1
|
Wen L, Man X, Luan J, Zhang S, Zhao C, Bao Y, Liu C, Feng X. Early-life exposure to five biodegradable plastics impairs eye development and visually-mediated behavior through disturbing hypothalamus-pituitary-thyroid (HPT) axis in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109981. [PMID: 39033795 DOI: 10.1016/j.cbpc.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Biodegradable plastics have been commonly developed and applied as an alternative to traditional plastics, which cause environmental plastic pollution. However, biodegradable plastics still present limitations such as stringent degradation conditions and slow degradation rate, and may cause harm to the environment and organisms. Consequently, in this study, zebrafish was used to evaluate the effects of five biodegradable microplastics (MPs), polyglycolic acid (PGA), polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxyalkanoate (PHA) and polybutylene adipate terephthalate (PBAT) exposure on the early development, retina morphology, visually-mediated behavior, and thyroid signaling at concentrations of 1 mg/L and 100 mg/L. The results indicated that all MPs induced decreased survival rate, reduced body length, smaller eyes, and smaller heads, affecting the early development of zebrafish larvae. Moreover, the thickness of retinal layers, including inner plexiform layer (IPL), outer nuclear layer (ONL), and retinal ganglion layer (RGL) was decreased, and the expression of key genes related to eye and retinal development was abnormally altered after all MPs exposure. Exposure to PBS and PBAT led to abnormal visually-mediated behavior, indicating likely affected the visual function. All MPs could also cause thyroid system disorders, among which alterations in the thyroid hormone receptors (TRs) genes could affect the retinal development of zebrafish larvae. In summary, biodegradable MPs exhibited eye developmental toxicity and likely impaired the visual function in zebrafish larvae. This provided new evidence for revealing the effects of biodegradable plastics on aquatic organism development and environmental risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Liang Wen
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China
| | - Xiaoting Man
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yehua Bao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Congzhi Liu
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
McCulloch K. In preprints: new spiralian model system unlocks potential for understanding eye evolution and regeneration. Development 2024; 151:dev203163. [PMID: 39016531 DOI: 10.1242/dev.203163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Affiliation(s)
- Kyle McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
3
|
Priyadarshana DGCE, Cheon J, Lee Y, Cha SH. Particulate Matter Induced Adverse Effects on Eye Development in Zebrafish ( Danio rerio) Embryos. TOXICS 2024; 12:59. [PMID: 38251014 PMCID: PMC10819941 DOI: 10.3390/toxics12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Particulate matter (PM) can cause human diseases, particularly respiratory diseases. Since eyes are directly exposed to the air, they might be directly adversely affected by PM. Therefore, we determined the toxicity caused to eye development by PM using zebrafish (Danio rerio) embryos. The PM-induced embryo toxicity was dependent on dose and time and caused significant morphological defects, reducing the total body length and the total eye area. Reactive oxygen species (ROS) overproduction was confirmed in the PM treatment group, and antioxidant genes (cat and sod2), photoreceptor cell development, pigmentation genes (atoh8, vsx1, and rho), eye-embryogenesis genes (pax6a and pax6b), and eye-lens-development genes (cryaa) were downregulated, while eye-development genes (crybb1) were upregulated. In conclusion, PM had a direct adverse effect on the eyes, and zebrafish embryos can be used as a model to evaluate PM-induced eye toxicity in vivo.
Collapse
Affiliation(s)
| | - Jayeon Cheon
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea;
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea
| | - Seon-Heui Cha
- Department of Integrated Bioindustry, Hanseo University, Seosan-si 31962, Republic of Korea
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea;
| |
Collapse
|
4
|
Posnien N, Hunnekuhl VS, Bucher G. Gene expression mapping of the neuroectoderm across phyla - conservation and divergence of early brain anlagen between insects and vertebrates. eLife 2023; 12:e92242. [PMID: 37750868 PMCID: PMC10522337 DOI: 10.7554/elife.92242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.
Collapse
Affiliation(s)
- Nico Posnien
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute, University GoettingenGöttingenGermany
| | - Vera S Hunnekuhl
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| |
Collapse
|
5
|
Hagen JFD, Roberts NS, Johnston RJ. The evolutionary history and spectral tuning of vertebrate visual opsins. Dev Biol 2023; 493:40-66. [PMID: 36370769 PMCID: PMC9729497 DOI: 10.1016/j.ydbio.2022.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Many animals depend on the sense of vision for survival. In eumetazoans, vision requires specialized, light-sensitive cells called photoreceptors. Light reaches the photoreceptors and triggers the excitation of light-detecting proteins called opsins. Here, we describe the story of visual opsin evolution from the ancestral bilaterian to the extant vertebrate lineages. We explain the mechanisms determining color vision of extant vertebrates, focusing on opsin gene losses, duplications, and the expression regulation of vertebrate opsins. We describe the sequence variation both within and between species that has tweaked the sensitivities of opsin proteins towards different wavelengths of light. We provide an extensive resource of wavelength sensitivities and mutations that have diverged light sensitivity in many vertebrate species and predict how these mutations were accumulated in each lineage based on parsimony. We suggest possible natural and sexual selection mechanisms underlying these spectral differences. Understanding how molecular changes allow for functional adaptation of animals to different environments is a major goal in the field, and therefore identifying mutations affecting vision and their relationship to photic selection pressures is imperative. The goal of this review is to provide a comprehensive overview of our current understanding of opsin evolution in vertebrates.
Collapse
Affiliation(s)
- Joanna F D Hagen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Natalie S Roberts
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
6
|
Schlosser G. Rebuilding ships while at sea-Character individuality, homology, and evolutionary innovation. J Morphol 2023; 284:e21522. [PMID: 36282954 PMCID: PMC10100095 DOI: 10.1002/jmor.21522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
How novel traits originate in evolution is still one of the most perplexing questions in Evolutionary Biology. Building on a previous account of evolutionary innovation, I here propose that evolutionary novelties are those individualized characters that are not homologous to any characters in the ancestor. To clarify this definition, I here provide a detailed analysis of the concepts of "character individuality" and "homology" first, before addressing their role for our understanding of evolutionary innovation. I will argue (1) that functional as well as structural considerations are important for character individualization; and (2) that compositional (structural) and positional homology need to be clearly distinguished to properly describe the evolutionary transformations of hierarchically structured characters. My account will therefore integrate functional and structural perspectives and put forward a new multi-level view of character identity and transformation.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Colizzi ES, Hogeweg P, Vroomans RMA. Modelling the evolution of novelty: a review. Essays Biochem 2022; 66:727-735. [PMID: 36468669 PMCID: PMC9750852 DOI: 10.1042/ebc20220069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Evolution has been an inventive process since its inception, about 4 billion years ago. It has generated an astounding diversity of novel mechanisms and structures for adaptation to the environment, for competition and cooperation, and for organisation of the internal and external dynamics of the organism. How does this novelty come about? Evolution builds with the tools available, and on top of what it has already built - therefore, much novelty consists in repurposing old functions in a different context. In the process, the tools themselves evolve, allowing yet more novelty to arise. Despite evolutionary novelty being the most striking observable of evolution, it is not accounted for in classical evolutionary theory. Nevertheless, mathematical and computational models that illustrate mechanisms of evolutionary innovation have been developed. In the present review, we present and compare several examples of computational evo-devo models that capture two aspects of novelty: 'between-level novelty' and 'constructive novelty.' Novelty can evolve between predefined levels of organisation to dynamically transcode biological information across these levels - as occurs during development. Constructive novelty instead generates a level of biological organisation by exploiting the lower level as an informational scaffold to open a new space of possibilities - an example being the evolution of multicellularity. We propose that the field of computational evo-devo is well-poised to reveal many more exciting mechanisms for the evolution of novelty. A broader theory of evolutionary novelty may well be attainable in the near future.
