity and stability in detergent micelles. We present here cryo-electron microscopy structures of substrate-free and nicotinamide adenine dinucleotide (NADH)-bound SpNOX and of NADPH-bound wild-type and F397A SpNOX under turnover conditions. These high-resolution structures provide insights into the electron-transfer pathway and reveal a hydride-transfer mechanism regulated by the displacement of F397. We conducted structure-guided mutagenesis and biochemical analyses that explain the absence of substrate specificity toward NADPH and suggest the mechanism behind constitutive activity. Our study presents the structural basis underlying SpNOX enzymatic activity and sheds light on its potential in vivo function.
Collapse
Affiliation(s)
- Victor R A Dubach
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Redox and Metalloprotein Research Group, IMPRS on Cellular Biophysics, Frankfurt am Main, Germany
| | - Pablo San Segundo-Acosta
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Madrid, Spain.
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Park T, Kang JY, Jin M, Yang J, Kim H, Noh C, Jung CH, Eom SH. Structural insights into the octamerization of glycerol dehydrogenase. PLoS One 2024; 19:e0300541. [PMID: 38483875 PMCID: PMC10939272 DOI: 10.1371/journal.pone.0300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Glycerol dehydrogenase (GDH) catalyzes glycerol oxidation to dihydroxyacetone in a NAD+-dependent manner. As an initiator of the oxidative pathway of glycerol metabolism, a variety of functional and structural studies of GDH have been conducted previously. Structural studies revealed intriguing features of GDH, like the flexible β-hairpin and its significance. Another commonly reported structural feature is the enzyme's octameric oligomerization, though its structural details and functional significance remained unclear. Here, with a newly reported GDH structure, complexed with both NAD+ and glycerol, we analyzed the octamerization of GDH. Structural analyses revealed that octamerization reduces the structural dynamics of the N-domain, which contributes to more consistently maintaining a distance required for catalysis between the cofactor and substrate. This suggests that octamerization may play a key role in increasing the likelihood of the enzyme reaction by maintaining the ligands in an appropriate configuration for catalysis. These findings expand our understanding of the structure of GDH and its relation to the enzyme's activity.
Collapse
Affiliation(s)
- Taein Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jung Youn Kang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Minwoo Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jihyeong Yang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyunwoo Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chaemin Noh
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Che-Hun Jung
- Department of Molecular Medicine, Chonnam National University, Gwangju, Republic of Korea
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Soo Hyun Eom
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
3
|
Smith N, Horswill AR, Wilson MA. X-ray-driven chemistry and conformational heterogeneity in atomic resolution crystal structures of bacterial dihydrofolate reductases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566054. [PMID: 37986818 PMCID: PMC10659368 DOI: 10.1101/2023.11.07.566054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate. Bacterial DHFRs are targets of several important antibiotics as well as model enzymes for the role of protein conformational dynamics in enzyme catalysis. We collected 0.93 Å resolution X-ray diffraction data from both Bacillus subtilis (Bs) and E. coli (Ec) DHFRs bound to folate and NADP+. These oxidized ternary complexes should not be able to perform chemistry, however electron density maps suggest hydride transfer is occurring in both enzymes. Comparison of low- and high-dose EcDHFR datasets show that X-rays drive partial production of tetrahydrofolate. Hydride transfer causes the nicotinamide moiety of NADP+ to move towards the folate as well as correlated shifts in nearby residues. Higher radiation dose also changes the conformational heterogeneity of Met20 in EcDHFR, supporting a solvent gating role during catalysis. BsDHFR has a different pattern of conformational heterogeneity and an unexpected disulfide bond, illustrating important differences between bacterial DHFRs. This work demonstrates that X-rays can drive hydride transfer similar to the native DHFR reaction and that X-ray photoreduction can be used to interrogate catalytically relevant enzyme dynamics in favorable cases.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Alexander R. Horswill
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| |
Collapse
|
4
|
