1
|
Xu W, Huang Q, Qi Y, Hu Q, Shen C, Chen X, Li J, Xia Q, Pan Z, Zhang Y, Han G, Huang J, Liu Y, Cao Z, Zheng Y, Zheng B, Gu Z, Yu J, Sun C. Single-Cell Transcriptomics Uncovers Core Signature for Regulating Mitochondrial Homeostasis During Testicular Ageing. Cell Prolif 2024:e13797. [PMID: 39731228 DOI: 10.1111/cpr.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
Testicular ageing is accompanied by a series of morphological changes, while the features of mitochondrial dysfunction remain largely unknown. Herein, we observed a range of age-related modifications in testicular morphology and spermatogenic cells, and conducted single-cell RNA sequencing on young and old testes in Drosophila. Pseudotime trajectory revealed significant changes in germline subpopulations during ageing. Our examination unveiled that genes showing bias in spermatids exhibited higher dN/dS than those in GSCs_Spermatogonia. Genes biased towards young GSCs_Spermatogonia displayed higher dN/dS than those in old GSCs_Spermatogonia. Interestingly, genes biased towards young spermatids demonstrated lower dN/dS in contrast to those in old spermatids, revealing the complexity of evolutionary adaptations during ageing. Furthermore, mitochondria associated events, including oxidative phosphorylation, TCA cycle and pyruvate metabolism, were significantly enriched in germline subpopulations. Specifically, mitochondrial function was significantly impaired during the process of testicular ageing, concurrently emphasising the role of several key nuclear genome-encoded mitochondrial regulatory genes, such as Hsp60B, fzo, Tim17b1 and mRpL12. Our data offer insights into testicular homeostasis regulated by mitochondrial function during the ageing process.
Collapse
Affiliation(s)
- Weijie Xu
- Department of Geriatrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Yujuan Qi
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Qingqing Hu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Xia Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Qiushi Xia
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Ziyue Pan
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Yi Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Guoqing Han
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Jingqi Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Yiheng Liu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Ziyu Cao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
2
|
Guay SY, Patel PH, Thomalla JM, McDermott KL, O'Toole JM, Arnold SE, Obrycki SJ, Wolfner MF, Findlay GD. An orphan gene is essential for efficient sperm entry into eggs in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607187. [PMID: 39149251 PMCID: PMC11326263 DOI: 10.1101/2024.08.08.607187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
While spermatogenesis has been extensively characterized in the Drosophila melanogaster model system, very little is known about the genes required for fly sperm entry into eggs. We identified a lineage-specific gene, which we named katherine johnson ( kj ), that is required for efficient fertilization. Males that do not express kj produce and transfer sperm that are stored normally in females, but sperm from these males enter eggs with severely reduced efficiency. Using a tagged transgenic rescue construct, we observed that the KJ protein localizes around the edge of the nucleus at various stages of spermatogenesis but is undetectable in mature sperm. These data suggest that kj exerts an effect on sperm development, the loss of which results in reduced fertilization ability. Interestingly, KJ protein lacks detectable sequence similarity to any other known protein, suggesting that kj could be a lineage-specific orphan gene. While previous bioinformatic analyses indicated that kj was restricted to the melanogaster group of Drosophila , we identified putative orthologs with conserved synteny, male-biased expression, and predicted protein features across the genus, as well as likely instances of gene loss in some lineages. Thus, kj was likely present in the Drosophila common ancestor and subsequently evolved an essential role in fertility in D. melanogaster . Our results demonstrate a new aspect of male reproduction that has been shaped by a lineage-specific gene and provide a molecular foothold for further investigating the mechanism of sperm entry into eggs in Drosophila . Article Summary How fruit fly sperm enter eggs is poorly understood. Here, we identify a gene required for efficient fertilization. Sperm from males lacking this gene's function cannot enter eggs. The gene appears to act during sperm production, rather than in mature sperm. Interestingly, the gene is undetectable outside of genus Drosophila , and its encoded protein shows no discernable similarity to other proteins. This study provides insights into sperm-egg interactions and illustrates how lineage-specific genes can impact important aspects of reproduction.
Collapse
|
3
|
Wang H, Wen Z, Amenyogbe E, Jin J, Lu Y, Wang Z, Huang J. Comparative Transcriptome Analysis of Sexual Differentiation in Male and Female Gonads of Nao-Zhou Stock Large Yellow Croaker ( Larimichthys crocea). Animals (Basel) 2024; 14:3261. [PMID: 39595312 PMCID: PMC11591422 DOI: 10.3390/ani14223261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The Nao-zhou stock large yellow croaker (Larimichthys crocea) is a unique economic seawater fish species in China and exhibits significant dimorphism in both male and female phenotypes. Cultivating all-female seedlings can significantly improve breeding efficiency. To accelerate the cultivation process of all female seedlings of this species, it is necessary to deeply understand the regulatory mechanisms of sexual differentiation and gonadal development. This study used Illumina high-throughput sequencing to sequence the transcriptome of the testes and ovaries of Nao-zhou stock large yellow croaker to identify genes and molecular functions related to sex determination. A total of 10,536 differentially expressed genes were identified between males and females, including 5682 upregulated and 4854 downregulated genes. Functional annotation screened out 70 important candidate genes related to sex, including 34 genes highly expressed in the testis (including dmrt1, foxm1, and amh) and 36 genes highly expressed in the ovary (including gdf9, hsd3b1, and sox19b). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis found that differentially expressed genes were significantly enriched in nine signaling pathways related to sex determination and gonadal development, including steroid hormone biosynthesis, MAPK signaling pathway, and the TGF-beta signaling pathway. By screening sex-related differentially expressed genes and mapping protein-protein interaction networks, hub genes such as dmrt1, amh, and cyp19a1a were found to be highly connected. The expression levels of 15 sex-related genes, including amh, dmrt1, dmrt2a, foxl1, and zp3b, were determined by qRT-PCR and RNA sequencing. This study screened for differentially expressed genes related to sex determination and differentiation of Nao-zhou stock large yellow croaker and revealed the signaling pathways involved in gonad development of male and female individuals. The results provide important data for future research on sex determination and differentiation mechanisms, thereby providing a scientific basis for the cultivation of all-female seedlings.
Collapse
Affiliation(s)
- Haojie Wang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Zirui Wen
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Eric Amenyogbe
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana;
| | - Jinghui Jin
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Yi Lu
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Zhongliang Wang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Guangdong Marine Fish Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Jiansheng Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Guangdong Marine Fish Science and Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
4
|
Herrboldt MA, Wright CNC, Bonett RM. Seasonal heterochrony of reproductive development and gene expression in a polymorphic salamander. Dev Dyn 2024. [PMID: 39360498 DOI: 10.1002/dvdy.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Life cycle evolution includes ecological transitions and shifts in the timing of somatic and reproductive development (heterochrony). However, heterochronic changes can be tissue-specific, ultimately leading to the differential diversification of traits. Salamanders exhibit alternative life cycle polymorphisms involving either an aquatic to terrestrial metamorphosis (biphasic) or retention of aquatic larval traits into adulthood (paedomorphic). In this study, we used gene expression and histology to evaluate how life cycle evolution impacts temporal reproductive patterns in males of a polymorphic salamander. RESULTS We found that heterochrony shifts the distribution of androgen signaling in the integument, which is correlated with significant differences in seasonal reproductive gland development and pheromone gene expression. In the testes, androgen receptor (ar) expression does not significantly vary between morphs or across seasons. We found significant differences in the onset of spermatogenesis, but by peak breeding season the testes were the same with respect to both histology and gene expression. CONCLUSION This study provides an example of how seasonal heterochronic shifts in tissue-specific ar gene expression can disparately impact seasonal development and expression patterns across tissues, providing a potential mechanism for differential diversification of reproductive traits.
Collapse
Affiliation(s)
| | - Claire N C Wright
- Department of Biological Science, University of Tulsa, Tulsa, Oklahoma, USA
| | - Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, Oklahoma, USA
| |
Collapse
|
5
|
Yan Z, Wang P, Yang Q, Gun S. Single-Cell RNA Sequencing Reveals an Atlas of Hezuo Pig Testis Cells. Int J Mol Sci 2024; 25:9786. [PMID: 39337274 PMCID: PMC11431743 DOI: 10.3390/ijms25189786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Spermatogenesis is a complex biological process crucial for male reproduction and is characterized by intricate interactions between testicular somatic cells and germ cells. Due to the cellular heterogeneity of the testes, investigating different cell types across developmental stages has been challenging. Single-cell RNA sequencing (scRNA-seq) has emerged as a valuable approach for addressing this limitation. Here, we conducted an unbiased transcriptomic study of spermatogenesis in sexually mature 4-month-old Hezuo pigs using 10× Genomics-based scRNA-seq. A total of 16,082 cells were collected from Hezuo pig testes, including germ cells (spermatogonia (SPG), spermatocytes (SPCs), spermatids (SPTs), and sperm (SP)) and somatic cells (Sertoli cells (SCs), Leydig cells (LCs), myoid cells (MCs), endothelial cells (ECs), and natural killer (NK) cells/macrophages). Pseudo-time analysis revealed that LCs and MCs originated from common progenitors in the Hezuo pig. Functional enrichment analysis indicated that the differentially expressed genes (DEGs) in the different types of testicular germ cells were enriched in the PI3K-AKT, Wnt, HIF-1, and adherens junction signaling pathways, while the DEGs in testicular somatic cells were enriched in ECM-receptor interaction and antigen processing and presentation. Moreover, genes related to spermatogenesis, male gamete generation, sperm part, sperm flagellum, and peptide biosynthesis were expressed throughout spermatogenesis. Using immunohistochemistry, we verified several stage-specific marker genes (such as UCHL1, WT1, SOX9, and ACTA2) for SPG, SCs, and MCs. By exploring the changes in the transcription patterns of various cell types during spermatogenesis, our study provided novel insights into spermatogenesis and testicular cells in the Hezuo pig, thereby laying the foundation for the breeding and preservation of this breed.