Collapse
Affiliation(s)
- Enrico Sandro Colizzi
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, CB2 1LR, Cambridge, U.K
| | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics, Universiteit Utrecht, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Renske M A Vroomans
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, CB2 1LR, Cambridge, U.K
| |
Collapse
|
8
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
9
|
Xu YX, Zhang SH, Zhang SZ, Yang MY, Zhao X, Sun MZ, Feng XZ. Exposure of zebrafish embryos to sodium propionate disrupts circadian behavior and glucose metabolism-related development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113791. [PMID: 35753272 DOI: 10.1016/j.ecoenv.2022.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Sodium propionate is widely used as a preservative in food. The widespread use of preservatives is known to cause both environmental and public health problems. This study aimed to investigate the effects of sodium propionate on the developmental behavior and glucose metabolism of zebrafish. Our results showed that sodium propionate had no significant effect on the embryonic morphological development of zebrafish embryos but changed the head eye area. Then we found sodium propionate disturbed the thigmotaxis behavior, impaired neural development. Moreover, changes in clock gene expression disrupted the circadian rhythm of zebrafish. Circadian genes regulated insulin sensitivity and secretion in various tissues. Then our results showed that the disorder of circadian rhythm in zebrafish affected glucose metabolism and insulin resistance, which damaged the development of retina. Therefore, the safety of propionate should be further evaluated.
Collapse
Affiliation(s)
- Yi-Xin Xu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Shu-Hui Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Shao-Zhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Meng-Ying Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China
| | - Ming-Zhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China.
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
van Heyningen V. A Journey Through Genetics to Biology. Annu Rev Genomics Hum Genet 2022; 23:1-27. [PMID: 35567277 DOI: 10.1146/annurev-genom-010622-095109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although my engagement with human genetics emerged gradually, and sometimes serendipitously, it has held me spellbound for decades. Without my teachers, students, postdocs, colleagues, and collaborators, I would not be writing this review of my scientific adventures. Early gene and disease mapping was a satisfying puzzle-solving exercise, but building biological insight was my main goal. The project trajectory was hugely influenced by the evolutionarily conserved nature of the implicated genes and by the pace of progress in genetic technologies. The rich detail of clinical observations, particularly in eye disease, makes humans an excellent model, especially when complemented by the use of multiple other animal species for experimental validation. The contributions of collaborators and rivals also influenced our approach. We are very fortunate to work in this era of unprecedented progress in genetics and genomics. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
11
|
Bery A, Bagchi U, Bergen AA, Felder-Schmittbuhl MP. Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Dev Biol 2022; 484:40-56. [DOI: 10.1016/j.ydbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|
12
|
Bradshaw SN, Allison WT. Hagfish to Illuminate the Developmental and Evolutionary Origins of the Vertebrate Retina. Front Cell Dev Biol 2022; 10:822358. [PMID: 35155434 PMCID: PMC8826474 DOI: 10.3389/fcell.2022.822358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The vertebrate eye is a vital sensory organ that has long fascinated scientists, but the details of how this organ evolved are still unclear. The vertebrate eye is distinct from the simple photoreceptive organs of other non-vertebrate chordates and there are no clear transitional forms of the eye in the fossil record. To investigate the evolution of the eye we can examine the eyes of the most ancient extant vertebrates, the hagfish and lamprey. These jawless vertebrates are in an ideal phylogenetic position to study the origin of the vertebrate eye but data on eye/retina development in these organisms is limited. New genomic and gene expression data from hagfish and lamprey suggest they have many of the same genes for eye development and retinal neurogenesis as jawed vertebrates, but functional work to determine if these genes operate in retinogenesis similarly to other vertebrates is missing. In addition, hagfish express a marker of proliferative retinal cells (Pax6) near the margin of the retina, and adult retinal growth is apparent in some species. This finding of eye growth late into hagfish ontogeny is unexpected given the degenerate eye phenotype. Further studies dissecting retinal neurogenesis in jawless vertebrates would allow for comparison of the mechanisms of retinal development between cyclostome and gnathostome eyes and provide insight into the evolutionary origins of the vertebrate eye.
Collapse
Affiliation(s)
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Valencia JE, Feuda R, Mellott DO, Burke RD, Peter IS. Ciliary photoreceptors in sea urchin larvae indicate pan-deuterostome cell type conservation. BMC Biol 2021; 19:257. [PMID: 34863182 PMCID: PMC8642985 DOI: 10.1186/s12915-021-01194-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolutionary history of cell types provides insights into how morphological and functional complexity arose during animal evolution. Photoreceptor cell types are particularly broadly distributed throughout Bilateria; however, their evolutionary relationship is so far unresolved. Previous studies indicate that ciliary photoreceptors are homologous at least within chordates, and here, we present evidence that a related form of this cell type is also present in echinoderm larvae. RESULTS Larvae of the purple sea urchin Strongylocentrotus purpuratus have photoreceptors that are positioned bilaterally in the oral/anterior apical neurogenic ectoderm. Here, we show that these photoreceptors express the transcription factor Rx, which is commonly expressed in ciliary photoreceptors, together with an atypical opsin of the GO family, opsin3.2, which localizes in particular to the cilia on the cell surface of photoreceptors. We show that these ciliary photoreceptors express the neuronal marker synaptotagmin and are located in proximity to pigment cells. Furthermore, we systematically identified additional transcription factors expressed in these larval photoreceptors and found that a majority are orthologous to transcription factors expressed in vertebrate ciliary photoreceptors, including Otx, Six3, Tbx2/3, and Rx. Based on the developmental expression of rx, these photoreceptors derive from the anterior apical neurogenic ectoderm. However, genes typically involved in eye development in bilateria, including pax6, six1/2, eya, and dac, are not expressed in sea urchin larval photoreceptors but are instead co-expressed in the hydropore canal. CONCLUSIONS Based on transcription factor expression, location, and developmental origin, we conclude that the sea urchin larval photoreceptors constitute a cell type that is likely homologous to the ciliary photoreceptors present in chordates.
Collapse
Affiliation(s)
- Jonathan E Valencia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Roberto Feuda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Present address: Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Dan O Mellott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | - Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
14
|
Charlton-Perkins MA, Friedrich M, Cook TA. Semper's cells in the insect compound eye: Insights into ocular form and function. Dev Biol 2021; 479:126-138. [PMID: 34343526 PMCID: PMC8410683 DOI: 10.1016/j.ydbio.2021.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
The arthropod compound eye represents one of two major eye types in the animal kingdom and has served as an essential experimental paradigm for defining fundamental mechanisms underlying sensory organ formation, function, and maintenance. One of the most distinguishing features of the compound eye is the highly regular array of lens facets that define individual eye (ommatidial) units. These lens facets are produced by a deeply conserved quartet of cuticle-secreting cells, called Semper cells (SCs). Also widely known as cone cells, SCs were originally identified for their secretion of the dioptric system, i.e. the corneal lens and underlying crystalline cones. Additionally, SCs are now known to execute a diversity of patterning and glial functions in compound eye development and maintenance. Here, we present an integrated account of our current knowledge of SC multifunctionality in the Drosophila compound eye, highlighting emerging gene regulatory modules that may drive the diverse roles for these cells. Drawing comparisons with other deeply conserved retinal glia in the vertebrate single lens eye, this discussion speaks to glial cell origins and opens new avenues for understanding sensory system support programs.