Deng J, Cui Q. Second-Shell Residues Contribute to Catalysis by Predominately Preorganizing the Apo State in PafA. J Am Chem Soc 2023; 145:11333-11347. [PMID: 37172218 PMCID: PMC10810092 DOI: 10.1021/jacs.3c02423] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Residues beyond the first coordination shell are often observed to make considerable cumulative contributions in enzymes. Due to typically indirect perturbations of multiple physicochemical properties of the active site, however, their individual and specific roles in enzyme catalysis and disease-causing mutations remain difficult to predict and understand at the molecular level. Here we analyze the contributions of several second-shell residues in phosphate-irrepressible alkaline phosphatase of flavobacterium (PafA), a representative system as one of the most efficient enzymes. By adopting a multifaceted approach that integrates quantum-mechanical/molecular-mechanical free energy computations, molecular-mechanical molecular dynamics simulations, and density functional theory cluster model calculations, we probe the rate-limiting phosphoryl transfer step and structural properties of all relevant enzyme states. In combination with available experimental data, our computational results show that mutations of the studied second-shell residues impact catalytic efficiency mainly by perturbation of the apo state and therefore substrate binding, while they do not affect the ground state or alter the nature of phosphoryl transfer transition state significantly. Several second-shell mutations also modulate the active site hydration level, which in turn influences the energetics of phosphoryl transfer. These mechanistic insights also help inform strategies that may improve the efficiency of enzyme design and engineering by going beyond the current focus on the first coordination shell.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Singh R, Shaheer M, Sobhia ME. Molecular dynamic assisted investigation on impact of mutations in deazaflavin dependent nitroreductase against pretomanid: a computational study. J Biomol Struct Dyn 2022:1-23. [PMID: 35574601 DOI: 10.1080/07391102.2022.2069156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the past decade, TB drugs belonging to the nitroimidazole class, pretomanid and delamanid, have been authorised to treat MDR-TB and XDR-TB. With a novel inhibition mechanism and a reduction in the span of treatment, it is now being administered in various combinations. This approach is not the ultimate remedy since the target protein Deazaflavin dependent nitroreductase (Ddn) has a high mutation frequency, and already pretomanid resistant clinical isolates are reported in various studies. Ddn is essential for M.tuberculosis to emerge from hypoxia, and point mutations in critical residues confer resistance to Nitro-imidazoles. Among the pool of available mutants, we have selected seven mutants viz DdnL49P, DdnY65S, DdnS78Y, DdnK79Q, DdnW88R, DdnY133C, and DdnY136S, all of which exhibited resistance to pretomanid. To address this issue, through computational study primarily by MD simulation, we attempted to elucidate these point mutations' impact and investigate the resistance mechanism. Hence, the DdnWT and mutant (MT) complexes were subjected to all-atom molecular dynamics (MD) simulations for 100 ns. Interestingly, we observed the escalation of the distance between cofactor and ligand in some mutants, along with a significant change in ligand conformation relative to the DdnWT. Moreover, we confirmed that mutations rendered ligand instability and were ejected from the binding pocket as a result. In conclusion, the results obtained provide a new structural insight and vital clues for designing novel inhibitors to combat nitroimidazole resistanceCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Singh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Muhammed Shaheer
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| |
Collapse
|
6
|
Mhashal AR, Major DT. Temperature-Dependent Kinetic Isotope Effects in R67 Dihydrofolate Reductase from Path-Integral Simulations. J Phys Chem B 2021; 125:1369-1377. [PMID: 33522797 PMCID: PMC7883348 DOI: 10.1021/acs.jpcb.0c10318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Indexed: 11/28/2022]
Abstract
Calculation of temperature-dependent kinetic isotope effects (KIE) in enzymes presents a significant theoretical challenge. Additionally, it is not trivial to identify enzymes with available experimental accurate intrinsic KIEs in a range of temperatures. In the current work, we present a theoretical study of KIEs in the primitive R67 dihydrofolate reductase (DHFR) enzyme and compare with experimental work. The advantage of R67 DHFR is its significantly lower kinetic complexity compared to more evolved DHFR isoforms. We employ mass-perturbation-based path-integral simulations in conjunction with umbrella sampling and a hybrid quantum mechanics-molecular mechanics Hamiltonian. We obtain temperature-dependent KIEs in good agreement with experiments and ascribe the temperature-dependent KIEs primarily to zero-point energy effects. The active site in the primitive enzyme is found to be poorly preorganized, which allows excessive water access to the active site and results in loosely bound reacting ligands.