Collapse
Affiliation(s)
| | | | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (P.W.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (P.W.)
| |
Collapse
|
6
|
Li C, Ren Y, Chen MY, Wang Q, He Z, Wang YF. CG9920 is necessary for mitochondrial morphogenesis and individualization during spermatogenesis in Drosophila melanogaster. Dev Biol 2024; 512:13-25. [PMID: 38703942 DOI: 10.1016/j.ydbio.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Chao Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Yue Ren
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Qian Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Zhen He
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
7
|
Zhang Q, Fan X, Fu F, Zhu Y, Luo G, Chen H. Adar Regulates Drosophila melanogaster Spermatogenesis via Modulation of BMP Signaling. Int J Mol Sci 2024; 25:5643. [PMID: 38891830 PMCID: PMC11171878 DOI: 10.3390/ijms25115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The dynamic process of Drosophila spermatogenesis involves asymmetric division, mitosis, and meiosis, which ultimately results in the production of mature spermatozoa. Disorders of spermatogenesis can lead to infertility in males. ADAR (adenosine deaminase acting on RNA) mutations in Drosophila cause male infertility, yet the causative factors remain unclear. In this study, immunofluorescence staining was employed to visualize endogenous ADAR proteins and assess protein levels via fluorescence-intensity analysis. In addition, the early differentiation disorders and homeostatic alterations during early spermatogenesis in the testes were examined through quantification of transit-amplifying region length, counting the number of GSCs (germline stem cells), and fertility experiments. Our findings suggest that deletion of ADAR causes testicular tip transit-amplifying cells to accumulate and become infertile in older male Drosophila. By overexpressing ADAR in early germline cells, male infertility can be partially rescued. Transcriptome analysis showed that ADAR maintained early spermatogenesis homeostasis through the bone-morphogenetic-protein (BMP) signaling pathway. Taken together, these findings have the potential to help explore the role of ADAR in early spermatogenesis.
Collapse
Affiliation(s)
- Qian Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Laboratory of Stem Cell and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinxin Fan
- Laboratory of Stem Cell and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Fu
- Laboratory of Stem Cell and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuedan Zhu
- Laboratory of Stem Cell and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanzheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Chen
- Laboratory of Stem Cell and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Zhao X, Jin T, Ji X, Zhang Q, Zhang X, Wu Z, Li Z, Yang H. Wdr17 Regulates Cell Proliferation, Cell Cycle Progression and Apoptosis in Mouse Spermatocyte Cell Line. Animals (Basel) 2024; 14:1418. [PMID: 38791636 PMCID: PMC11117263 DOI: 10.3390/ani14101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
We identified Wdr17 as a highly expressed gene in pachytene spermatocytes by transcriptomic analysis of mouse testis. Germ cell-deficient infertile mouse models had significantly reduced Wdr17 expression. We performed gene interference and overexpression in the mouse spermatocyte cell line GC-2spd(ts) and investigated how Wdr17 affects spermatocyte growth and development. Our results showed that Wdr17 suppression significantly decreased cell growth rate and increased cell apoptosis in GC-2spd(ts) cells. Wdr17 suppression also arrested the cell cycle at the G1 phase. On the contrary, Wdr17 overexpression significantly promoted cell proliferation and inhibited cell apoptosis in GC-2spd(ts) cells. More cells were enriched at the S stage with a concomitant reduction of cells at the G1 stage. Wdr17 promotes mouse spermatocyte proliferation by advancing cell cycle progression and inhibiting cell apoptosis, indicating its potential role in regulating spermatogenesis in the mouse.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.J.); (X.J.); (Q.Z.); (X.Z.); (Z.W.)
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.J.); (X.J.); (Q.Z.); (X.Z.); (Z.W.)
| |
Collapse
|
9
|
Song Y, Ma J, Liu Q, Mabrouk I, Zhou Y, Yu J, Liu F, Wang J, Yu Z, Hu J, Sun Y. Protein profile analysis of Jilin white goose testicles at different stages of the laying cycle by DIA strategy. BMC Genomics 2024; 25:326. [PMID: 38561689 PMCID: PMC10986116 DOI: 10.1186/s12864-024-10166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Jilin white goose is an excellent local breed in China, with a high annual egg production and laying eggs mainly from February to July each year. The testis, as the only organ that can produce sperm, can affect the sexual maturity and fecundity of male animals. Its growth and development are affected and regulated by a variety of factors. Proteomics is generally applied to identify and quantify proteins in cells and tissues in order to understand the physiological or pathological changes that occur in tissues or cells under specific conditions. Currently, the female poultry reproductive system has been extensively studied, while few related studies focusing on the regulatory mechanism of the reproductive system of male poultry have been conducted. RESULTS A total of 1753 differentially expressed proteins (DEPs) were generated in which there were 594, 391 and 768 different proteins showing differential expression in three stages, Initial of Laying Cycle (ILC), Peak of Laying Cycle (PLC) and End of Laying Cycle (ELC). Furthermore, bioinformatics was used to analyze the DEPs. Gene ontology (GO) enrichment, Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis were adopted. All DEPs were found to be implicated in multiple biological processes and pathways associated with testicular development, such as renin secretion, Lysosomes, SNARE interactions in vesicle trafficking, the p53 signaling pathway and pathways related to metabolism. Additionally, the reliability of transcriptome results was verified by real-time quantitative PCR by selecting the transcript abundance of 6 selected DEPs at the three stages of the laying cycle. CONCLUSIONS The funding in this study will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of testicles in Jilin white goose.
Collapse
Affiliation(s)
- Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jin Yu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Fengshuo Liu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingbo Wang
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Zhiye Yu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China.
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China.
- Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, 130118, Changchun, China.
| |
Collapse
|
10
|
Li C, Shen C, Xiong W, Ge H, Shen Y, Chi J, Zhang H, Tang L, Lu S, Wang J, Fei J, Wang Z. Spem2, a novel testis-enriched gene, is required for spermiogenesis and fertilization in mice. Cell Mol Life Sci 2024; 81:108. [PMID: 38421455 PMCID: PMC10904452 DOI: 10.1007/s00018-024-05147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 03/02/2024]
Abstract
Spermiogenesis is considered to be crucial for the production of haploid spermatozoa with normal morphology, structure and function, but the mechanisms underlying this process remain largely unclear. Here, we demonstrate that SPEM family member 2 (Spem2), as a novel testis-enriched gene, is essential for spermiogenesis and male fertility. Spem2 is predominantly expressed in the haploid male germ cells and is highly conserved across mammals. Mice deficient for Spem2 develop male infertility associated with spermiogenesis impairment. Specifically, the insufficient sperm individualization, failure of excess cytoplasm shedding, and defects in acrosome formation are evident in Spem2-null sperm. Sperm counts and motility are also significantly reduced compared to controls. In vivo fertilization assays have shown that Spem2-null sperm are unable to fertilize oocytes, possibly due to their impaired ability to migrate from the uterus into the oviduct. However, the infertility of Spem2-/- males cannot be rescued by in vitro fertilization, suggesting that defective sperm-egg interaction may also be a contributing factor. Furthermore, SPEM2 is detected to interact with ZPBP, PRSS21, PRSS54, PRSS55, ADAM2 and ADAM3 and is also required for their processing and maturation in epididymal sperm. Our findings establish SPEM2 as an essential regulator of spermiogenesis and fertilization in mice, possibly in mammals including humans. Understanding the molecular role of SPEM2 could provide new insights into future therapeutic treatment of human male infertility and development of non-hormonal male contraceptives.
Collapse
Affiliation(s)
- Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jun Chi
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jinjin Wang
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Jian Fei
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China.
| |
Collapse
|
11
|
Brubacher JL. Female Germline Cysts in Animals: Evolution and Function. Results Probl Cell Differ 2024; 71:23-46. [PMID: 37996671 DOI: 10.1007/978-3-031-37936-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Germline cysts are syncytia formed by incomplete cytokinesis of mitotic germline precursors (cystoblasts) in which the cystocytes are interconnected by cytoplasmic bridges, permitting the sharing of molecules and organelles. Among animals, such cysts are a nearly universal feature of spermatogenesis and are also often involved in oogenesis. Recent, elegant studies have demonstrated remarkable similarities in the oogenic cysts of mammals and insects, leading to proposals of widespread conservation of these features among animals. Unfortunately, such claims obscure the well-described diversity of female germline cysts in animals and ignore major taxa in which female germline cysts appear to be absent. In this review, I explore the phylogenetic patterns of oogenic cysts in the animal kingdom, with a focus on the hexapods as an informative example of a clade in which such cysts have been lost, regained, and modified in various ways. My aim is to build on the fascinating insights of recent comparative studies, by calling for a more nuanced view of evolutionary conservation. Female germline cysts in the Metazoa are an example of a phenomenon that-though essential for the continuance of many, diverse animal lineages-nevertheless exhibits intriguing patterns of evolutionary innovation, loss, and convergence.
Collapse
|
12
|
Anderson JT, Henikoff S, Ahmad K. Chromosome-specific maturation of the epigenome in the Drosophila male germline. eLife 2023; 12:RP89373. [PMID: 38032818 PMCID: PMC10688970 DOI: 10.7554/elife.89373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.