Collapse
Affiliation(s)
- Mark A Charlton-Perkins
- Department of Paediatrics, Wellcome-MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA; Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA
| | - Tiffany A Cook
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA; Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
15
|
Introduction. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Index. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
|
18
|
Visions. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Visions of a Digital Future. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Science, Vision, Perspective. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
The Evolution of Eyes. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Computer Vision. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
23
|
Vision of the Cosmos. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
24
|
Byrne M, Koop D, Strbenac D, Cisternas P, Balogh R, Yang JYH, Davidson PL, Wray G. Transcriptomic analysis of sea star development through metamorphosis to the highly derived pentameral body plan with a focus on neural transcription factors. DNA Res 2021; 27:5825731. [PMID: 32339242 PMCID: PMC7315356 DOI: 10.1093/dnares/dsaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
The Echinodermata is characterized by a secondarily evolved pentameral body plan. While the evolutionary origin of this body plan has been the subject of debate, the molecular mechanisms underlying its development are poorly understood. We assembled a de novo developmental transcriptome from the embryo through metamorphosis in the sea star Parvulastra exigua. We use the asteroid model as it represents the basal-type echinoderm body architecture. Global variation in gene expression distinguished the gastrula profile and showed that metamorphic and juvenile stages were more similar to each other than to the pre-metamorphic stages, pointing to the marked changes that occur during metamorphosis. Differential expression and gene ontology (GO) analyses revealed dynamic changes in gene expression throughout development and the transition to pentamery. Many GO terms enriched during late metamorphosis were related to neurogenesis and signalling. Neural transcription factor genes exhibited clusters with distinct expression patterns. A suite of these genes was up-regulated during metamorphosis (e.g. Pax6, Eya, Hey, NeuroD, FoxD, Mbx, and Otp). In situ hybridization showed expression of neural genes in the CNS and sensory structures. Our results provide a foundation to understand the metamorphic transition in echinoderms and the genes involved in development and evolution of pentamery.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Demian Koop
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paula Cisternas
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Regina Balogh
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Gregory Wray
- Department of Biology, Duke University, Durham, NC 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
25
|
Gainett G, Ballesteros JA, Kanzler CR, Zehms JT, Zern JM, Aharon S, Gavish-Regev E, Sharma PP. Systemic paralogy and function of retinal determination network homologs in arachnids. BMC Genomics 2020; 21:811. [PMID: 33225889 PMCID: PMC7681978 DOI: 10.1186/s12864-020-07149-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/13/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Arachnids are important components of cave ecosystems and display many examples of troglomorphisms, such as blindness, depigmentation, and elongate appendages. Little is known about how the eyes of arachnids are specified genetically, let alone the mechanisms for eye reduction and loss in troglomorphic arachnids. Additionally, duplication of Retinal Determination Gene Network (RDGN) homologs in spiders has convoluted functional inferences extrapolated from single-copy homologs in pancrustacean models. RESULTS We investigated a sister species pair of Israeli cave whip spiders, Charinus ioanniticus and C. israelensis (Arachnopulmonata, Amblypygi), of which one species has reduced eyes. We generated embryonic transcriptomes for both Amblypygi species, and discovered that several RDGN homologs exhibit duplications. We show that duplication of RDGN homologs is systemic across arachnopulmonates (arachnid orders that bear book lungs), rather than being a spider-specific phenomenon. A differential gene expression (DGE) analysis comparing the expression of RDGN genes in field-collected embryos of both species identified candidate RDGN genes involved in the formation and reduction of eyes in whip spiders. To ground bioinformatic inference of expression patterns with functional experiments, we interrogated the function of three candidate RDGN genes identified from DGE using RNAi in the spider Parasteatoda tepidariorum. We provide functional evidence that one of these paralogs, sine oculis/Six1 A (soA), is necessary for the development of all arachnid eye types. CONCLUSIONS Our work establishes a foundation to investigate the genetics of troglomorphic adaptations in cave arachnids, and links differential gene expression to an arthropod eye phenotype for the first time outside of Pancrustacea. Our results support the conservation of at least one RDGN component across Arthropoda and provide a framework for identifying the role of gene duplications in generating arachnid eye diversity.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Charlotte R Kanzler
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John M Zern
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shlomi Aharon
- National Natural History Collections, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
26
|
Audino JA, Serb JM, Marian JEAR. Hard to get, easy to lose: Evolution of mantle photoreceptor organs in bivalves (Bivalvia, Pteriomorphia). Evolution 2020; 74:2105-2120. [PMID: 32716056 DOI: 10.1111/evo.14050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Abstract
Morphologically diverse eyes have evolved numerous times, yet little is known about how eye gain and loss is related to photic environment. The pteriomorphian bivalves (e.g., oysters, scallops, and ark clams), with a remarkable range of photoreceptor organs and ecologies, are a suitable system to investigate the association between eye evolution and ecological shifts. The present phylogenetic framework was based on amino acid sequences from transcriptome datasets and nucleotide sequences of five additional genes. In total, 197 species comprising 22 families from all five pteriomorphian orders were examined, representing the greatest taxonomic sampling to date. Morphological data were acquired for 162 species and lifestyles were compiled from the literature for all 197 species. Photoreceptor organs occur in 11 families and have arisen exclusively in epifaunal lineages, that is, living above the substrate, at least five times independently. Models for trait evolution consistently recovered higher rates of loss over gain. Transitions to crevice-dwelling habit appear associated with convergent gains of eyespots in epifaunal lineages. Once photoreceptor organs have arisen, multiple losses occurred in lineages that shift to burrowing lifestyles and deep-sea habitats. The observed patterns suggest that eye evolution in pteriomorphians might have evolved in association with light-guided behaviors, such as phototaxis, body posture, and alarm responses.
Collapse
Affiliation(s)
- Jorge Alves Audino
- Department of Zoology, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Jeanne Marie Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | | |
Collapse
|
27
|
Zhang S, Markey M, Pena CD, Venkatesh T, Vazquez M. A Micro-Optic Stalk (μOS) System to Model the Collective Migration of Retinal Neuroblasts. MICROMACHINES 2020; 11:mi11040363. [PMID: 32244321 PMCID: PMC7230939 DOI: 10.3390/mi11040363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/18/2022]
Abstract
Contemporary regenerative therapies have introduced stem-like cells to replace damaged neurons in the visual system by recapitulating critical processes of eye development. The collective migration of neural stem cells is fundamental to retinogenesis and has been exceptionally well-studied using the fruit fly model of Drosophila Melanogaster. However, the migratory behavior of its retinal neuroblasts (RNBs) has been surprisingly understudied, despite being critical to retinal development in this invertebrate model. The current project developed a new microfluidic system to examine the collective migration of RNBs extracted from the developing visual system of Drosophila as a model for the collective motile processes of replacement neural stem cells. The system scales with the microstructure of the Drosophila optic stalk, which is a pre-cursor to the optic nerve, to produce signaling fields spatially comparable to in vivo RNB stimuli. Experiments used the micro-optic stalk system, or μOS, to demonstrate the preferred sizing and directional migration of collective, motile RNB groups in response to changes in exogenous concentrations of fibroblast growth factor (FGF), which is a key factor in development. Our data highlight the importance of cell-to-cell contacts in enabling cell cohesion during collective RNB migration and point to the unexplored synergy of invertebrate cell study and microfluidic platforms to advance regenerative strategies.