Collapse
Affiliation(s)
- Anil R. Mhashal
- Department of Chemistry and Institute
for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute
for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
7
|
Li J, Fortunato G, Lin J, Agarwal PK, Kohen A, Singh P, Cheatum CM. Evolution Conserves the Network of Coupled Residues in Dihydrofolate Reductase. Biochemistry 2019; 58:3861-3868. [PMID: 31423766 PMCID: PMC7296831 DOI: 10.1021/acs.biochem.9b00460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Understanding protein motions and their role in enzymatic reactions is an important and timely topic in enzymology. Protein motions that are involved in the chemical step of catalysis are particularly intriguing but difficult to identify. A global network of coupled residues in Escherichia coli dihydrofolate reductase (E. coli DHFR), which assists in catalyzing the chemical step, has previously been demonstrated through quantum mechanical/molecular mechanical and molecular dynamics simulations as well as bioinformatic analyses. A few specific residues (M42, G121, F125, and I14) were shown to function synergistically with measurements of single-turnover rates and the temperature dependence of intrinsic kinetic isotope effects (KIEsint) of site-directed mutants. This study hypothesizes that the global network of residues involved in the chemical step is evolutionarily conserved and probes homologous residues of the potential global network in human DHFR through measurements of the temperature dependence of KIEsint and computer simulations based on the empirical valence bond method. We study mutants M53W and S145V. Both of these remote residues are homologous to network residues in E. coli DHFR. Non-additive isotope effects on activation energy are observed between M53 and S145, indicating their synergistic effect on the chemical step in human DHFR, which suggests that both of these residues are part of a network affecting the chemical step in enzyme catalysis. This finding supports the hypothesis that human and E. coli DHFR share similar networks, consistent with evolutionary preservation of such networks.
Collapse
Affiliation(s)
- Jiayue Li
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | | | - Jennifer Lin
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - Pratul K. Agarwal
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - Priyanka Singh
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
8
|
Pusuluk O, Farrow T, Deliduman C, Burnett K, Vedral V. Proton tunnelling in hydrogen bonds and its implications in an induced-fit model of enzyme catalysis. Proc Math Phys Eng Sci 2018. [DOI: 10.1098/rspa.2018.0037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The role of proton tunnelling in biological catalysis is investigated here within the frameworks of quantum information theory and thermodynamics. We consider the quantum correlations generated through two hydrogen bonds between a substrate and a prototypical enzyme that first catalyses the tautomerization of the substrate to move on to a subsequent catalysis, and discuss how the enzyme can derive its catalytic potency from these correlations. In particular, we show that classical changes induced in the binding site of the enzyme spreads the quantum correlations among all of the four hydrogen-bonded atoms thanks to the directionality of hydrogen bonds. If the enzyme rapidly returns to its initial state after the binding stage, the substrate ends in a new transition state corresponding to a quantum superposition. Open quantum system dynamics can then naturally drive the reaction in the forward direction from the major tautomeric form to the minor tautomeric form without needing any additional catalytic activity. We find that in this scenario the enzyme lowers the activation energy so much that there is no energy barrier left in the tautomerization, even if the quantum correlations quickly decay.
Collapse
Affiliation(s)
- Onur Pusuluk
- Department of Physics, İstanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Tristan Farrow
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Cemsinan Deliduman
- Department of Physics, Mimar Sinan Fine Arts University, Bomonti, Istanbul 34380, Turkey
| | - Keith Burnett
- University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Vlatko Vedral
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| |
Collapse
|
9
|
Mohamed AE, Condic-Jurkic K, Ahmed FH, Yuan P, O'Mara ML, Jackson CJ, Coote ML. Hydrophobic Shielding Drives Catalysis of Hydride Transfer in a Family of F 420H 2-Dependent Enzymes. Biochemistry 2016; 55:6908-6918. [PMID: 27951661 DOI: 10.1021/acs.biochem.6b00683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A family of flavin/deazaflavin-dependent oxidoreductases (FDORs) from mycobacteria has been recently characterized and found to play a variety of catalytic roles, including the activation of prodrugs such as the candidate anti-tuberculosis drug pretomanid (PA-824). However, our understanding of the catalytic mechanism used by these enzymes is relatively limited. To address this, we have used a combination of quantum mechanics and molecular dynamics calculations to study the catalytic mechanism of the activation of pretomanid by the deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis. The preferred pathway involves an initial hydride transfer step from the deprotonated cofactor (i.e., F420H-), with subsequent protonation, before a series of spontaneous intramolecular reactions to form the final reactive nitrogen species. The most likely proton source is a hydroxonium ion within the solvent accessible active site. Intriguingly, catalysis of the rate-determining hydride transfer step is aided by three tyrosine residues that form a hydrophobic barrier around the active site that, upon reaction, is then disrupted to allow increased water accessibility to facilitate the subsequent proton transfer step. The catalytic mechanism we propose is consistent with previous experimental observations of the Ddn enzyme and will inform the design of improved prodrugs in the future.