Collapse
Affiliation(s)
- James T Anderson
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
| |
Collapse
|
13
|
Huang Q, Chen X, Yu H, Ji L, Shi Y, Cheng X, Chen H, Yu J. Structure and molecular basis of spermatid elongation in the Drosophila testis. Open Biol 2023; 13:230136. [PMID: 37935354 PMCID: PMC10645079 DOI: 10.1098/rsob.230136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
Spermatid elongation is a crucial event in the late stage of spermatogenesis in the Drosophila testis, eventually leading to the formation of mature sperm after meiosis. During spermatogenesis, significant structural and morphological changes take place in a cluster of post-meiotic germ cells, which are enclosed in a microenvironment surrounded by somatic cyst cells. Microtubule-based axoneme assembly, formation of individualization complexes and mitochondria maintenance are key processes involved in the differentiation of elongated spermatids. They provide important structural foundations for accessing male fertility. How these structures are constructed and maintained are basic questions in the Drosophila testis. Although the roles of several genes in different structures during the development of elongated spermatids have been elucidated, the relationships between them have not been widely studied. In addition, the genetic basis of spermatid elongation and the regulatory mechanisms involved have not been thoroughly investigated. In the present review, we focus on current knowledge with regard to spermatid axoneme assembly, individualization complex and mitochondria maintenance. We also touch upon promising directions for future research to unravel the underlying mechanisms of spermatid elongation in the Drosophila testis.
Collapse
Affiliation(s)
- Qiuru Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hao Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Li Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yi Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| |
Collapse
|
14
|
Anderson J, Henikoff S, Ahmad K. Chromosome-specific maturation of the epigenome in the Drosophila male germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529909. [PMID: 37873332 PMCID: PMC10592605 DOI: 10.1101/2023.02.24.529909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.
Collapse
Affiliation(s)
- James Anderson
- Basic Sciences Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, USA
| |
Collapse
|
15
|
Canal Domenech B, Fricke C. Developmental heat stress interrupts spermatogenesis inducing early male sterility in Drosophila melanogaster. J Therm Biol 2023; 114:103589. [PMID: 37300998 DOI: 10.1016/j.jtherbio.2023.103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/12/2023]
Abstract
Thermal stress leads to fertility reduction, can cause temporal sterility and thus results in fitness loss with severe ecological and evolutionary consequences, e.g., threatening species persistence already at sub-lethal temperatures. For males we here tested which developmental stage is particularly sensitive to heat stress in the model species Drosophila melanogaster. As developmental stages characterize the different steps of sperm development, we could narrow down which particular processes are heat sensitive. We studied early male reproductive ability and, by following recovery dynamics after a move to benign temperatures, we investigated general mechanisms behind a subsequent gain of fertility. We found strong support to suggest that the last steps of spermatogenesis are particularly sensitive to heat stress, as processes occurring during the pupal stage were mostly interrupted, delaying both sperm production and sperm maturation. Moreover, further measurements in the testes and for proxies of sperm availability indicating the onset of adult reproductive capacity matched the expected heat-induced delay in completing spermatogenesis. We discuss these results within the context of how heat stress affects reproductive organ function and the consequences for male reproductive potential.
Collapse
Affiliation(s)
- Berta Canal Domenech
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany; Muenster Graduate School of Evolution, University of Muenster, Muenster, Germany.
| | - Claudia Fricke
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany; Institute for Zoology, Halle-Wittenberg University, Halle (Saale), Germany.
| |
Collapse
|
16
|
Torres-Flores U, Díaz-Espinosa F, López-Santaella T, Rebollar-Vega R, Vázquez-Jiménez A, Taylor IJ, Ortiz-Hernández R, Echeverría OM, Vázquez-Nin GH, Gutierrez-Ruiz MC, De la Rosa-Velázquez IA, Resendis-Antonio O, Hernández-Hernandez A. Spermiogenesis alterations in the absence of CTCF revealed by single cell RNA sequencing. Front Cell Dev Biol 2023; 11:1119514. [PMID: 37065848 PMCID: PMC10097911 DOI: 10.3389/fcell.2023.1119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
CTCF is an architectonic protein that organizes the genome inside the nucleus in almost all eukaryotic cells. There is evidence that CTCF plays a critical role during spermatogenesis as its depletion produces abnormal sperm and infertility. However, defects produced by its depletion throughout spermatogenesis have not been fully characterized. In this work, we performed single cell RNA sequencing in spermatogenic cells with and without CTCF. We uncovered defects in transcriptional programs that explain the severity of the damage in the produced sperm. In the early stages of spermatogenesis, transcriptional alterations are mild. As germ cells go through the specialization stage or spermiogenesis, transcriptional profiles become more altered. We found morphology defects in spermatids that support the alterations in their transcriptional profiles. Altogether, our study sheds light on the contribution of CTCF to the phenotype of male gametes and provides a fundamental description of its role at different stages of spermiogenesis.
Collapse
Affiliation(s)
- Ulises Torres-Flores
- Graduate Program in Experimental Biology, DCBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, Mexico
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Fernanda Díaz-Espinosa
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Tayde López-Santaella
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Rosa Rebollar-Vega
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas yNutrición Salvador Zubirán, México City, Mexico
| | - Aarón Vázquez-Jiménez
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ian J. Taylor
- BD Life Sciences Informatics, Ashland, OR, United States
| | - Rosario Ortiz-Hernández
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Olga M. Echeverría
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo H. Vázquez-Nin
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Concepción Gutierrez-Ruiz
- Laboratorio de Fisiología Celular y Medicina Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-I, Mexico City, Mexico
| | - Inti Alberto De la Rosa-Velázquez
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas yNutrición Salvador Zubirán, México City, Mexico
| | - Osbaldo Resendis-Antonio
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- *Correspondence: Osbaldo Resendis-Antonio, ; Abrahan Hernández-Hernandez,
| | - Abrahan Hernández-Hernandez
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
- *Correspondence: Osbaldo Resendis-Antonio, ; Abrahan Hernández-Hernandez,
| |
Collapse
|
17
|
Kavarthapu R, Anbazhagan R, Pal S, Dufau ML. Single-Cell Transcriptomic Profiling of the Mouse Testicular Germ Cells Reveals Important Role of Phosphorylated GRTH/DDX25 in Round Spermatid Differentiation and Acrosome Biogenesis during Spermiogenesis. Int J Mol Sci 2023; 24:3127. [PMID: 36834539 PMCID: PMC9962311 DOI: 10.3390/ijms24043127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH)/DDX25 is a member of DEAD-box family of RNA helicase essential for the completion of spermatogenesis and male fertility, as evident from GRTH-knockout (KO) mice. In germ cells of male mice, there are two species of GRTH, a 56 kDa non-phosphorylated form and 61 kDa phosphorylated form (pGRTH). GRTH Knock-In (KI) mice with R242H mutation abolished pGRTH and its absence leads to infertility. To understand the role of the GRTH in germ cell development at different stages during spermatogenesis, we performed single-cell RNA-seq analysis of testicular cells from adult WT, KO and KI mice and studied the dynamic changes in gene expression. Pseudotime analysis revealed a continuous developmental trajectory of germ cells from spermatogonia to elongated spermatids in WT mice, while in both KO and KI mice the trajectory was halted at round spermatid stage indicating incomplete spermatogenesis process. The transcriptional profiles of KO and KI mice were significantly altered during round spermatid development. Genes involved in spermatid differentiation, translation process and acrosome vesicle formation were significantly downregulated in the round spermatids of KO and KI mice. Ultrastructure of round spermatids of KO and KI mice revealed several abnormalities in acrosome formation that includes failure of pro-acrosome vesicles to fuse to form a single acrosome vesicle, and fragmentation of acrosome structure. Our findings highlight the crucial role of pGRTH in differentiation of round spermatids into elongated spermatids, acrosome biogenesis and its structural integrity.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rajakumar Anbazhagan
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soumitra Pal
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Rabbani M, Zheng X, Manske GL, Vargo A, Shami AN, Li JZ, Hammoud SS. Decoding the Spermatogenesis Program: New Insights from Transcriptomic Analyses. Annu Rev Genet 2022; 56:339-368. [PMID: 36070560 PMCID: PMC10722372 DOI: 10.1146/annurev-genet-080320-040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spermatogenesis is a complex differentiation process coordinated spatiotemporally across and along seminiferous tubules. Cellular heterogeneity has made it challenging to obtain stage-specific molecular profiles of germ and somatic cells using bulk transcriptomic analyses. This has limited our ability to understand regulation of spermatogenesis and to integrate knowledge from model organisms to humans. The recent advancement of single-cell RNA-sequencing (scRNA-seq) technologies provides insights into the cell type diversity and molecular signatures in the testis. Fine-grained cell atlases of the testis contain both known and novel cell types and define the functional states along the germ cell developmental trajectory in many species. These atlases provide a reference system for integrated interspecies comparisons to discover mechanistic parallels and to enable future studies. Despite recent advances, we currently lack high-resolution data to probe germ cell-somatic cell interactions in the tissue environment, but the use of highly multiplexed spatial analysis technologies has begun to resolve this problem. Taken together, recent single-cell studies provide an improvedunderstanding of gametogenesis to examine underlying causes of infertility and enable the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Gabe L Manske
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Vargo
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Adrienne N Shami
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Whole-Genome Profile of Greek Patients with Teratozοοspermia: Identification of Candidate Variants and Genes. Genes (Basel) 2022; 13:genes13091606. [PMID: 36140773 PMCID: PMC9498395 DOI: 10.3390/genes13091606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 01/09/2023] Open
Abstract
Male infertility is a global health problem that affects a large number of couples worldwide. It can be categorized into specific subtypes, including teratozoospermia. The present study aimed to identify new variants associated with teratozoospermia in the Greek population and to explore the role of genes on which these were identified. For this reason, whole-genome sequencing (WGS) was performed on normozoospermic and teratozoospermic individuals, and after selecting only variants found in teratozoospermic men, these were further prioritized using a wide range of tools, functional and predictive algorithms, etc. An average of 600,000 variants were identified, and of them, 61 were characterized as high impact and 153 as moderate impact. Many of these are mapped in genes previously associated with male infertility, yet others are related for the first time to teratozoospermia. Furthermore, pathway enrichment analysis and Gene ontology (GO) analyses revealed the important role of the extracellular matrix in teratozoospermia. Therefore, the present study confirms the contribution of genes studied in the past to male infertility and sheds light on new molecular mechanisms by providing a list of variants and candidate genes associated with teratozoospermia in the Greek population.