Collapse
Affiliation(s)
- Stephanie Zhang
- Department of Biomedical Engineering, Binghamton University, 4400 Vestal Pkwy E, Binghamton, NY 13902, USA;
| | - Miles Markey
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA;
| | - Caroline D. Pena
- Department of Biomedical Engineering, City College of New York, New York City, NY 10031, USA;
| | - Tadmiri Venkatesh
- Department of Biology, City College of New York, New York City, NY 10031, USA;
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA;
- Correspondence:
| |
Collapse
|
28
|
Lindgren J, Nilsson DE, Sjövall P, Jarenmark M, Ito S, Wakamatsu K, Kear BP, Schultz BP, Sylvestersen RL, Madsen H, LaFountain JR, Alwmark C, Eriksson ME, Hall SA, Lindgren P, Rodríguez-Meizoso I, Ahlberg P. Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen. Nature 2019; 573:122-125. [PMID: 31413368 DOI: 10.1038/s41586-019-1473-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/15/2019] [Indexed: 11/09/2022]
Abstract
Fossilized eyes permit inferences of the visual capacity of extinct arthropods1-3. However, structural and/or chemical modifications as a result of taphonomic and diagenetic processes can alter the original features, thereby necessitating comparisons with modern species. Here we report the detailed molecular composition and microanatomy of the eyes of 54-million-year-old crane-flies, which together provide a proxy for the interpretation of optical systems in some other ancient arthropods. These well-preserved visual organs comprise calcified corneal lenses that are separated by intervening spaces containing eumelanin pigment. We also show that eumelanin is present in the facet walls of living crane-flies, in which it forms the outermost ommatidial pigment shield in compound eyes incorporating a chitinous cornea. To our knowledge, this is the first record of melanic screening pigments in arthropods, and reveals a fossilization mode in insect eyes that involves a decay-resistant biochrome coupled with early diagenetic mineralization of the ommatidial lenses. The demonstrable secondary calcification of lens cuticle that was initially chitinous has implications for the proposed calcitic corneas of trilobites, which we posit are artefacts of preservation rather than a product of in vivo biomineralization4-7. Although trilobite eyes might have been partly mineralized for mechanical strength, a (more likely) organic composition would have enhanced function via gradient-index optics and increased control of lens shape.
Collapse
Affiliation(s)
| | | | - Peter Sjövall
- Chemistry and Materials, RISE Research Institutes of Sweden, Borås, Sweden
| | | | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | | | | | | | | | - James R LaFountain
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Carl Alwmark
- Department of Geology, Lund University, Lund, Sweden
| | | | - Stephen A Hall
- Department of Construction Sciences, Lund University, Lund, Sweden
| | | | | | - Per Ahlberg
- Department of Geology, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Gaspar P, Almudi I, Nunes MDS, McGregor AP. Human eye conditions: insights from the fly eye. Hum Genet 2018; 138:973-991. [PMID: 30386938 DOI: 10.1007/s00439-018-1948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the compound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye conditions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research to underpin applied research including identifying and treating the genetic basis of human diseases.
Collapse
Affiliation(s)
- Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013, Sevilla, Spain
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
30
|
Smith FW, Cumming M, Goldstein B. Analyses of nervous system patterning genes in the tardigrade Hypsibius exemplaris illuminate the evolution of panarthropod brains. EvoDevo 2018; 9:19. [PMID: 30069303 PMCID: PMC6065069 DOI: 10.1186/s13227-018-0106-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Both euarthropods and vertebrates have tripartite brains. Several orthologous genes are expressed in similar regionalized patterns during brain development in both vertebrates and euarthropods. These similarities have been used to support direct homology of the tripartite brains of vertebrates and euarthropods. If the tripartite brains of vertebrates and euarthropods are homologous, then one would expect other taxa to share this structure. More generally, examination of other taxa can help in tracing the evolutionary history of brain structures. Tardigrades are an interesting lineage on which to test this hypothesis because they are closely related to euarthropods, and whether they have a tripartite brain or unipartite brain has recently been a focus of debate. RESULTS We tested this hypothesis by analyzing the expression patterns of six3, orthodenticle, pax6, unplugged, and pax2/5/8 during brain development in the tardigrade Hypsibius exemplaris-formerly misidentified as Hypsibius dujardini. These genes were expressed in a staggered anteroposterior order in H. exemplaris, similar to what has been reported for mice and flies. However, only six3, orthodenticle, and pax6 were expressed in the developing brain. Unplugged was expressed broadly throughout the trunk and posterior head, before the appearance of the nervous system. Pax2/5/8 was expressed in the developing central and peripheral nervous system in the trunk. CONCLUSION Our results buttress the conclusion of our previous study of Hox genes-that the brain of tardigrades is only homologous to the protocerebrum of euarthropods. They support a model based on fossil evidence that the last common ancestor of tardigrades and euarthropods possessed a unipartite brain. Our results are inconsistent with the hypothesis that the tripartite brain of euarthropods is directly homologous to the tripartite brain of vertebrates.
Collapse
Affiliation(s)
- Frank W. Smith
- Biology Department, University of North Florida, Jacksonville, FL USA
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mandy Cumming
- Biology Department, University of North Florida, Jacksonville, FL USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
31
|
Abstract
In this review, we compare and contrast the three different forms of vertebrate lens regeneration: Wolffian lens regeneration, cornea-lens regeneration, and lens regeneration from lens epithelial cells. An examination of the diverse cellular origins of these lenses, their unique phylogenetic distribution, and the underlying molecular mechanisms, suggests that these different forms of lens regeneration evolved independently and utilize neither conserved nor convergent mechanisms to regulate these processes.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL
| | | |
Collapse
|
32
|
Stahl AL, Baucom RS, Cook TA, Buschbeck EK. A Complex Lens for a Complex Eye. Integr Comp Biol 2018; 57:1071-1081. [PMID: 28992245 DOI: 10.1093/icb/icx116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A key innovation for high resolution eyes is a sophisticated lens that precisely focuses light onto photoreceptors. The eyes of holometabolous larvae range from very simple eyes that merely detect light to eyes that are capable of high spatial resolution. Particularly interesting are the bifocal lenses of Thermonectus marmoratus larvae, which differentially focus light on spectrally-distinct retinas. While functional aspects of insect lenses have been relatively well studied, little work has explored their molecular makeup, especially in regard to more complex eye types. To investigate this question, we took a transcriptomic and proteomic approach to identify the major proteins contributing to the principal bifocal lenses of T. marmoratus larvae. Mass spectrometry revealed 10 major lens proteins. Six of these share sequence homology with cuticular proteins, a large class of proteins that are also major components of corneal lenses from adult compound eyes of Drosophila melanogaster and Anopheles gambiae. Two proteins were identified as house-keeping genes and the final two lack any sequence homologies to known genes. Overall the composition seems to follow a pattern of co-opting transparent and optically dense proteins, similar to what has been described for other animal lenses. To identify cells responsible for the secretion of specific lens proteins, we performed in situ hybridization studies and found some expression differences between distal and proximal corneagenous cells. Since the distal cells likely give rise to the periphery and the proximal cells to the center of the lens, our findings highlight a possible mechanism for establishing structural differences that are in line with the bifocal nature of these lenses. A better understanding of lens composition provides insights into the evolution of proper focusing, which is an important step in the transition between low-resolution and high-resolution eyes.