Collapse
Affiliation(s)
- A Elaaf Mohamed
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Karmen Condic-Jurkic
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - F Hafna Ahmed
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Peng Yuan
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Michelle L Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
10
|
Ahmed FH, Mohamed AE, Carr PD, Lee BM, Condic-Jurkic K, O'Mara ML, Jackson CJ. Rv2074 is a novel F420 H2 -dependent biliverdin reductase in Mycobacterium tuberculosis. Protein Sci 2016; 25:1692-709. [PMID: 27364382 DOI: 10.1002/pro.2975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Bilirubin is a potent antioxidant that is produced from the reduction of the heme degradation product biliverdin. In mammalian cells and Cyanobacteria, NADH/NADPH-dependent biliverdin reductases (BVRs) of the Rossmann-fold have been shown to catalyze this reaction. Here, we describe the characterization of Rv2074 from Mycobacterium tuberculosis, which belongs to a structurally and mechanistically distinct family of F420 H2 -dependent BVRs (F-BVRs) that are exclusively found in Actinobacteria. We have solved the crystal structure of Rv2074 bound to its cofactor, F420 , and used this alongside molecular dynamics simulations, site-directed mutagenesis and NMR spectroscopy to elucidate its catalytic mechanism. The production of bilirubin by Rv2074 could exploit the anti-oxidative properties of bilirubin and contribute to the range of immuno-evasive mechanisms that have evolved in M. tuberculosis to allow persistent infection.
Collapse
Affiliation(s)
- F Hafna Ahmed
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - A Elaaf Mohamed
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Paul D Carr
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Brendon M Lee
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Karmen Condic-Jurkic
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
11
|
Abstract
Advances in computational and experimental methods in enzymology have aided comprehension of enzyme-catalyzed chemical reactions. The main difficulty in comparing computational findings to rate measurements is that the first examines a single energy barrier, while the second frequently reflects a combination of many microscopic barriers. We present here intrinsic kinetic isotope effects and their temperature dependence as a useful experimental probe of a single chemical step in a complex kinetic cascade. Computational predictions are tested by this method for two model enzymes: dihydrofolate reductase and thymidylate synthase. The description highlights the significance of collaboration between experimentalists and theoreticians to develop a better understanding of enzyme-catalyzed chemical conversions.
Collapse
Affiliation(s)
- P Singh
- University of Iowa, Iowa City, IA, United States
| | - Z Islam
- University of Iowa, Iowa City, IA, United States
| | - A Kohen
- University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
12
|
Singh P, Abeysinghe T, Kohen A. Linking protein motion to enzyme catalysis. Molecules 2015; 20:1192-209. [PMID: 25591120 PMCID: PMC4341894 DOI: 10.3390/molecules20011192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/07/2015] [Indexed: 12/01/2022] Open
Abstract
Enzyme motions on a broad range of time scales can play an important role in various intra- and intermolecular events, including substrate binding, catalysis of the chemical conversion, and product release. The relationship between protein motions and catalytic activity is of contemporary interest in enzymology. To understand the factors influencing the rates of enzyme-catalyzed reactions, the dynamics of the protein-solvent-ligand complex must be considered. The current review presents two case studies of enzymes—dihydrofolate reductase (DHFR) and thymidylate synthase (TSase)—and discusses the role of protein motions in their catalyzed reactions. Specifically, we will discuss the utility of kinetic isotope effects (KIEs) and their temperature dependence as tools in probing such phenomena.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Thelma Abeysinghe
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
13
|
Singh P, Sen A, Francis K, Kohen A. Extension and limits of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. J Am Chem Soc 2014; 136:2575-82. [PMID: 24450297 PMCID: PMC3985941 DOI: 10.1021/ja411998h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Enzyme catalysis
has been studied extensively, but the role of
enzyme dynamics in the catalyzed chemical conversion is still an enigma.
