1
|
Stöckl A, Deora T. The Hawkmoth Proboscis: An Insect Model for Sensorimotor Control of Reaching and Exploration. Integr Comp Biol 2024; 64:1354-1370. [PMID: 39068501 DOI: 10.1093/icb/icae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Reaching and inspecting objects is an intricate part of human life, which is shared by a diversity of animals across phyla. In addition to appendages like legs and antennae, some insects use their mouthparts to reach and inspect targets. Hawkmoths of the family Sphingidae (Lepidoptera) use their extremely long and straw-like proboscis to drink nectar from flowers. As they approach flowers, hawkmoths uncoil their proboscis and explore the floral surface while hovering to target the proboscis to the nectary hole. Several sensory modalities provide feedback to control and guide these extremely versatile proboscis movements. The control task faced by the hawkmoths' nervous system during such behaviors is not unlike that of an animal guiding limbs or a robotic agent guiding a manipulator to a target. Hawkmoths perform these reaching maneuvers while simultaneously hovering, and hence require rapid and continuous coordination between the proboscis, neck, and flight motor systems, thereby providing a unique invertebrate model for studying appendage guidance and reaching. Here, we review what is known about how hawkmoths use their proboscis for floral inspection and nectar discovery, as well as the role of various sensors in proboscis guidance. We give a brief overview of the morphology and muscular apparatus of the hawkmoth proboscis, and discuss how multimodal sensory feedback might be turned into motor action for appendage guidance.
Collapse
Affiliation(s)
- Anna Stöckl
- Department of Biology, University of Konstanz, Universitätsstr, 10, 78464 Konstanz, Germany
| | - Tanvi Deora
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| |
Collapse
|
2
|
Albers J, Reichert MS. Personality affects individual variation in olfactory learning and reversal learning in the house cricket, Acheta domesticus. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
3
|
Lin CC, Hedwig B. The central organisation of courtship and rivalry behaviour in Gryllus bimaculatus (deGeer) as revealed by lesions of abdominal connectives. Behav Brain Res 2022; 434:114005. [PMID: 35882278 DOI: 10.1016/j.bbr.2022.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Behaviour is rooted in the organization and activity of an animal's nervous system. As male crickets use their front wings for sound production, the neural circuits underlying singing had been suggested to be housed in the thoracic ganglia. However, systematic lesion experiments of the CNS demonstrated that the abdominal nervous system is essential for their calling song behaviour. As male crickets also generate a courtship and rivalry song, we explored which parts of the abdominal central nervous system control the underlying motor patterns. A combination of systematic lesions to the abdominal nerve cord and video recording of courtship and rivalry behaviour revealed that most components of male courtship and rivalry behaviour were not affected by the lesions, except for the generation of courtship song, rivalry song, and the male's ability to copulate with the female. Any lesion to the abdominal nerve cord abolished copulations. Generation of courtship song initially failed when the connection to abdominal ganglion A6 was severed but in few males recovered after a week. For rivalry song production a central nerve cord extending to abdominal ganglion A4 was sufficient. These findings indicate that in the bispotted cricket the neural organization of courtship song is different from calling and rivalry song, while calling song and rivalry song might share a common network for generating the song patterns.
Collapse
Affiliation(s)
- Chu-Cheng Lin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom.
| |
Collapse
|
4
|
Jaske B, Lepreux G, Dürr V. Input of hair field afferents to a descending interneuron. J Neurophysiol 2021; 126:398-412. [PMID: 34161139 DOI: 10.1152/jn.00169.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In insects the tactile sense is important for near-range orientation and is involved in various behaviors. Nocturnal insects, such as the stick insect Carausius morosus, continuously explore their surroundings by actively moving their antennae when walking. Upon antennal contact with objects, stick insects show a targeted front-leg movement. As this reaction occurs within 40 ms, descending transfer of information from the brain to the thorax needs to be fast. So far, a number of descending interneurons have been described that may be involved in this reach-to-grasp behavior. One of these is the contralateral ON-type velocity-sensitive neuron (cONv). cONv was found to encode antennal joint-angle velocity during passive movement. Here, we characterize the transient response properties of cONv, including its dependence on joint angle range and direction. As antennal hair field afferent terminals were shown to arborize close to cONv dendrites, we test whether antennal hair fields contribute to the joint-angle velocity encoding of cONv. To do so, we conducted bilateral extracellular recordings of both cONv interneurons per animal before and after hair field ablations. Our results show that cONv responses are highly transient, with velocity-dependent differences in delay and response magnitude. As yet, the steady state activity level was maintained until the stop of antennal movement, irrespective of movement velocity. Hair field ablation caused a moderate but significant reduction of movement-induced cONv firing rate by up to 40%. We conclude that antennal proprioceptive hair fields contribute to the velocity-tuning of cONv, though further antennal mechanoreceptors must be involved, too.NEW & NOTEWORTHY Active tactile exploration and tactually induced behaviors are important for many animals. They require descending information transfer about tactile sensor movement to thoracic networks. Here, we investigate response properties and afferent input to the identified descending interneuron cONv in stick insects. cONv may be involved in tactually induced reach-to-grasp movements. We show that cONv response delay, transient and steady state are velocity-dependent and that antennal proprioceptive hair fields contribute to the velocity encoding of cONv.