Collapse
Affiliation(s)
- Aaron L Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tiffany A Cook
- Wayne State University School of Medicine, Center of Molecular Medicine and Genomics, Detroit, MI 48201, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
33
|
Cvekl A, Zhao Y, McGreal R, Xie Q, Gu X, Zheng D. Evolutionary Origins of Pax6 Control of Crystallin Genes. Genome Biol Evol 2018; 9:2075-2092. [PMID: 28903537 PMCID: PMC5737492 DOI: 10.1093/gbe/evx153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 12/19/2022] Open
Abstract
The birth of novel genes, including their cell-specific transcriptional control, is a major source of evolutionary innovation. The lens-preferred proteins, crystallins (vertebrates: α- and β/γ-crystallins), provide a gateway to study eye evolution. Diversity of crystallins was thought to originate from convergent evolution through multiple, independent formation of Pax6/PaxB-binding sites within the promoters of genes able to act as crystallins. Here, we propose that αB-crystallin arose from a duplication of small heat shock protein (Hspb1-like) gene accompanied by Pax6-site and heat shock element (HSE) formation, followed by another duplication to generate the αA-crystallin gene in which HSE was converted into another Pax6-binding site. The founding β/γ-crystallin gene arose from the ancestral Hspb1-like gene promoter inserted into a Ca2+-binding protein coding region, early in the cephalochordate/tunicate lineage. Likewise, an ancestral aldehyde dehydrogenase (Aldh) gene, through multiple gene duplications, expanded into a multigene family, with specific genes expressed in invertebrate lenses (Ω-crystallin/Aldh1a9) and both vertebrate lenses (η-crystallin/Aldh1a7 and Aldh3a1) and corneas (Aldh3a1). Collectively, the present data reconstruct the evolution of diverse crystallin gene families.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Rebecca McGreal
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Xun Gu
- Program in Bioinformatics and Computational Biology, Department of Genetics, Development, and Cell Biology, Iowa State University
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York.,Department of Neurology, Albert Einstein College of Medicine, Bronx, New York.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
34
|
Schwab IR. The evolution of eyes: major steps. The Keeler lecture 2017: centenary of Keeler Ltd. Eye (Lond) 2018; 32:302-313. [PMID: 29052606 PMCID: PMC5811732 DOI: 10.1038/eye.2017.226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
Ocular evolution is an immense topic, and I do not expect to cover all the details of this process in this manuscript. I will present some concepts about some of the major steps in the evolutionary process to stimulate your thinking about this interesting and complex topic. In the prebiotic soup, vision was not inevitable. Eyes were not preordained. Nor were their shapes, sizes, or current physiology. Sight is an evolutionary gift but it was not ineluctable. The existence of eyes is so basic to our profession that we often do not consider how and why vision appeared or evolved on earth at all. Although vision is a principal sensory modality for at least three major phyla and is present in three or four more phyla, there are other sensory mechanisms that could have been and were occasionally selected instead. Some animals rely on other sensory mechanisms such as audition, echolocation, or olfaction that are much more effective in their particular niche than would be vision. We may not believe those sensory mechanisms to be as robust as vision, but the creatures using those skills would argue otherwise. Why does vision exist at all? And why is it so dominant at least in the number of species that rely upon it for their principal sensory mechanism? How did vision begin? What were the important steps in the evolution of eyes? How did eyes differentiate along their various paths, and why?
Collapse
Affiliation(s)
- I R Schwab
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
35
|
Ramirez MD, Pairett AN, Pankey MS, Serb JM, Speiser DI, Swafford AJ, Oakley TH. The Last Common Ancestor of Most Bilaterian Animals Possessed at Least Nine Opsins. Genome Biol Evol 2018; 8:3640-3652. [PMID: 28172965 PMCID: PMC5521729 DOI: 10.1093/gbe/evw248] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
The opsin gene family encodes key proteins animals use to sense light and has expanded dramatically as it originated early in animal evolution. Understanding the origins of opsin diversity can offer clues to how separate lineages of animals have repurposed different opsin paralogs for different light-detecting functions. However, the more we look for opsins outside of eyes and from additional animal phyla, the more opsins we uncover, suggesting we still do not know the true extent of opsin diversity, nor the ancestry of opsin diversity in animals. To estimate the number of opsin paralogs present in both the last common ancestor of the Nephrozoa (bilaterians excluding Xenoacoelomorpha), and the ancestor of Cnidaria + Bilateria, we reconstructed a reconciled opsin phylogeny using sequences from 14 animal phyla, especially the traditionally poorly-sampled echinoderms and molluscs. Our analysis strongly supports a repertoire of at least nine opsin paralogs in the bilaterian ancestor and at least four opsin paralogs in the last common ancestor of Cnidaria + Bilateria. Thus, the kernels of extant opsin diversity arose much earlier in animal history than previously known. Further, opsins likely duplicated and were lost many times, with different lineages of animals maintaining different repertoires of opsin paralogs. This phylogenetic information can inform hypotheses about the functions of different opsin paralogs and can be used to understand how and when opsins were incorporated into complex traits like eyes and extraocular sensors.
Collapse
Affiliation(s)
- M Desmond Ramirez
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA
| | - Autum N Pairett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Jeanne M Serb
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | - Andrew J Swafford
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA
| | - Todd H Oakley
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA
| |
Collapse
|
36
|
Byrne M, Koop D, Morris VB, Chui J, Wray GA, Cisternas P. Expression of genes and proteins of the pax-six-eya-dach network in the metamorphic sea urchin: Insights into development of the enigmatic echinoderm body plan and sensory structures. Dev Dyn 2017; 247:239-249. [PMID: 28850769 DOI: 10.1002/dvdy.24584] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Photoreception-associated genes of the Pax-Six-Eya-Dach network (PSEDN) are deployed for many roles in addition to photoreception development. In this first study of PSEDN genes during development of the pentameral body in sea urchins, we investigated their spatial expression in Heliocidaris erythrogramma. RESULTS Expression of PSEDN genes in the hydrocoele of early (Dach, Eya, Six1/2) and/or late (Pax6, Six3/6) larvae, and the five hydrocoele lobes, the first morphological expression of pentamery, supports a role in body plan development. Pax6, Six1/2, and Six3/6 were localized to the primary and/or secondary podia and putative sensory/neuronal cells. Six1/2 and Six3/6 were expressed in the neuropil region in the terminal disc of the podia. Dach was localized to spines. Sequential up-regulation of gene expression as new podia and spines formed was evident. Rhabdomeric opsin and pax6 protein were localized to cells in the primary podia and spines. CONCLUSIONS Our results support roles for PSEDN genes in development of the pentameral body plan, contributing to our understanding of how the most unusual body plan in the Bilateria may have evolved. Development of sensory cells within the Pax-Six expression field is consistent with the role of these genes in sensory cell development in diverse species. Developmental Dynamics 247:239-249, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Demian Koop
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Valerie B Morris
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Juanita Chui
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Gregory A Wray
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| | - Paula Cisternas
- School of Medical Sciences, The University of Sydney, NSW, Australia
| |
Collapse
|
37
|
Letelier J, Bovolenta P, Martínez-Morales JR. The pigmented epithelium, a bright partner against photoreceptor degeneration. J Neurogenet 2017; 31:203-215. [PMID: 29113536 DOI: 10.1080/01677063.2017.1395876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sight depends on the intimate association between photoreceptors and pigment epithelial cells. The evolutionary origin of this cellular tandem can be traced back to the emergence of bilateral animals, at least 450 million years ago, as they define the minimal unit of the ancestral prototypic eye. Phototransduction is a demanding process from the energetic and homeostatic points of view, and not surprisingly photoreceptive cells are particularly susceptible to damage and degeneration. Here, we will examine the different ancillary roles that the pigmented cells play in the physiology and homeostasis of photoreceptors, linking each one of these processes to the most common hereditary retinal diseases. We will discuss the challenges and opportunities of recent therapeutic advances based on cell and gene replacement. The transition from animal models to clinical trials will be addressed for each one of the different therapeutic strategies with a special focus on those depending on retinal-pigmented epithelial cells. Finally, we will discuss the potential impact of combining CRISPR technologies with gene and cell therapy approaches, which - in the frame of the personalized medicine revolution - may constitute a leap forward in the treatment of retinal dystrophies.