Collapse
|
20
|
Castro-Arnau J, Chauvigné F, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Finn RN, Cerdà J. Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis. Sci Rep 2022; 12:14162. [PMID: 35986060 PMCID: PMC9391476 DOI: 10.1038/s41598-022-18422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractIn non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZEJ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZEJ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZEJ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZEJ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa.
Collapse
|
21
|
Rapid Divergence of Key Spermatogenesis Genes in nasuta-Subgroup of Drosophila. J Mol Evol 2021; 90:2-16. [PMID: 34807291 DOI: 10.1007/s00239-021-10037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The crosses between closely related Drosophila species usually produce sterile hybrid males with spermatogenesis disrupted at post-meiotic phase, especially in sperm individualization stage than the pre-meiotic stage. This is possibly due to the rapid interspecies divergence of male sex and reproduction-related genes. Here we annotated 11 key spermatogenesis genes in 35 strains of species belonging to nasuta-subgroup of Drosophila, where many interspecies crosses produce sterile males. We characterized the divergence and polymorphism in the protein coding regions by employing gene-wide, codon-wide, and lineage-specific selection analysis to test the mode and strength of selection acting on these genes. Our analysis showed signature of positive selection at bag of marbles (bam) and benign gonial cell neoplasma (bgcn) despite the selection constrains and the absence of endosymbiont infection which could potentially drive rapid divergence due to an arms race while roughex (rux) showed lineage-specific rapid divergence in frontal sheen complex of nasuta-subgroup. cookie monster (comr) showed rapid divergence consistent with the possibility of meiotic arrest observed in sterile hybrids of Drosophila species. Rapid divergence observed at don juan (dj) and Mst98Ca-like was consistent with fused sperm-tail abnormality observed in the hybrids of Drosophila nasuta and Drosophila albomicans. These findings highlight the potential role of rapid nucleotide divergence in bringing about hybrid incompatibility in the form of male sterility; however, additional genetic manipulation studies can widen our understanding of hybrid incompatibilities. Furthermore, our study emphasizes the importance of young species belonging to nasuta-subgroup of Drosophila in studying post-zygotic reproductive isolation mechanisms.
Collapse
|
22
|
Alzyoud E, Vedelek V, Réthi-Nagy Z, Lipinszki Z, Sinka R. Microtubule Organizing Centers Contain Testis-Specific γ-TuRC Proteins in Spermatids of Drosophila. Front Cell Dev Biol 2021; 9:727264. [PMID: 34660584 PMCID: PMC8511327 DOI: 10.3389/fcell.2021.727264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Microtubule nucleation in eukaryotes is primarily promoted by γ-tubulin and the evolutionary conserved protein complex, γ-Tubulin Ring Complex (γ-TuRC). γ-TuRC is part of the centrosome and basal body, which are the best-known microtubule-organizing centers. Centrosomes undergo intensive and dynamic changes during spermatogenesis, as they turn into basal bodies, a prerequisite for axoneme formation during spermatogenesis. Here we describe the existence of a novel, tissue-specific γ-TuRC in Drosophila. We characterize three genes encoding testis-specific components of γ-TuRC (t-γ-TuRC) and find that presence of t-γ-TuRC is essential to male fertility. We show the diverse subcellular distribution of the t-γ-TuRC proteins during post-meiotic development, at first at the centriole adjunct and then also on the anterior tip of the nucleus, and finally, they appear in the tail region, close to the mitochondria. We also prove the physical interactions between the t-γ-TuRC members, γ-tubulin and Mozart1. Our results further indicate heterogeneity in γ-TuRC composition during spermatogenesis and suggest that the different post-meiotic microtubule organizing centers are orchestrated by testis-specific gene products, including t-γ-TuRC.
Collapse
Affiliation(s)
- Elham Alzyoud
- Department of Genetics, University of Szeged, Szeged, Hungary
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Zsuzsánna Réthi-Nagy
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged, Hungary
- Biological Research Centre, Institute of Biochemistry, MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Zoltán Lipinszki
- Biological Research Centre, Institute of Biochemistry, MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Charlesworth AG, Seroussi U, Lehrbach NJ, Renaud MS, Sundby AE, Molnar RI, Lao RX, Willis AR, Woock JR, Aber MJ, Diao AJ, Reinke AW, Ruvkun G, Claycomb JM. Two isoforms of the essential C. elegans Argonaute CSR-1 differentially regulate sperm and oocyte fertility. Nucleic Acids Res 2021; 49:8836-8865. [PMID: 34329465 PMCID: PMC8421154 DOI: 10.1093/nar/gkab619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
The Caenorhabditis elegans genome encodes nineteen functional Argonaute proteins that use 22G-RNAs, 26G-RNAs, miRNAs or piRNAs to regulate target transcripts. Only one Argonaute is essential under normal laboratory conditions: CSR-1. While CSR-1 has been studied widely, nearly all studies have overlooked the fact that the csr-1 locus encodes two isoforms. These isoforms differ by an additional 163 amino acids present in the N-terminus of CSR-1a. Using CRISPR-Cas9 genome editing to introduce GFP::3xFLAG into the long (CSR-1a) and short (CSR-1b) isoforms, we found that CSR-1a is expressed during spermatogenesis and in several somatic tissues, including the intestine. CSR-1b is expressed constitutively in the germline. small RNA sequencing of CSR-1 complexes shows that they interact with partly overlapping sets of 22G-RNAs. Phenotypic analyses reveal that the essential functions of csr-1 described in the literature coincide with CSR-1b, while CSR-1a plays tissue specific functions. During spermatogenesis, CSR-1a integrates into an sRNA regulatory network including ALG-3, ALG-4 and WAGO-10 that is necessary for fertility at 25°C. In the intestine, CSR-1a silences immunity and pathogen-responsive genes, and its loss results in improved survival from the pathogen Pseudomonas aeruginosa. Our findings functionally distinguish the CSR-1 isoforms and highlight the importance of studying each AGO isoform independently.
Collapse
Affiliation(s)
| | - Uri Seroussi
- Department of Molecular Genetics, University of Toronto Toronto, ON M5S 1A8 Canada
| | - Nicolas J Lehrbach
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias S Renaud
- Department of Molecular Genetics, University of Toronto Toronto, ON M5S 1A8 Canada
| | - Adam E Sundby
- Department of Molecular Genetics, University of Toronto Toronto, ON M5S 1A8 Canada
| | - Ruxandra I Molnar
- Department of Molecular Genetics, University of Toronto Toronto, ON M5S 1A8 Canada
| | - Robert X Lao
- Department of Molecular Genetics, University of Toronto Toronto, ON M5S 1A8 Canada
| | - Alexandra R Willis
- Department of Molecular Genetics, University of Toronto Toronto, ON M5S 1A8 Canada
| | - Jenna R Woock
- Department of Molecular Genetics, University of Toronto Toronto, ON M5S 1A8 Canada
| | - Matthew J Aber
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Annette J Diao
- Department of Molecular Genetics, University of Toronto Toronto, ON M5S 1A8 Canada
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto Toronto, ON M5S 1A8 Canada
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto Toronto, ON M5S 1A8 Canada
| |
Collapse
|
24
|
Figueiredo AFA, Hess RA, Batlouni SR, Wnuk NT, Tavares AO, Abarikwu SO, Costa GMJ, França LR. Insights into differentiation and function of the transition region between the seminiferous tubule and rete testis. Differentiation 2021; 120:36-47. [PMID: 34229995 DOI: 10.1016/j.diff.2021.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023]
Abstract
Seminiferous tubules physically connect to the rete testis through short segments called the transition region (TR). During fetal development, this specialized junction is considered the initial site where testis cords begin to form and to grow in length well beyond birth and into adulthood and form convoluted tubular cores. Mitotic activity of the Sertoli cell, the somatic cell of the epithelium, ceases before puberty, but modified Sertoli cells in the TR remain immature and capable of proliferation. This review presents what is known about this specialized region of the testis, with an emphasis on the morphological, molecular and physiological features, which support the hypothesis that this short region of epithelial transition serves as a specialized niche for undifferentiated Sertoli cells and spermatogonial stem cells. Also, the region is populated by an elevated number of immune cells, suggesting an important activity in monitoring and responding to any leakage of autoantigens, as sperm enter the rete testis. Several structure/function characteristics of the transition region are discussed and compared across species.
Collapse
Affiliation(s)
- A F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rex A Hess
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL, USA
| | - S R Batlouni
- Aquaculture Center (CAUNESP), São Paulo State University, São Paulo, SP, Brazil
| | - N T Wnuk
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A O Tavares
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - G M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - L R França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
25
|
A comparative genomic approach using mouse and fruit fly data to discover genes involved in testis function in hymenopterans with a focus on Nasonia vitripennis. BMC Ecol Evol 2021; 21:90. [PMID: 34011283 PMCID: PMC8132408 DOI: 10.1186/s12862-021-01825-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background Spermatogenesis appears to be a relatively well-conserved process even among distantly related animal taxa such as invertebrates and vertebrates. Although Hymenopterans share many characteristics with other organisms, their complex haplodiploid reproduction system is still relatively unknown. However, they serve as a complementary insect model to Drosophila for studying functional male fertility. In this study, we used a comparative method combining taxonomic, phenotypic data and gene expression to identify candidate genes that could play a significant role in spermatogenesis in hymenopterans. Results Of the 546 mouse genes predominantly or exclusively expressed in the mouse testes, 36% had at least one ortholog in the fruit fly. Of these genes, 68% had at least one ortholog in one of the six hymenopteran species we examined. Based on their gene expression profiles in fruit fly testes, 71 of these genes were hypothesized to play a marked role in testis function. Forty-three of these 71 genes had an ortholog in at least one of the six hymenopteran species examined, and their enriched GO terms were related to the G2/M transition or to cilium organization, assembly, or movement. Second, of the 379 genes putatively involved in male fertility in Drosophila, 224 had at least one ortholog in each of the six Hymenoptera species. Finally, we showed that 199 of these genes were expressed in early pupal testis in Nasonia vitripennis; 86 exhibited a high level of expression, and 54 displayed modulated expression during meiosis. Conclusions In this study combining phylogenetic and experimental approaches, we highlighted genes that may have a major role in gametogenesis in hymenopterans; an essential prerequisite for further research on functional importance of these genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01825-6.