Collapse
Affiliation(s)
- Bianca Jaske
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Gaëtan Lepreux
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Center of Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Center of Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Dickerson BH, Fox JL, Sponberg S. Functional diversity from generic encoding in insect campaniform sensilla. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Clifton GT, Holway D, Gravish N. Vision does not impact walking performance in Argentine ants. ACTA ACUST UNITED AC 2020; 223:223/20/jeb228460. [PMID: 33067354 DOI: 10.1242/jeb.228460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022]
Abstract
Many walking insects use vision for long-distance navigation, but the influence of vision on rapid walking performance that requires close-range obstacle detection and directing the limbs towards stable footholds remains largely untested. We compared Argentine ant (Linepithema humile) workers in light versus darkness while traversing flat and uneven terrain. In darkness, ants reduced flat-ground walking speeds by only 5%. Similarly, the approach speed and time to cross a step obstacle were not significantly affected by lack of lighting. To determine whether tactile sensing might compensate for vision loss, we tracked antennal motion and observed shifts in spatiotemporal activity as a result of terrain structure but not illumination. Together, these findings suggest that vision does not impact walking performance in Argentine ant workers. Our results help contextualize eye variation across ants, including subterranean, nocturnal and eyeless species that walk in complete darkness. More broadly, our findings highlight the importance of integrating vision, proprioception and tactile sensing for robust locomotion in unstructured environments.
Collapse
Affiliation(s)
- Glenna T Clifton
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA .,Department of Biology, University of Portland, Portland, OR 97203, USA
| | - David Holway
- Division of Biological Science, Section of Ecology, Behavior and Evolution, University of California, San Diego , La Jolla, CA 92093, USA
| | - Nicholas Gravish
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Pickard SC, Quinn RD, Szczecinski NS. A dynamical model exploring sensory integration in the insect central complex substructures. BIOINSPIRATION & BIOMIMETICS 2020; 15:026003. [PMID: 31726442 DOI: 10.1088/1748-3190/ab57b6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is imperative that an animal has the ability to contextually integrate received sensory information to formulate appropriate behavioral responses. Determining a body heading based on a multitude of ego-motion cues and visual landmarks is an example of such a task that requires this context dependent integration. The work presented here simulates a sensory integrator in the insect brain called the central complex (CX). Based on the architecture of the CX, we assembled a dynamical neural simulation of two structures called the protocerebral bridge (PB) and the ellipsoid body (EB). Using non-spiking neuronal dynamics, our simulation was able to recreate in vivo neuronal behavior such as correlating body rotation direction and speed to activity bumps within the EB as well as updating the believed heading with quick secondary system updates. With this model, we performed sensitivity analysis of certain neuronal parameters as a possible means to control multi-system gains during sensory integration. We found that modulation of synapses in the memory network and EB inhibition are two possible mechanisms in which a sensory system could affect the memory stability and gain of another input, respectively. This model serves as an exploration in network design for integrating simultaneous idiothetic and allothetic cues in the task of body tracking and determining contextually dependent behavioral outputs.