Collapse
Affiliation(s)
- Joaquín Letelier
- a Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA) , Seville , Spain
| | - Paola Bovolenta
- b Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM) and CIBERER, ISCIII , Madrid , Spain
| | | |
Collapse
|
38
|
Taxonomically Restricted Genes with Essential Functions Frequently Play Roles in Chromosome Segregation in Caenorhabditis elegans and Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:3337-3347. [PMID: 28839119 PMCID: PMC5633384 DOI: 10.1534/g3.117.300193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genes encoding essential components of core cellular processes are typically highly conserved across eukaryotes. However, a small proportion of essential genes are highly taxonomically restricted; there appear to be no similar genes outside the genomes of highly related species. What are the functions of these poorly characterized taxonomically restricted genes (TRGs)? Systematic screens in Saccharomyces cerevisiae and Caenorhabditis elegans previously identified yeast or nematode TRGs that are essential for viability and we find that these genes share many molecular features, despite having no significant sequence similarity. Specifically, we find that those TRGs with essential phenotypes have an expression profile more similar to highly conserved genes, they have more protein–protein interactions and more protein disorder. Surprisingly, many TRGs play central roles in chromosome segregation; a core eukaryotic process. We thus find that genes that appear to be highly evolutionarily restricted do not necessarily play roles in species-specific biological functions but frequently play essential roles in core eukaryotic processes.
Collapse
|
39
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
40
|
Imarazene B, Andouche A, Bassaglia Y, Lopez PJ, Bonnaud-Ponticelli L. Eye Development in Sepia officinalis Embryo: What the Uncommon Gene Expression Profiles Tell Us about Eye Evolution. Front Physiol 2017; 8:613. [PMID: 28883798 PMCID: PMC5573735 DOI: 10.3389/fphys.2017.00613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
In metazoans, there is a remarkable diversity of photosensitive structures; their shapes, physiology, optical properties, and development are different. To approach the evolution of photosensitive structures and visual function, cephalopods are particularly interesting organisms due to their most highly centralized nervous system and their camerular eyes which constitute a convergence with those of vertebrates. The eye morphogenesis in numerous metazoans is controlled mainly by a conserved Retinal Determination Gene Network (RDGN) including pax, six, eya, and dac playing also key developmental roles in non-retinal structures and tissues of vertebrates and Drosophila. Here we have identified and explored the role of Sof-dac, Sof-six1/2, Sof-eya in eye morphogenesis, and nervous structures controlling the visual function in Sepia officinalis. We compare that with the already shown expressions in eye development of Sof-otx and Sof-pax genes. Rhodopsin is the pigment responsible for light sensitivity in metazoan, which correlate to correlate visual function and eye development. We studied Sof-rhodopsin expression during retina differentiation. By in situ hybridization, we show that (1) all of the RDGN genes, including Sof-pax6, are expressed in the eye area during the early developmental stages but they are not expressed in the retina, unlike Sof-otx, which could have a role in retina differentiation; (2) Sof-rhodopsin is expressed in the retina just before vision gets functional, from stage 23 to hatching. Our results evidence a role of Sof-six1/2, Sof-eya, and Sof-dac in eye development. However, the gene network involved in the retinal photoreceptor differentiation remains to be determined. Moreover, for the first time, Sof-rhodopsin expression is shown in the embryonic retina of cuttlefish suggesting the evolutionary conservation of the role of rhodopsin in visual phototransduction within metazoans. These findings are correlated with the physiological and behavioral observations suggesting that S. officinalis is able to react to light stimuli from stage 25 of organogenesis on, as soon as the first retinal pigments appear.
Collapse
Affiliation(s)
- Boudjema Imarazene
- UMR Biologie des Organismes et Ecosystèmes Aquatiques, Museum National d'Histoire Naturelle, Sorbonne Universités, Centre National de la Recherche Scientifique (CNRS 7208), Université Pierre et Marie Curie (UPMC), Université de Caen Normandie, Institut de Recherche Pour le Développement (IRD207), Université des AntillesParis, France
| | - Aude Andouche
- UMR Biologie des Organismes et Ecosystèmes Aquatiques, Museum National d'Histoire Naturelle, Sorbonne Universités, Centre National de la Recherche Scientifique (CNRS 7208), Université Pierre et Marie Curie (UPMC), Université de Caen Normandie, Institut de Recherche Pour le Développement (IRD207), Université des AntillesParis, France
| | - Yann Bassaglia
- UMR Biologie des Organismes et Ecosystèmes Aquatiques, Museum National d'Histoire Naturelle, Sorbonne Universités, Centre National de la Recherche Scientifique (CNRS 7208), Université Pierre et Marie Curie (UPMC), Université de Caen Normandie, Institut de Recherche Pour le Développement (IRD207), Université des AntillesParis, France
- Université Paris Est Créteil-Val de MarneParis, France
| | - Pascal-Jean Lopez
- UMR Biologie des Organismes et Ecosystèmes Aquatiques, Museum National d'Histoire Naturelle, Sorbonne Universités, Centre National de la Recherche Scientifique (CNRS 7208), Université Pierre et Marie Curie (UPMC), Université de Caen Normandie, Institut de Recherche Pour le Développement (IRD207), Université des AntillesParis, France
| | - Laure Bonnaud-Ponticelli
- UMR Biologie des Organismes et Ecosystèmes Aquatiques, Museum National d'Histoire Naturelle, Sorbonne Universités, Centre National de la Recherche Scientifique (CNRS 7208), Université Pierre et Marie Curie (UPMC), Université de Caen Normandie, Institut de Recherche Pour le Développement (IRD207), Université des AntillesParis, France
| |
Collapse
|
41
|
Morehouse NI, Buschbeck EK, Zurek DB, Steck M, Porter ML. Molecular Evolution of Spider Vision: New Opportunities, Familiar Players. THE BIOLOGICAL BULLETIN 2017; 233:21-38. [PMID: 29182503 DOI: 10.1086/693977] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spiders are among the world's most species-rich animal lineages, and their visual systems are likewise highly diverse. These modular visual systems, composed of four pairs of image-forming "camera" eyes, have taken on a huge variety of forms, exhibiting variation in eye size, eye placement, image resolution, and field of view, as well as sensitivity to color, polarization, light levels, and motion cues. However, despite this conspicuous diversity, our understanding of the genetic underpinnings of these visual systems remains shallow. Here, we review the current literature, analyze publicly available transcriptomic data, and discuss hypotheses about the origins and development of spider eyes. Our efforts highlight that there are many new things to discover from spider eyes, and yet these opportunities are set against a backdrop of deep homology with other arthropod lineages. For example, many (but not all) of the genes that appear important for early eye development in spiders are familiar players known from the developmental networks of other model systems (e.g., Drosophila). Similarly, our analyses of opsins and related phototransduction genes suggest that spider photoreceptors employ many of the same genes and molecular mechanisms known from other arthropods, with a hypothesized ancestral spider set of four visual and four nonvisual opsins. This deep homology provides a number of useful footholds into new work on spider vision and the molecular basis of its extant variety. We therefore discuss what some of these first steps might be in the hopes of convincing others to join us in studying the vision of these fascinating creatures.