Collapse
|
26
|
Koutsouveli V, Cárdenas P, Santodomingo N, Marina A, Morato E, Rapp HT, Riesgo A. The Molecular Machinery of Gametogenesis in Geodia Demosponges (Porifera): Evolutionary Origins of a Conserved Toolkit across Animals. Mol Biol Evol 2020; 37:3485-3506. [PMID: 32929503 PMCID: PMC7743902 DOI: 10.1093/molbev/msaa183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All animals are capable of undergoing gametogenesis. The ability of forming haploid cells from diploid cells through meiosis and recombination appeared early in eukaryotes, whereas further gamete differentiation is mostly a metazoan signature. Morphologically, the gametogenic process presents many similarities across animal taxa, but little is known about its conservation at the molecular level. Porifera are the earliest divergent animals and therefore are an ideal phylum to understand evolution of the gametogenic toolkits. Although sponge gametogenesis is well known at the histological level, the molecular toolkits for gamete production are largely unknown. Our goal was to identify the genes and their expression levels which regulate oogenesis and spermatogenesis in five gonochoristic and oviparous species of the genus Geodia, using both RNAseq and proteomic analyses. In the early stages of both female and male gametogenesis, genes involved in germ cell fate and cell-renewal were upregulated. Then, molecular signals involved in retinoic acid pathway could trigger the meiotic processes. During later stages of oogenesis, female sponges expressed genes involved in cell growth, vitellogenesis, and extracellular matrix reassembly, which are conserved elements of oocyte maturation in Metazoa. Likewise, in spermatogenesis, genes regulating the whole meiotic cycle, chromatin compaction, and flagellum axoneme formation, that are common across Metazoa were overexpressed in the sponges. Finally, molecular signals possibly related to sperm capacitation were identified during late stages of spermatogenesis for the first time in Porifera. In conclusion, the activated molecular toolkit during gametogenesis in sponges was remarkably similar to that deployed during gametogenesis in vertebrates.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Nadiezhda Santodomingo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Esperanza Morato
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hans Tore Rapp
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| |
Collapse
|
27
|
Ragle JM, Aita AL, Morrison KN, Martinez-Mendez R, Saeger HN, Ashley GA, Johnson LC, Schubert KA, Shakes DC, Ward JD. The conserved molting/circadian rhythm regulator NHR-23/NR1F1 serves as an essential co-regulator of C. elegans spermatogenesis. Development 2020; 147:dev193862. [PMID: 33060131 PMCID: PMC7710015 DOI: 10.1242/dev.193862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
In sexually reproducing metazoans, spermatogenesis is the process by which uncommitted germ cells give rise to haploid sperm. Work in model systems has revealed mechanisms controlling commitment to the sperm fate, but how this fate is subsequently executed remains less clear. While studying the well-established role of the conserved nuclear hormone receptor transcription factor, NHR-23/NR1F1, in regulating C. elegans molting, we discovered that NHR-23/NR1F1 is also constitutively expressed in developing primary spermatocytes and is a critical regulator of spermatogenesis. In this novel role, NHR-23/NR1F1 functions downstream of the canonical sex-determination pathway. Degron-mediated depletion of NHR-23/NR1F1 within hermaphrodite or male germlines causes sterility due to an absence of functional sperm, as depleted animals produce arrested primary spermatocytes rather than haploid sperm. These spermatocytes arrest in prometaphase I and fail to either progress to anaphase or attempt spermatid-residual body partitioning. They make sperm-specific membranous organelles but fail to assemble their major sperm protein into fibrous bodies. NHR-23/NR1F1 appears to function independently of the known SPE-44 gene regulatory network, revealing the existence of an NHR-23/NR1F1-mediated module that regulates the spermatogenesis program.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Abigail L Aita
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | | | - Raquel Martinez-Mendez
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hannah N Saeger
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Guinevere A Ashley
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Londen C Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Katherine A Schubert
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
28
|
Bao R, Friedrich M. Genomic signatures of globally enhanced gene duplicate accumulation in the megadiverse higher Diptera fueling intralocus sexual conflict resolution. PeerJ 2020; 8:e10012. [PMID: 33083121 PMCID: PMC7560327 DOI: 10.7717/peerj.10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/31/2020] [Indexed: 12/03/2022] Open
Abstract
Gene duplication is an important source of evolutionary innovation. To explore the relative impact of gene duplication during the diversification of major insect model system lineages, we performed a comparative analysis of lineage-specific gene duplications in the fruit fly Drosophila melanogaster (Diptera: Brachycera), the mosquito Anopheles gambiae (Diptera: Culicomorpha), the red flour beetle Tribolium castaneum (Coleoptera), and the honeybee Apis mellifera (Hymenoptera). Focusing on close to 6,000 insect core gene families containing maximally six paralogs, we detected a conspicuously higher number of lineage-specific duplications in Drosophila (689) compared to Anopheles (315), Tribolium (386), and Apis (223). Based on analyses of sequence divergence, phylogenetic distribution, and gene ontology information, we present evidence that an increased background rate of gene duplicate accumulation played an exceptional role during the diversification of the higher Diptera (Brachycera), in part by providing enriched opportunities for intralocus sexual conflict resolution, which may have boosted speciation rates during the early radiation of the megadiverse brachyceran subclade Schizophora.
Collapse
Affiliation(s)
- Riyue Bao
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.,School of Medicine, Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
29
|
Marchetti F, Douglas GR, Yauk CL. A Return to the Origin of the EMGS: Rejuvenating the Quest for Human Germ Cell Mutagens and Determining the Risk to Future Generations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:42-54. [PMID: 31472026 DOI: 10.1002/em.22327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 05/23/2023]
Abstract
Fifty years ago, the Environmental Mutagen Society (now Environmental Mutagenesis and Genomics Society) was founded with a laser-focus on germ cell mutagenesis and the protection of "our most vital assets"-the sperm and egg genomes. Yet, five decades on, despite the fact that many agents have been demonstrated to induce inherited changes in the offspring of exposed laboratory rodents, there is no consensus on whether human germ cell mutagens exist. We argue that it is time to reevaluate the available data and conclude that we already have evidence for the existence of environmental exposures that impact human germ cells. What is missing are definite data to demonstrate a significant increase in de novo mutations in the offspring of exposed parents. We believe that with over two decades of research advancing knowledge and technologies in genomics, we are at the cusp of generating data to conclusively show that environmental exposures cause heritable de novo changes in the human offspring. We call on the research community to harness our technologies, synergize our efforts, and return to our Founders' original focus. The next 50 years must involve collaborative work between clinicians, epidemiologists, genetic toxicologists, genomics experts and bioinformaticians to precisely define how environmental exposures impact germ cell genomes. It is time for the research and regulatory communities to prepare to interpret the coming outpouring of data and develop a framework for managing, communicating and mitigating the risk of exposure to human germ cell mutagens. Environ. Mol. Mutagen. 61:42-54, 2020. © 2019 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - George R Douglas
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Said RS, Mohamed HA, Kamal MM. Coenzyme Q10 mitigates ionizing radiation-induced testicular damage in rats through inhibition of oxidative stress and mitochondria-mediated apoptotic cell death. Toxicol Appl Pharmacol 2019; 383:114780. [PMID: 31618661 DOI: 10.1016/j.taap.2019.114780] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Radiotherapy is a common treatment modality for cancer patients; however, its use is limited by decreasing the probability of fertility in male cancer survivors. Therefore, this study aimed to define the capability of coenzyme Q10 (CoQ10), a potent stimulator of mitochondrial function, in attenuating ionizing radiation (IR)-induced spermatogenesis impairments. Male Sprague Dawley rats were exposed to a single dose of ϒ-rays (10 Gy) and/or treated with CoQ10 (10 mg/kg, orally, for 2 consecutive weeks). IR mediated irregular seminiferous tubules, which were emerged with typical morphological characteristics of apoptosis, and nuclear condensation, while CoQ10 significantly preserved the testicular structure and maintained spermatogenesis, which was displayed by higher levels of serum estradiol and testosterone. CoQ10 remarkably augmented sperm count, motility, and viability while diminished the rate of sperm-defects relatively to their counterparts after IR exposure. CoQ10 modulations in reproductive parameters were underpinned by attenuating IR-induced oxidative stress as evidenced by decreasing lipid peroxidation and increasing the antioxidant enzymes glutathione peroxidase and glutathione-s-transferase activities, and glutathione level. Supporting the involvement of CoQ10 in the anti-apoptotic response, the reduced mRNA expression levels of p53, Puma, and Bax accompanied by the increased Bcl-2 mRNA expression were observed. Subsequently, CoQ10 ameliorated the mitochondria dependent apoptotic pathway through diminishing Bax/Bcl-2 ratio, caspase-3 protein expression, and DNA fragmentation in testes of irradiated rats. Taken together, our findings showed that CoQ10 conserved against IR-induced steroidogenesis disruption through subsiding mitochondria-mediated oxidative stress injury in germinal cells.