The enzyme dihydrofolate reductase (DHFR) is often used as a model
system to assess a network of coupled motions across the protein that
may affect the catalyzed chemical transformation. Molecular dynamics
simulations, quantum mechanical/molecular mechanical studies, and
bioinformatics studies have suggested the presence of a “global
dynamic network” of residues in DHFR. Earlier studies of two
DHFR distal mutants, G121V and M42W, indicated that these residues
affect the chemical step synergistically. While this finding was in
accordance with the concept of a network of functional motions across
the protein, two residues do not constitute a network. To better define
the extent and limits of the proposed network, the current work studied
two remote residues predicted to be part of the same network: W133
and F125. The effect of mutations in these residues on the nature
of the chemical step was examined via measurements of the temperature-dependence
of the intrinsic kinetic isotope effects (KIEs) and other kinetic
parameters, and double mutants were used to tie the findings to G121
and M42. The findings indicate that residue F125, which was implicated
by both calculations and bioinformatic methods, is a part of the same
global dynamic network as G121 and M42, while W133, implicated only
by bioinformatics, is not. These findings extend our understanding
of the proposed network and the relations between functional and genomic
couplings. Delineating that network illuminates the need to consider
remote residues and protein structural dynamics in the rational design
of drugs and of biomimetic catalysts.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | | | | | | |
Collapse
|
14
|
Abstract
Techniques for modelling enzyme-catalyzed reaction mechanisms are making increasingly important contributions to biochemistry. They can address fundamental questions in enzyme catalysis and have the potential to contribute to practical applications such as drug development.
Collapse
|
15
|
Cazade PA, Huang J, Yosa J, Szymczak JJ, Meuwly M. Atomistic simulations of reactive processes in the gas- and condensed-phase. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.694694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Krámos B, Menyhárd DK, Oláh J. Direct hydride shift mechanism and stereoselectivity of P450nor confirmed by QM/MM calculations. J Phys Chem B 2012; 116:872-85. [PMID: 22148861 DOI: 10.1021/jp2080918] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide reductase (P450(nor)) found in Fusarium oxysporum catalyzes the reduction of nitric oxide to N(2)O in a multistep process. The reducing agent, NADH, is bound in the distal pocket of the enzyme, and direct hydride transfer occurs from NADH to the nitric oxide bound heme enzyme, forming intermediate I. Here we studied the possibility of hydride transfer from NADH to both the nitrogen and oxygen of the heme-bound nitric oxide, using quantum chemical and combined quantum mechanics/molecular mechanics (QM/MM) calculations, on two different protein models, representing both possible stereochemistries, a syn- and an anti-NADH arrangement. All calculations clearly favor hydride transfer to the nitrogen of nitric oxide, and the QM-only barrier and kinetic isotope effects are good agreement with the experimental values of intermediate I formation. We obtained higher barriers in the QM/MM calculations for both pathways, but hydride transfer to the nitrogen of nitric oxide is still clearly favored. The barriers obtained for the syn, Pro-R conformation of NADH are lower and show significantly less variation than the barriers obtained in the case of anti conformation. The effect of basis set and wide range of functionals on the obtained results are also discussed.
Collapse
Affiliation(s)
- Balázs Krámos
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | | | | |
Collapse
|
17
|
Characterizing the dynamics of functionally relevant complexes of formate dehydrogenase. Proc Natl Acad Sci U S A 2010; 107:17974-9. [PMID: 20876138 DOI: 10.1073/pnas.0912190107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The potential for femtosecond to picosecond time-scale motions to influence the rate of the intrinsic chemical step in enzyme-catalyzed reactions is a source of significant controversy. Among the central challenges in resolving this controversy is the difficulty of experimentally characterizing thermally activated motions at this time scale in functionally relevant enzyme complexes. We report a series of measurements to address this problem using two-dimensional infrared spectroscopy to characterize the time scales of active-site motions in complexes of formate dehydrogenase with the transition-state-analog inhibitor azide (N(3)(-)). We observe that the frequency-frequency time correlation functions (FFCF) for the ternary complexes with NAD(+) and NADH decay completely with slow time constants of 3.2 ps and 4.6 ps, respectively. This result suggests that in the vicinity of the transition state, the active-site enzyme structure samples a narrow and relatively rigid conformational distribution indicating that the transition-state structure is well organized for the reaction. In contrast, for the binary complex, we observe a significant static contribution to the FFCF similar to what is seen in other enzymes, indicating the presence of the slow motions that occur on time scales longer than our measurement window.