Collapse
Key Words
- AL, anterior lateral
- AM, anterior median
- BLAST, Basic Local Alignment Search Tool
- CNS, central nervous system
- KAAS, KEGG Automatic Annotation Server
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LWS, long wavelength sensitive
- MAFFT, Multiple Alignment using Fast Fourier Transform
- MWS, middle wavelength sensitive
- PL, posterior lateral
- PM, posterior median
- RAxML, Randomized Axelerated Maximum Likelihood
- UVS, ultraviolet sensitive
Collapse
|
42
|
Martin C, Gross V, Hering L, Tepper B, Jahn H, de Sena Oliveira I, Stevenson PA, Mayer G. The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:565-590. [DOI: 10.1007/s00359-017-1186-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
|
43
|
Charlton-Perkins MA, Sendler ED, Buschbeck EK, Cook TA. Multifunctional glial support by Semper cells in the Drosophila retina. PLoS Genet 2017; 13:e1006782. [PMID: 28562601 PMCID: PMC5470715 DOI: 10.1371/journal.pgen.1006782] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/14/2017] [Accepted: 04/26/2017] [Indexed: 11/19/2022] Open
Abstract
Glial cells play structural and functional roles central to the formation, activity and integrity of neurons throughout the nervous system. In the retina of vertebrates, the high energetic demand of photoreceptors is sustained in part by Müller glia, an intrinsic, atypical radial glia with features common to many glial subtypes. Accessory and support glial cells also exist in invertebrates, but which cells play this function in the insect retina is largely undefined. Using cell-restricted transcriptome analysis, here we show that the ommatidial cone cells (aka Semper cells) in the Drosophila compound eye are enriched for glial regulators and effectors, including signature characteristics of the vertebrate visual system. In addition, cone cell-targeted gene knockdowns demonstrate that such glia-associated factors are required to support the structural and functional integrity of neighboring photoreceptors. Specifically, we show that distinct support functions (neuronal activity, structural integrity and sustained neurotransmission) can be genetically separated in cone cells by down-regulating transcription factors associated with vertebrate gliogenesis (pros/Prox1, Pax2/5/8, and Oli/Olig1,2, respectively). Further, we find that specific factors critical for glial function in other species are also critical in cone cells to support Drosophila photoreceptor activity. These include ion-transport proteins (Na/K+-ATPase, Eaat1, and Kir4.1-related channels) and metabolic homeostatic factors (dLDH and Glut1). These data define genetically distinct glial signatures in cone/Semper cells that regulate their structural, functional and homeostatic interactions with photoreceptor neurons in the compound eye of Drosophila. In addition to providing a new high-throughput model to study neuron-glia interactions, the fly eye will further help elucidate glial conserved "support networks" between invertebrates and vertebrates. Glia are the caretakers of the nervous system. Like their neighboring neurons, different glial subtypes exist that share many overlapping functions. Despite our recognition of glia as a key component of the brain, the genetic networks that mediate their neuroprotective functions remain relatively poorly understood. Here, using the genetic model Drosophila melanogaster, we identify a new glial cell type in one of the most active tissues in the nervous system—the retina. These cells, called ommatidial cone cells (or Semper cells), were previously recognized for their role in lens formation. Using cell-specific molecular genetic approaches, we demonstrate that cone cells (CCs) also share molecular, functional, and genetic features with both vertebrate and invertebrate glia to prevent light-induced retinal degeneration and provide structural and physiological support for photoreceptors. Further, we demonstrate that three factors associated with gliogenesis in vertebrates—prospero/Prox1, Pax2, and Oli/Olig1,2—control genetically distinct aspects of these support functions. CCs also share molecular and functional features with the three main glial types in the mammalian visual system: Müller glia, astrocytes, and oligodendrocytes. Combined, these studies provide insight into potentially deeply conserved aspects of glial functions in the visual system and introduce a high-throughput system to genetically dissect essential neuroprotective mechanisms.
Collapse
Affiliation(s)
- Mark A. Charlton-Perkins
- Department of Pediatrics, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Edward D. Sendler
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Elke K. Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
44
|
Stahl AL, Charlton-Perkins M, Buschbeck EK, Cook TA. The cuticular nature of corneal lenses in Drosophila melanogaster. Dev Genes Evol 2017; 227:271-278. [PMID: 28477155 DOI: 10.1007/s00427-017-0582-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/24/2017] [Indexed: 01/10/2023]
Abstract
The dioptric visual system relies on precisely focusing lenses that project light onto a neural retina. While the proteins that constitute the lenses of many vertebrates are relatively well characterized, less is known about the proteins that constitute invertebrate lenses, especially the lens facets in insect compound eyes. To address this question, we used mass spectrophotometry to define the major proteins that comprise the corneal lenses from the adult Drosophila melanogaster compound eye. This led to the identification of four cuticular proteins: two previously identified lens proteins, drosocrystallin and retinin, and two newly identified proteins, Cpr66D and Cpr72Ec. To determine which ommatidial cells contribute each of these proteins to the lens, we conducted in situ hybridization at 50% pupal development, a key age for lens secretion. Our results confirm previous reports that drosocrystallin and retinin are expressed in the two primary corneagenous cells-cone cells and primary pigment cells. Cpr72Ec and Cpr66D, on the other hand, are more highly expressed in higher order interommatidial pigment cells. These data suggest that the complementary expression of cuticular proteins give rise to the center vs periphery of the corneal lens facet, possibly facilitating a refractive gradient that is known to reduce spherical aberration. Moreover, these studies provide a framework for future studies aimed at understanding the cuticular basis of corneal lens function in holometabolous insect eyes.
Collapse
Affiliation(s)
- Aaron L Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Mark Charlton-Perkins
- Division of Developmental Biology and Department of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Tiffany A Cook
- Center of Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
45
|
Suzuki TK. On the Origin of Complex Adaptive Traits: Progress Since the Darwin Versus Mivart Debate. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:304-320. [PMID: 28397400 DOI: 10.1002/jez.b.22740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 01/12/2023]
Abstract
The evolutionary origin of complex adaptive traits has been a controversial topic in the history of evolutionary biology. Although Darwin argued for the gradual origins of complex adaptive traits within the theory of natural selection, Mivart insisted that natural selection could not account for the incipient stages of complex traits. The debate starting from Darwin and Mivart eventually engendered two opposite views: gradualism and saltationism. Although this has been a long-standing debate, the issue remains unresolved. However, recent studies have interrogated classic examples of complex traits, such as the asymmetrical eyes of flatfishes and leaf mimicry of butterfly wings, whose origins were debated by Darwin and Mivart. Here, I review recent findings as a starting point to provide a modern picture of the evolution of complex adaptive traits. First, I summarize the empirical evidence that unveils the evolutionary steps toward complex traits. I then argue that the evolution of complex traits could be understood within the concept of "reducible complexity." Through these discussions, I propose a conceptual framework for the formation of complex traits, named as reducible-composable multicomponent systems, that satisfy two major characteristics: reducibility into a sum of subcomponents and composability to construct traits from various additional and combinatorial arrangements of the subcomponents. This conceptual framework provides an analytical foundation for exploring evolutionary pathways to build up complex traits. This review provides certain essential avenues for deciphering the origin of complex adaptive traits.