Collapse
Affiliation(s)
- Riham S Said
- Drug Radiation Research Department, National Center for Radiation Research & Technology, Atomic Energy Authority, Cairo, Egypt.
| | - Heba A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research & Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
31
|
Reproduction disrupts stem cell homeostasis in testes of aged male Drosophila via an induced microenvironment. PLoS Genet 2019; 15:e1008062. [PMID: 31295251 PMCID: PMC6622487 DOI: 10.1371/journal.pgen.1008062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/02/2019] [Indexed: 12/13/2022] Open
Abstract
Stem cells rely on instructive cues from their environment. Alterations in microenvironments might contribute to tissue dysfunction and disease pathogenesis. Germline stem cells (GSCs) and cyst stem cells (CySC) in Drosophila testes are normally maintained in the apical area by the testicular hub. In this study, we found that reproduction leads to accumulation of early differentiating daughters of CySCs and GSCs in the testes of aged male flies, due to hyperactivation of Jun-N-terminal kinase (JNK) signaling to maintain self-renewal gene expression in the differentiating cyst cells. JNK activity is normally required to maintain CySCs in the apical niche. A muscle sheath surrounds the Drosophila testis to maintain its long coiled structure. Importantly, reproduction triggers accumulation of the tumor necrosis factor (TNF) Eiger in the testis muscle to activate JNK signaling via the TNF receptor Grindelwald in the cyst cells. Reducing Eiger activity in the testis muscle sheath suppressed reproduction-induced differentiation defects, but had little effect on testis homeostasis of unmated males. Our results reveal that reproduction in males provokes a dramatic shift in the testicular microenvironment, which impairs tissue homeostasis and spermatogenesis in the testes. Proper differentiation of stem cell progeny is necessary for preservation of tissue homeostasis. In Drosophila testes, somatic cyst cells derived from the cyst stem cells (CySCs) control the differentiation of the neighboring germ cells. Disruption of CySC daughter cyst cell differentiation leads to failure in sperm production. Interestingly, we found that reproduction triggers hyperactivation of Jun-N-terminal kinase (JNK) signaling to sustain CySC self-renewal gene expression in differentiating cyst cells, leading to accumulation of immature cyst cell and germ cells at the expense of mature cells in the testes of aged males. Endogenous JNK signaling is also required for CySC maintenance. Moreover, we found that the JNK signaling is hyperactivated via reproduction-induced accumulation of tumor necrosis factor (TNF) in testicular smooth muscle that surrounds the testis to support its long coiled structure. The reproduction-induced phenotypes were only observed in the testes of aged and mated males, but not in testes form young mated males or aged unmated males, indicating that it is a combined effect of reproduction and aging. Our results reveal that reproduction impedes sperm production in aged males, and identify testicular muscle as an inducible signaling center for spermatogenesis in Drosophila.
Collapse
|
32
|
Fouchécourt S, Picolo F, Elis S, Lécureuil C, Thélie A, Govoroun M, Brégeon M, Papillier P, Lareyre JJ, Monget P. An evolutionary approach to recover genes predominantly expressed in the testes of the zebrafish, chicken and mouse. BMC Evol Biol 2019; 19:137. [PMID: 31269894 PMCID: PMC6609395 DOI: 10.1186/s12862-019-1462-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 11/15/2022] Open
Abstract
Background Previously, we have demonstrated that genes involved in ovarian function are highly conserved throughout evolution. In this study, we aimed to document the conservation of genes involved in spermatogenesis from flies to vertebrates and their expression profiles in vertebrates. Results We retrieved 379 Drosophila melanogaster genes that are functionally involved in male reproduction according to their mutant phenotypes and listed their vertebrate orthologs. 83% of the fly genes have at least one vertebrate ortholog for a total of 625 mouse orthologs. This conservation percentage is almost twice as high as the 42% rate for the whole fly genome and is similar to that previously found for genes preferentially expressed in ovaries. Of the 625 mouse orthologs, we selected 68 mouse genes of interest, 42 of which exhibited a predominant relative expression in testes and 26 were their paralogs. These 68 mouse genes exhibited 144 and 60 orthologs in chicken and zebrafish, respectively, gathered in 28 groups of paralogs. Almost two thirds of the chicken orthologs and half of the zebrafish orthologs exhibited a relative expression ≥50% in testis. Finally, our focus on functional in silico data demonstrated that most of these genes were involved in the germ cell process, primarily in structure elaboration/maintenance and in acid nucleic metabolism. Conclusion Our work confirms that the genes involved in germ cell development are highly conserved across evolution in vertebrates and invertebrates and display a high rate of conservation of preferential testicular expression among vertebrates. Among the genes highlighted in this study, three mouse genes (Lrrc46, Pabpc6 and Pkd2l1) have not previously been described in the testes, neither their zebrafish nor chicken orthologs. The phylogenetic approach developed in this study finally allows considering new testicular genes for further fundamental studies in vertebrates, including model species (mouse and zebrafish). Electronic supplementary material The online version of this article (10.1186/s12862-019-1462-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Floriane Picolo
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Sébastien Elis
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS-Université de Tours, 37200, Tours, France
| | - Aurore Thélie
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Marina Govoroun
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Mégane Brégeon
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Pascal Papillier
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| | - Jean-Jacques Lareyre
- INRA, UPR 1037, Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopole, Bât. 16, Campus de Beaulieu, cedex, 35042, Rennes, France
| | - Philippe Monget
- PRC, CNRS, IFCE, INRA, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
33
|
Koh ICC, Badrul Nizam BH, Muhammad Abduh Y, Abol Munafi AB, Iehata S. Molecular Characterization of Microbiota Associated With Sperm of Malaysian Mahseer Tor tambroides. Evol Bioinform Online 2019; 15:1176934319850821. [PMID: 31217688 PMCID: PMC6558542 DOI: 10.1177/1176934319850821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/22/2019] [Indexed: 11/15/2022] Open
Abstract
Malaysian Mahseer (Tor tambroides) is considered as a good
prospect for aquaculture in Malaysia. However, knowledge about Malaysian
Mahseer-associated sperm microbiota is still limited, although some studies
reported that sperm-related bacteria are a factor in the decline of sperm
quality, as sperm may become the carrier of pathogenic bacteria to the egg. The
goal of this study was to evaluate the sperm microbiota associated with
Malaysian Mahseer from 3 different locations (Universiti Malaysia Terengganu
[UMT], Ajil, and Pahang) using polymerase chain reaction denaturing gradient gel
electrophoresis (PCR-DGGE) fingerprinting and to compare location differences by
cluster analysis. Our results showed that the UMT sample had different sperm
microbiota composition and a different trend in its relationship with sperm
quality. Correlation analysis showed a relationship between bacterial diversity
and sperm quality. Phylogenetic analysis indicated that sperm microbiota was
composed of diverse phyla, including Proteobacteria, Firmicutes, and
Actinobacteria. Interestingly, bacteria such as Salinisphaera
sp., Pelomonas sp., and Staphylococcus spp.
were detected in all the locations, suggesting that these bacteria are
indigenous bacterial members of the Malaysian Mahseer sperm microbiota, although
their function is still unclear.
Collapse
Affiliation(s)
- Ivan Chong Chu Koh
- School of Fisheries and Aquaculture Sciences, University Malaysia Terengganu, Kuala Nerus, Malaysia.,Institute Aquaculture Tropical, University Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Bin Hassan Badrul Nizam
- School of Fisheries and Aquaculture Sciences, University Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Yazid Muhammad Abduh
- School of Fisheries and Aquaculture Sciences, University Malaysia Terengganu, Kuala Nerus, Malaysia
| | | | - Shumpei Iehata
- School of Fisheries and Aquaculture Sciences, University Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
34
|
Liu X, Chen Q, Ding X, Zhao Y, Zhang K, Yu P, Cui F, Xue B. X-ray-induced reproductive dysfunction and differentially expressed piRNAs in male mice. Hum Exp Toxicol 2018; 38:533-546. [PMID: 30596273 DOI: 10.1177/0960327118812187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of X-ray radiation on spermatogenesis, sperm motility, and PIWI-interacting RNAs (piRNAs) in mice were analyzed. Male C57BL/6 J mice were divided into control and two irradiation groups ( n = 9 mice/group). After irradiation of their reproductive regions, the mice were fed for 3 days (irradiation group 1) or 7 days (control and irradiation group 2). The sperm viability, motility, velocity, and motion curve were analyzed. After piRNA expression profiling, quantitative reverse-transcription polymerase chain reaction was conducted for validation. Ionizing radiation led to vessel dilation and congestion, fewer spermatogenic cells, and reduced sperm production compared to the control. At 3 and 7 days postirradiation, the sperm count (grade d) increased while sperm viability and sperm lateral head displacement decreased. At 7 days, the sperm abnormality rate was higher compared to the control. Many piRNAs were differentially expressed after irradiation, including decreased and increased expression of mmu_piR_009082 and mmu_piR_020217, respectively. Downregulated piRNAs were involved in Rap1 signaling, non-homologous end-joining, hedgehog signaling, oxytocin signaling, and cholinergic synapse. Upregulated piRNAs participated in pathways including proteoglycans in cancer, phosphatidylinositol signaling, cGMP-PKG signaling, and stem cell pluripotency regulation. X-ray irradiation inhibited spermatogenesis and increased abnormal sperm rate in mice. piRNA-related signaling pathways may be involved in this process.