Collapse
|
18
|
|
19
|
Hill SE, Bandaria JN, Fox M, Vanderah E, Kohen A, Cheatum CM. Exploring the molecular origins of protein dynamics in the active site of human carbonic anhydrase II. J Phys Chem B 2009; 113:11505-10. [PMID: 19637848 PMCID: PMC2736349 DOI: 10.1021/jp901321m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We present three-pulse vibrational echo measurements of azide ion bound to the active site Zn of human carbonic anhydrase II (HCA II) and of two separate active-site mutants Thr199 --> Ala (T199A) and Leu198 --> Phe (L198F). Because structural motions of the protein active site influence the frequency of bound ligands, the differences in the time scales of the frequency-frequency correlation functions (FFCFs) obtained from global fits to each set of data allow us to make inferences about the time scales of the active site dynamics of HCA II. Surprisingly, the deletion of a potential electrostatic interaction in results in very little change in the FFCF, but the insertion of the bulky phenylalanine ring in causes much faster dynamics. We conclude that the fast, sub-picosecond time scale in the correlation function is attributable to hydrogen bond dynamics, and the slow, apparently static contribution is due to the conformational flexibility of Zn-bound azide in the active site.
Collapse
Affiliation(s)
- Sarah E Hill
- Department of Chemistry and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Hay S, Sutcliffe MJ, Scrutton NS. Probing Coupled Motions in Enzymatic Hydrogen Tunnelling Reactions: Beyond Temperature-Dependence Studies of Kinetic Isotope Effects. QUANTUM TUNNELLING IN ENZYME-CATALYSED REACTIONS 2009. [DOI: 10.1039/9781847559975-00199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sam Hay
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Michael J. Sutcliffe
- School of Chemical Engineering and Analytical Science, Manchester Interdisciplinary Biocentre, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Nigel S. Scrutton
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
21
|
Abstract
'Everything that living things do can be understood in terms of the jigglings and wigglings of atoms' as Richard Feynman provocatively stated nearly 50 years ago. But how can we 'see' this wiggling and jiggling and understand how it drives biology? Increasingly, computer simulations of biological macromolecules are helping to meet this challenge.
Collapse
Affiliation(s)
- Adrian J Mulholland
- School of Chemistry, Centre for Computational Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
22
|
Hay S, Pang J, Monaghan PJ, Wang X, Evans RM, Sutcliffe MJ, Allemann RK, Scrutton NS. Secondary kinetic isotope effects as probes of environmentally-coupled enzymatic hydrogen tunneling reactions. Chemphyschem 2008; 9:1536-9. [PMID: 18613201 DOI: 10.1002/cphc.200800291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hay S, Scrutton NS. H-transfers in Photosystem II: what can we learn from recent lessons in the enzyme community? PHOTOSYNTHESIS RESEARCH 2008; 98:169-177. [PMID: 18766465 DOI: 10.1007/s11120-008-9326-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/28/2008] [Indexed: 05/26/2023]
Abstract
Over the last 10 years, studies of enzyme systems have demonstrated that, in many cases, H-transfers occur by a quantum mechanical tunneling mechanism analogous to long-range electron transfer. H-transfer reactions can be described by an extension of Marcus theory and, by substituting hydrogen with deuterium (or even tritium), it is possible to explore this theory in new ways by employing kinetic isotope effects. Because hydrogen has a relatively short deBroglie wavelength, H-transfers are controlled by the width of the reaction barrier. By coupling protein dynamics to the reaction coordinate, enzymes have the potential ability to facilitate more efficient H-tunneling by modulating barrier properties. In this review, we describe recent advances in both experimental and theoretical studies of enzymatic H-transfer, in particular the role of protein dynamics or promoting motions. We then discuss possible consequences with regard to tyrosine oxidation/reduction kinetics in Photosystem II.