Collapse
Affiliation(s)
- Takao K Suzuki
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Ibaraki, 305-8634, Japan
| |
Collapse
|
46
|
Navet S, Buresi A, Baratte S, Andouche A, Bonnaud-Ponticelli L, Bassaglia Y. The Pax gene family: Highlights from cephalopods. PLoS One 2017; 12:e0172719. [PMID: 28253300 PMCID: PMC5333810 DOI: 10.1371/journal.pone.0172719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/08/2017] [Indexed: 01/15/2023] Open
Abstract
Pax genes play important roles in Metazoan development. Their evolution has been extensively studied but Lophotrochozoa are usually omitted. We addressed the question of Pax paralog diversity in Lophotrochozoa by a thorough review of available databases. The existence of six Pax families (Pax1/9, Pax2/5/8, Pax3/7, Pax4/6, Paxβ, PoxNeuro) was confirmed and the lophotrochozoan Paxβ subfamily was further characterized. Contrary to the pattern reported in chordates, the Pax2/5/8 family is devoid of homeodomain in Lophotrochozoa. Expression patterns of the three main pax classes (pax2/5/8, pax3/7, pax4/6) during Sepia officinalis development showed that Pax roles taken as ancestral and common in metazoans are modified in S. officinalis, most likely due to either the morphological specificities of cephalopods or to their direct development. Some expected expression patterns were missing (e.g. pax6 in the developing retina), and some expressions in unexpected tissues have been found (e.g. pax2/5/8 in dermal tissue and in gills). This study underlines the diversity and functional plasticity of Pax genes and illustrates the difficulty of using probable gene homology as strict indicator of homology between biological structures.
Collapse
Affiliation(s)
- Sandra Navet
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Auxane Buresi
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Sébastien Baratte
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
- Univ. Paris Sorbonne-ESPE, Sorbonne Universités, Paris, France
| | - Aude Andouche
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Laure Bonnaud-Ponticelli
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Yann Bassaglia
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
- Univ. Paris Est Créteil-Val de Marne, Créteil, France
- * E-mail:
| |
Collapse
|
47
|
Schumann I, Hering L, Mayer G. Immunolocalization of Arthropsin in the Onychophoran Euperipatoides rowelli (Peripatopsidae). Front Neuroanat 2016; 10:80. [PMID: 27540356 PMCID: PMC4972820 DOI: 10.3389/fnana.2016.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023] Open
Abstract
Opsins are light-sensitive proteins that play a key role in animal vision and are related to the ancient photoreceptive molecule rhodopsin found in unicellular organisms. In general, opsins involved in vision comprise two major groups: the rhabdomeric (r-opsins) and the ciliary opsins (c-opsins). The functionality of opsins, which is dependent on their protein structure, may have changed during evolution. In arthropods, typically r-opsins are responsible for vision, whereas in vertebrates c-opsins are components of visual photoreceptors. Recently, an enigmatic r-opsin-like protein called arthropsin has been identified in various bilaterian taxa, including arthropods, lophotrochozoans, and chordates, by performing transcriptomic and genomic analyses. Since the role of arthropsin and its distribution within the body are unknown, we immunolocalized this protein in a representative of Onychophora – Euperipatoides rowelli – an ecdysozoan taxon which is regarded as one of the closest relatives of Arthropoda. Our data show that arthropsin is expressed in the central nervous system of E. rowelli, including the brain and the ventral nerve cords, but not in the eyes. These findings are consistent with previous results based on reverse transcription PCR in a closely related onychophoran species and suggest that arthropsin is a non-visual protein. Based on its distribution in the central brain region and the mushroom bodies, we speculate that the onychophoran arthropsin might be either a photosensitive molecule playing a role in the circadian clock, or a non-photosensitive protein involved in olfactory pathways, or both.
Collapse
Affiliation(s)
- Isabell Schumann
- Department of Zoology, Institute of Biology, University of Kassel, KasselGermany; Molecular Evolution and Animal Systematics, University of Leipzig, LeipzigGermany
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Kassel Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel Germany
| |
Collapse
|
48
|
Shafee TMA, Lay FT, Hulett MD, Anderson MA. The Defensins Consist of Two Independent, Convergent Protein Superfamilies. Mol Biol Evol 2016; 33:2345-56. [DOI: 10.1093/molbev/msw106] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
49
|
Clements T, Dolocan A, Martin P, Purnell MA, Vinther J, Gabbott SE. The eyes of Tullimonstrum reveal a vertebrate affinity. Nature 2016; 532:500-3. [PMID: 27074512 DOI: 10.1038/nature17647] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/09/2016] [Indexed: 11/09/2022]
Abstract
Tullimonstrum gregarium is an iconic soft-bodied fossil from the Carboniferous Mazon Creek Lagerstätte (Illinois, USA). Despite a large number of specimens and distinct anatomy, various analyses over the past five decades have failed to determine the phylogenetic affinities of the 'Tully monster', and although it has been allied to such disparate phyla as the Mollusca, Annelida or Chordata, it remains enigmatic. The nature and phylogenetic affinities of Tullimonstrum have defied confident systematic placement because none of its preserved anatomy provides unequivocal evidence of homology, without which comparative analysis fails. Here we show that the eyes of Tullimonstrum possess ultrastructural details indicating homology with vertebrate eyes. Anatomical analysis using scanning electron microscopy reveals that the eyes of Tullimonstrum preserve a retina defined by a thick sheet comprising distinct layers of spheroidal and cylindrical melanosomes. Time-of-flight secondary ion mass spectrometry and multivariate statistics provide further evidence that these microbodies are melanosomes. A range of animals have melanin in their eyes, but the possession of melanosomes of two distinct morphologies arranged in layers, forming retinal pigment epithelium, is a synapomorphy of vertebrates. Our analysis indicates that in addition to evidence of colour patterning, ecology and thermoregulation, fossil melanosomes can also carry a phylogenetic signal. Identification in Tullimonstrum of spheroidal and cylindrical melanosomes forming the remains of retinal pigment epithelium indicates that it is a vertebrate; considering its body parts in this new light suggests it was an anatomically unusual member of total group Vertebrata.
Collapse
Affiliation(s)
- Thomas Clements
- Department of Geology, University of Leicester, Leicester LE1 7RH, UK
| | - Andrei Dolocan
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Peter Martin
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK.,Interface Analysis Centre, HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TQ, UK
| | - Mark A Purnell
- Department of Geology, University of Leicester, Leicester LE1 7RH, UK
| | - Jakob Vinther
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK.,School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Sarah E Gabbott
- Department of Geology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
50
|
Human Retinal Pigment Epithelium Stem Cell (RPESC). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:557-62. [DOI: 10.1007/978-3-319-17121-0_74] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|