Collapse
Affiliation(s)
- X Liu
- Department of Urology, the Second Affiliated Hospital of Suzhou University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Q Chen
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - X Ding
- Department of Urology, Suzhou University, Suzhou, China
| | - Y Zhao
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - K Zhang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - P Yu
- Department of Urology, the Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - F Cui
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - B Xue
- Department of Urology, the Second Affiliated Hospital of Suzhou University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Monsef L, Borjian Boroujeni P, Totonchi M, Sabbaghian M, Mohseni Meybodi A. Gene alterations and expression spectrum of SPATA33 in nonobstructive azoospermic Iranian men. Mol Reprod Dev 2018; 85:760-767. [PMID: 30098056 DOI: 10.1002/mrd.23051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/09/2018] [Indexed: 01/26/2023]
Abstract
Genetic abnormalities have been considered a significant cause of male infertility. Increased expression of SPATA33 during the first wave of spermatogenesis indicates its possible association with the meiotic process. The aim of the current study was to investigate the genetic variations in the SPATA33 gene and its expression in patients with nonobstructive azoospermia (NOA). A total of 100 Iranian NOA men with idiopathic infertility were taken as the case group. The control group comprised 100 fertile men who had at least one child. The presence of nucleotide variations was analyzed in both groups using the standard polymerase chain reaction (PCR) sequencing technique. For mRNA and protein expression studies, testicular biopsy specimens from 27 patients were subdivided into three groups: nine obstructive azoospermic patients with hypospermatogenesis as control; nine maturation arrest (MA) and nine Sertoli cell-only syndromes (SCOS) as case groups. The expression of SPATA33 at both mRNA and protein levels was compared among these three groups using the reverse transcription PCR technique, the realtime-PCR technique, and immunohistochemistry. Mutation analysis of the SPATA33 gene revealed five nucleotide changes among the population studied. All but one showed no significant differences between the groups. The genotype distributions of rs112536073A > T in the transcription factor binding site region with heterozygote and homozygote genotypes were significantly different ( p < 0.05) between the two groups. More heterozygotes of this polymorphism were observed in patients, whereas more homozygotes were detected in controls. Accordingly, the current study illustrated that alterations in SPATA33 gene, at least those found in this study, may not impair spermatogenesis in patients with NOA. Reduction of gene expression at the level of mRNA in patients with SCOS can be interpreted by the absence of germ cells in the testicular tissue of these patients.
Collapse
Affiliation(s)
- Ladan Monsef
- Department of Basic Science and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parnaz Borjian Boroujeni
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Anahita Mohseni Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
36
|
Essential roles of Akt/Snail pathway in microcystin-LR-induced tight junction toxicity in Sertoli cell. Food Chem Toxicol 2018; 112:290-298. [PMID: 29307602 DOI: 10.1016/j.fct.2018.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 01/17/2023]
Abstract
Microcystin (MC)-LR is a cyclic heptapeptide that acts as a potent reproductive system toxin. However, the underlying pathways of MCLR-induced reproductive system toxicity have not been well elucidated. The blood-testis barrier is mainly constituted by tight junctions (TJs) between adjacent Sertoli cells in the seminiferous epithelium near the basement membrane. The present study was designed to investigate changes in TJs and the underlying pathway in MC-LR-induced TJs toxicity in Sertoli cell. In our study, the transepithelial electrical resistance (TER) value was decreased in a dose dependent manner due to the markers of TJs occludin, claudin and zonula occludens-1 (ZO-1) expression decline. MC-LR is shown to induce cytotoxicity by inhibiting protein phosphatase 2A (PP2A) activity. Our results also showed that the PP2A activity presented a dose-dependent decline. Moreover, MC-LR stimulated protein expression of snail by Akt/GSK-3β activation. The activated Akt/GSK-3β and snail signaling pathway largely accounted for MC-LRinduced TJs toxicity, which could be partially reversed by snail siRNA interference or AKT chemical inhibitor in TM4 cells. These findings indicated that MC-LR inhibit the protein expression of TJs, and the activation of Akt/Snail signaling pathways due to PP2A inhibition is proposed to participate in this process.
Collapse
|
37
|
Tang L, Zhao B, Zhang H, Du Q, Zhu J, Zhao Z, Chen C, Luo C, Kang Q, Yuan W, Bian S, Bi H, Sun H, Li Y. Regulation of nonylphenol-induced reproductive toxicity in mouse spermatogonia cells by miR-361-3p. Mol Reprod Dev 2017; 84:1257-1270. [PMID: 29024157 DOI: 10.1002/mrd.22923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/20/2017] [Accepted: 10/05/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Liyan Tang
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Bo Zhao
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Hui Zhang
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Qiao Du
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Jiang Zhu
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Zhijiang Zhao
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Ce Chen
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Cheng Luo
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Qiyuan Kang
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Wenbing Yuan
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Shaohua Bian
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Hang Bi
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| | - Huimin Sun
- Department of Urology, Xijing Hospital; the Fourth Military Medical University; Xi'an Shananxi China
| | - Yingyi Li
- Department of Urology; Baoji People's Hospital; Baoji Shananxi China
| |
Collapse
|
38
|
McCaig CM, Lin X, Farrell M, Rehain-Bell K, Shakes DC. Germ cell cysts and simultaneous sperm and oocyte production in a hermaphroditic nematode. Dev Biol 2017; 430:362-373. [PMID: 28844904 DOI: 10.1016/j.ydbio.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Abstract
Studies of gamete development in the self-fertile hermaphrodites of Caenorhabditis elegans have significantly contributed to our understanding of fundamental developmental mechanisms. However, evolutionary transitions from outcrossing males and females to self-fertile hermaphrodites have convergently evolved within multiple nematode sub-lineages, and whether the C. elegans pattern of self-fertile hermaphroditism and gamete development is representative remains largely unexplored. Here we describe a pattern of sperm production in the trioecious (male/female/hermaphrodite) nematode Rhabditis sp. SB347 (recently named Auanema rhodensis) that differs from C. elegans in two striking ways. First, while C. elegans hermaphrodites make a one-time switch from sperm to oocyte production, R. sp. SB347 hermaphrodites continuously produce both sperm and oocytes. Secondly, while C. elegans germ cell proliferation is limited to germline stem cells (GSCs), sperm production in R. sp. SB347 includes an additional population of mitotically dividing cells that are a developmental intermediate between GSCs and fully differentiated spermatocytes. These cells are present in males and hermaphrodites but not females, and exhibit key characteristics of spermatogonia - the mitotic progenitors of spermatocytes in flies and vertebrates. Specifically, they exist outside the stem cell niche, increase germ cell numbers by transit-amplifying divisions, and synchronously proliferate within germ cell cysts. We also discovered spermatogonia in other trioecious Rhabditis species, but not in the male/female species Rhabditis axei or the more distant hermaphroditic Oscheius tipulae. The discovery of simultaneous hermaphroditism and spermatogonia in a lab-cultivatable nematode suggests R. sp. SB347 as a richly informative species for comparative studies of gametogenesis.
Collapse
Affiliation(s)
- Caitlin M McCaig
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Xiaoxue Lin
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Maureen Farrell
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Kathryn Rehain-Bell
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Diane C Shakes
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA.
| |
Collapse
|
39
|
Gaitán-Espitia JD, Sánchez R, Bruning P, Cárdenas L. Functional insights into the testis transcriptome of the edible sea urchin Loxechinus albus. Sci Rep 2016; 6:36516. [PMID: 27805042 PMCID: PMC5090362 DOI: 10.1038/srep36516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/13/2016] [Indexed: 11/21/2022] Open
Abstract
The edible sea urchin Loxechinus albus (Molina, 1782) is a keystone species in the littoral benthic systems of the Pacific coast of South America. The international demand for high-quality gonads of this echinoderm has led to an extensive exploitation and decline of its natural populations. Consequently, a more thorough understanding of L. albus gonad development and gametogenesis could provide valuable resources for aquaculture applications, management, conservation and studies about the evolution of functional and structural pathways that underlie the reproductive toolkit of marine invertebrates. Using a high-throughput sequencing technology, we explored the male gonad transcriptome of this highly fecund sea urchin. Through a de novo assembly approach we obtained 42,530 transcripts of which 15,544 (36.6%) had significant alignments to known proteins in public databases. From these transcripts, approximately 73% were functionally annotated allowing the identification of several candidate genes that are likely to play a central role in developmental processes, nutrient reservoir activity, sexual reproduction, gamete generation, meiosis, sex differentiation, sperm motility, male courtship behavior and fertilization. Additionally, comparisons with the male gonad transcriptomes of other echinoderms revealed several conserved orthologous genes, suggesting that similar functional and structural pathways underlie the reproductive development in this group and other marine invertebrates.