Collapse
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | |
Collapse
|
24
|
Atomistic insight into the origin of the temperature-dependence of kinetic isotope effects and H-tunnelling in enzyme systems is revealed through combined experimental studies and biomolecular simulation. Biochem Soc Trans 2008; 36:16-21. [DOI: 10.1042/bst0360016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physical basis of the catalytic power of enzymes remains contentious despite sustained and intensive research efforts. Knowledge of enzyme catalysis is predominantly descriptive, gained from traditional protein crystallography and solution studies. Our goal is to understand catalysis by developing a complete and quantitative picture of catalytic processes, incorporating dynamic aspects and the role of quantum tunnelling. Embracing ideas that we have spearheaded from our work on quantum mechanical tunnelling effects linked to protein dynamics for H-transfer reactions, we review our recent progress in mapping macroscopic kinetic descriptors to an atomistic understanding of dynamics linked to biological H-tunnelling reactions.
Collapse
|
25
|
Hengeveld R, Fedonkin MA. Bootstrapping the energy flow in the beginning of life. Acta Biotheor 2007; 55:181-226. [PMID: 17960483 DOI: 10.1007/s10441-007-9019-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 04/25/2007] [Indexed: 11/26/2022]
Abstract
This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in the development of computers, the first generation making possible the calculations necessary for constructing the second one, etc. In the biogenetic upstart of an energy flow, non-metals in the lower periods of the Periodic Table of Elements would have constituted the most primitive systems, their operation being enhanced and later supplanted by elements in the higher periods that demand more energy. This bootstrapping process would put the development of the metabolisms based on the second period elements carbon, nitrogen and oxygen at the end of the evolutionary process rather than at, or even before, the biogenetic event.
Collapse
Affiliation(s)
- R Hengeveld
- Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1087, Amsterdam, HV 1081, The Netherlands.
| | | |
Collapse
|
26
|
Marcus RA. H and other transfers in enzymes and in solution: theory and computations, a unified view. 2. Applications to experiment and computations. J Phys Chem B 2007; 111:6643-54. [PMID: 17497918 DOI: 10.1021/jp071589s] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Equations obtained in part I for the free-energy barrier to one-step enzymatic reactions between bound reactants are discussed. The rate is expressed in terms of lambdao (protein reorganization energy), DeltaG(o) (standard free energy of reaction of the H-transfer step), bond breaking/bond forming term, w (work terms), and H-transmission property. Two alternative approximations for the coupling of the bond breaking/bond forming and protein are distinguished experimentally in favorable cases by the DeltaG(o) where the maximum deuterium kinetic isotope effect occurs. Plots of log rate versus DeltaG(o) and properties such as DeltaS* and DeltaS(o) are discussed. The weak or zero T-dependence of the kinetic isotope effect for wild-type enzymes operating under physiological conditions is interpreted in terms of vanishing (or isotopically insensitive) w plus transfer from the lowest H-state. Static and dynamic protein flexibility is discussed. While the many correlations accessible for electron transfers are not available for H-transfers in enzymes, a combination of experiment, computation, and analytical approaches can assist in evaluating the utility of the present equations and in suggesting further experiments and computations. A protein reorganization energy lambdao is obtained in the literature from the extended valence bond formalism where diabatic electronic states are used. A method is suggested for extracting it when instead a bond distance difference coordinate is used. The results may provide a bridge between the two approaches.
Collapse
Affiliation(s)
- R A Marcus
- Noyes Laboratory of Chemical Physics, MC 127-72, California Institute of Technology, Pasadena, California 91125-0072, USA.
| |
Collapse
|
27
|
Dutton PL, Munro AW, Scrutton NS, Sutcliffe MJ. Introduction. Quantum catalysis in enzymes: beyond the transition state theory paradigm. Philos Trans R Soc Lond B Biol Sci 2006. [DOI: 10.1098/rstb.2006.1879] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- P. Leslie Dutton
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphia, PA 19104-6059, USA
| | - Andrew W Munro
- Manchester Interdisciplinary Biocentre, University of Manchester131 Princess Street, Manchester M1 7ND, UK
- School of Chemical Engineering and Analytical Science, University of Manchester131 Princess Street, Manchester M1 7ND, UK
| | - Nigel S Scrutton
- Faculty of Life Sciences, University of Manchester131 Princess Street, Manchester M1 7ND, UK
| | - Michael J Sutcliffe
- Manchester Interdisciplinary Biocentre, University of Manchester131 Princess Street, Manchester M1 7ND, UK
- School of Chemical Engineering and Analytical Science, University of Manchester131 Princess Street, Manchester M1 7ND, UK
| |
Collapse
|