Collapse
Affiliation(s)
- Juan Diego Gaitán-Espitia
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567 Valdivia, Chile
- CSIRO Oceans & Atmosphere, GPO Box 1538, Hobart 7001, TAS, Australia
| | - Roland Sánchez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567 Valdivia, Chile
| | - Paulina Bruning
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567 Valdivia, Chile
| | - Leyla Cárdenas
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567 Valdivia, Chile
| |
Collapse
|
40
|
Gorelick R, Carpinone J, Derraugh LJ. No universal differences between female and male eukaryotes: anisogamy and asymmetrical female meiosis. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Root Gorelick
- Department of Biology; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
- School of Mathematics & Statistics and Institute of Interdisciplinary Studies; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
| | - Jessica Carpinone
- Department of Biology; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
| | | |
Collapse
|
41
|
Vedelek V, Laurinyecz B, Kovács AL, Juhász G, Sinka R. Testis-Specific Bb8 Is Essential in the Development of Spermatid Mitochondria. PLoS One 2016; 11:e0161289. [PMID: 27529784 PMCID: PMC4986964 DOI: 10.1371/journal.pone.0161289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are essential organelles of developing spermatids in Drosophila, which undergo dramatic changes in size and shape after meiotic division, where mitochondria localized in the cytoplasm, migrate near the nucleus, aggregate, fuse and create the Nebenkern. During spermatid elongation the two similar mitochondrial derivatives of the Nebenkern start to elongate parallel to the axoneme. One of the elongated mitochondrial derivatives starts to lose volume and becomes the minor mitochondrial derivative, while the other one accumulates paracrystalline and becomes the major mitochondrial derivative. Proteins and intracellular environment that are responsible for cyst elongation and paracrystalline formation in the major mitochondrial derivative need to be identified. In this work we investigate the function of the testis specific big bubble 8 (bb8) gene during spermatogenesis. We show that a Minos element insertion in bb8 gene, a predicted glutamate dehydrogenase, causes recessive male sterility. We demonstrate bb8 mRNA enrichment in spermatids and the mitochondrial localisation of Bb8 protein during spermatogenesis. We report that megamitochondria develop in the homozygous mutant testes, in elongating spermatids. Ultrastructural analysis of the cross section of elongated spermatids shows enlarged mitochondria and the production of paracrystalline in both major and minor mitochondrial derivatives. Our results suggest that the Bb8 protein and presumably glutamate metabolism has a crucial role in the normal development and establishment of the identity of the mitochondrial derivatives during spermatid elongation.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | | | - Attila L Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
42
|
LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development. Semin Cell Dev Biol 2016; 59:110-117. [PMID: 27345292 DOI: 10.1016/j.semcdb.2016.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
Spermatogenesis is one of the fundamental processes of sexual reproduction, present in almost all metazoan animals. Like many other reproductive traits, developmental features and traits of spermatogenesis are under strong selective pressure to change, both at morphological and underlying molecular levels. Yet evidence suggests that some fundamental features of spermatogenesis may be ancient and conserved among metazoan species. Identifying the underlying conserved molecular mechanisms could reveal core components of metazoan spermatogenic machinery and provide novel insight into causes of human infertility. Conserved RNA-binding proteins and their interacting RNA network emerge to be a common theme important for animal sperm development. We review research on the recent addition to the RNA family - Long non-coding RNA (lncRNA) and its roles in spermatogenesis in the context of the expanding RNA-protein network.
Collapse
|
43
|
Baker RH, Narechania A, DeSalle R, Johns PM, Reinhardt JA, Wilkinson GS. Spermatogenesis Drives Rapid Gene Creation and Masculinization of the X Chromosome in Stalk-Eyed Flies (Diopsidae). Genome Biol Evol 2016; 8:896-914. [PMID: 26951781 PMCID: PMC4824122 DOI: 10.1093/gbe/evw043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Throughout their evolutionary history, genomes acquire new genetic material that facilitates phenotypic innovation and diversification. Developmental processes associated with reproduction are particularly likely to involve novel genes. Abundant gene creation impacts the evolution of chromosomal gene content and general regulatory mechanisms such as dosage compensation. Numerous studies in model organisms have found complex and, at times contradictory, relationships among these genomic attributes highlighting the need to examine these patterns in other systems characterized by abundant sexual selection. Therefore, we examined the association among novel gene creation, tissue-specific gene expression, and chromosomal gene content within stalk-eyed flies. Flies in this family are characterized by strong sexual selection and the presence of a newly evolved X chromosome. We generated RNA-seq transcriptome data from the testes for three species within the family and from seven additional tissues in the highly dimorphic species, Teleopsis dalmanni. Analysis of dipteran gene orthology reveals dramatic testes-specific gene creation in stalk-eyed flies, involving numerous gene families that are highly conserved in other insect groups. Identification of X-linked genes for the three species indicates that the X chromosome arose prior to the diversification of the family. The most striking feature of this X chromosome is that it is highly masculinized, containing nearly twice as many testes-specific genes as expected based on its size. All the major processes that may drive differential sex chromosome gene content—creation of genes with male-specific expression, development of male-specific expression from pre-existing genes, and movement of genes with male-specific expression—are elevated on the X chromosome of T. dalmanni. This masculinization occurs despite evidence that testes expressed genes do not achieve the same levels of gene expression on the X chromosome as they do on the autosomes.
Collapse
Affiliation(s)
- Richard H Baker
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY
| | - Philip M Johns
- Life Sciences Department, Yale-NUS College, Singapore, Singapore
| | | | | |
Collapse
|
44
|
Liu LL, Xian H, Cao JC, Zhang C, Zhang YH, Chen MM, Qian Y, Jiang M. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology. Asian J Androl 2015; 17:942-7. [PMID: 25851655 PMCID: PMC4814967 DOI: 10.4103/1008-682x.150253] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/31/2014] [Accepted: 01/04/2015] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the PPARs, which are transcription factors of the steroid receptor superfamily. PPARγ acts as an important molecule for regulating energy homeostasis, modulates the hypothalamic-pituitary-gonadal (HPG) axis, and is reciprocally regulated by HPG. In the human, PPARγ protein is highly expressed in ejaculated spermatozoa, implying a possible role of PPARγ signaling in regulating sperm energy dissipation. PPARγ protein is also expressed in Sertoli cells and germ cells (spermatocytes). Its activation can be induced during capacitation and the acrosome reaction. This mini-review will focus on how PPARγ signaling may affect fertility and sperm quality and the potential reversibility of these adverse effects.
Collapse
Affiliation(s)
- Li-Li Liu
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China
- Department of Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hua Xian
- Department of Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing-Chen Cao
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Chong Zhang
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Yong-Hui Zhang
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Miao-Miao Chen
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Yi Qian
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China
- Department of Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Jiang
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
45
|
Lipke E, Michalik P. Evolutionary Morphology of the Primary Male Reproductive System and Spermatozoa of Goblin Spiders (Oonopidae; Araneae). BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2015. [DOI: 10.1206/906.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
A Niche for GFRα1-Positive Spermatogonia in the Terminal Segments of the Seminiferous Tubules in Hamster Testes. Stem Cells 2015; 33:2811-24. [DOI: 10.1002/stem.2065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/20/2015] [Indexed: 01/15/2023]
|
47
|
Steinhauer J. Separating from the pack: Molecular mechanisms of Drosophila spermatid individualization. SPERMATOGENESIS 2015; 5:e1041345. [PMID: 26413413 PMCID: PMC4581072 DOI: 10.1080/21565562.2015.1041345] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
|
48
|
Holt WV, Fazeli A. Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract. ACTA ACUST UNITED AC 2015; 21:491-501. [DOI: 10.1093/molehr/gav012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
|
49
|
Ramm SA, Schärer L, Ehmcke J, Wistuba J. Sperm competition and the evolution of spermatogenesis. Mol Hum Reprod 2014; 20:1169-79. [PMID: 25323971 DOI: 10.1093/molehr/gau070] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spermatogenesis is a long and complex process that, despite the shared overall goal of producing the male gamete, displays striking amounts of interspecific diversity. In this review, we argue that sperm competition has been an important selection pressure acting on multiple aspects of spermatogenesis, causing variation in the number and morphology of sperm produced, and in the molecular and cellular processes by which this happens. We begin by reviewing the basic biology of spermatogenesis in some of the main animal model systems to illustrate this diversity, and then ask to what extent this variation arises from the evolutionary forces acting on spermatogenesis, most notably sperm competition. We explore five specific aspects of spermatogenesis from an evolutionary perspective, namely: (i) interspecific diversity in the number and morphology of sperm produced; (ii) the testicular organizations and stem cell systems used to produce them; (iii) the large number and high evolutionary rate of genes underpinning spermatogenesis; (iv) the repression of transcription during spermiogenesis and its link to the potential for haploid selection; and (v) the phenomenon of selection acting at the level of the germline. Overall we conclude that adopting an evolutionary perspective can shed light on many otherwise opaque features of spermatogenesis, and help to explain the diversity of ways in which males of different species perform this fundamentally important process.
Collapse
Affiliation(s)
- Steven A Ramm
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jens Ehmcke
- Central Animal Facility of the Faculty of Medicine, University of Münster, Albert-Schweitzer-Campus 1 (A8), 48149 Münster, Germany
| | - Joachim Wistuba
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Albert-Schweitzer-Campus 1 (D11), 48149 Münster, Germany
| |
Collapse
|
50
|
Zhou Y, Xiang Z, Li D, Han X. Regulation of microcystin-LR-induced toxicity in mouse spermatogonia by miR-96. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6383-6390. [PMID: 24803159 DOI: 10.1021/es500152m] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microcystin (MC)-LR is a cyclic heptapeptide that acts as a potent reproductive system toxin, especially by decreasing sperm quality through affecting spermatogonia. However, the molecular mechanisms of MC-induced spermatogonial cytotoxicity still remain unclear. The present study was designed to investigate changes in microRNA (miRNA) profiles and their potential functions in spermatogonia (GC-1 cell line) following treatment with MC-LR. With microarray analysis, 101 miRNAs were identified to be significantly altered in GC-1 cells treated with MC-LR. Among the 25 miRNAs associated with spermatogenesis, miR-96 was down-regulated most dramatically and thus selected for further functional analysis. Deleted-in azoospermia-associated protein 2 (DAZAP2) was predicted to have a binding sequence for miR-96 within its 3'-untranslated region. Fluorescent reporter assay confirmed that DAZAP2 was the target gene of miR-96. The expression of DAZAP2 decreased significantly when miR-96 was up-regulated. Consistently, down-regulation of miR-96 significantly increased the level of DAZAP2. Up-regulation of miR-96 promoted cell viability in GC-1 cells as a result of exposure to MC-LR. Our study suggested a crucial role for miR-96 in the regulation of cytotoxic effects of MC-LR in spermatogonia, which provides new perspectives in the diagnosis and treatment strategies for MC-induced male infertility.
Collapse
Affiliation(s)
- Yuan Zhou
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University , Nanjing 210093, China
| | | | | | | |
Collapse
|