Collapse
Affiliation(s)
- S C Pickard
- Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
8
|
Sant HH, Sane SP. The mechanosensory-motor apparatus of antennae in the Oleander hawk moth (Daphnis nerii, Lepidoptera). J Comp Neurol 2018; 526:2215-2230. [PMID: 29907958 DOI: 10.1002/cne.24477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 11/06/2022]
Abstract
Insect antennae are sensory organs of great importance because they can sense diverse environmental stimuli. In addition to serving as primary olfactory organs of insects, antennae also sense a wide variety of mechanosensory stimuli, ranging from low-frequency airflow or gravity cues to high-frequency antennal vibrations due to sound, flight or touch. The basal segments of the antennae house multiple types of mechanosensory structures that prominently include the sensory hair plates, or Böhm's bristles, which measure the gross extent of antennal movement, and a ring of highly sensitive scolopidial neurons, collectively called the Johnston's organs, which record subtle flagellar vibrations. To fulfill their multifunctional mechanosensory role, the antennae of insects must actively move thereby enhancing their ability to sense various cues in the surrounding environment. This tight coupling between antennal mechanosensory function and antennal movements means that the underlying mechanosensory-motor apparatus constitutes a highly tuned feedback-controlled system. Our study aims to explore how the sensory and motor components of this system are configured to enable such functional versatility. We describe antennal mechanosensory neurons, their central projections in the brain relative to antennal motor neurons and the internal morphology of various antennal muscles that actuate the basal segments of the antenna. We studied these in the Oleander hawk moth (Daphnis nerii) using a combination of techniques such as neural dye fills, confocal microscopy, scanning electron microscopy and X-ray tomography. Our study thus provides a detailed anatomical picture of the antennal mechanosensory-motor apparatus, which in turn provides key insights into its multifunctional role.
Collapse
Affiliation(s)
- Harshada H Sant
- National Centre for Biological Sciences, TIFR, Bangalore, Karnataka, 560065, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjay P Sane
- National Centre for Biological Sciences, TIFR, Bangalore, Karnataka, 560065, India
| |
Collapse
|
9
|
Bayley TG, Hedwig B. Dendritic Ca 2+ dynamics and multimodal processing in a cricket antennal interneuron. J Neurophysiol 2018; 120:910-919. [PMID: 29742027 PMCID: PMC6171068 DOI: 10.1152/jn.00663.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The integration of stimuli of different modalities is fundamental to information processing within the nervous system. A descending interneuron in the cricket brain, with prominent dendrites in the deutocerebrum, receives input from three sensory modalities: touch of the antennal flagellum, strain of the antennal base, and visual stimulation. Using calcium imaging, we demonstrate that each modality drives a Ca2+ increase in a different dendritic region. Moreover, touch of the flagellum is represented in a topographic map along the neuron’s dendrites. Using intracellular recording, we investigated the effects of Ca2+ on spike shape through the application of the Ca2+ channel antagonist Cd2+ and identified probable Ca2+-dependent K+ currents. NEW & NOTEWORTHY Different dendritic regions of the cricket brain neuron DBNi1-2 showed localized Ca2+ increases when three modalities of stimulation (touch of the flagellum, strain at antennal base, and visual input) were given. Touch stimulation induces localized Ca2+ increases according to a topographic map of the antenna. Ca2+ appears to activate K+ currents in DBNi1-2.
Collapse
Affiliation(s)
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
10
|
Strauß J. The scolopidial accessory organs and Nebenorgans in orthopteroid insects: Comparative neuroanatomy, mechanosensory function, and evolutionary origin. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:765-776. [PMID: 28864301 DOI: 10.1016/j.asd.2017.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Scolopidial sensilla in insects often form large sensory organs involved in proprioception or exteroception. Here the knowledge on Nebenorgans and accessory organs, two organs consisting of scolopidial sensory cells, is summarised. These organs are present in some insects which are model organisms for the physiology of mechanosensory systems (cockroaches and tettigoniids). Recent comparative studies documented the accessory organ in several taxa of Orthoptera (including tettigoniids, cave crickets, Jerusalem crickets) and the Nebenorgan in related insects (Mantophasmatodea). The accessory organ or Nebenorgan is usually a small organ of 8-15 sensilla located in the posterior leg tibia of all leg pairs. The physiological properties of the accessory organs and Nebenorgans are so far largely unknown. Taking together neuroanatomical and electrophysiological data from disparate taxa, there is considerable evidence that the accessory organ and Nebenorgan are vibrosensitive. They thus complement the larger vibrosensitive subgenual organ in the tibia. This review summarises the comparative studies of these sensory organs, in particular the arguments and criteria for the homology of the accessory organ and Nebenorgan among orthopteroid insects. Different scenarios of repeated evolutionary origins or losses of these sensory organs are discussed. Neuroanatomy allows to distinguish individual sensory organs for analysis of sensory physiology, and to infer scenarios of sensory evolution.
Collapse
Affiliation(s)
- Johannes Strauß
- Justus-Liebig-Universität Gießen, Institute for Animal Physiology, AG Integrative Sensory Physiology, Germany.
| |
Collapse
|
11
|
Brain-Computer Interface Controlling Cyborg: A Functional Brain-to-Brain Interface Between Human and Cockroach. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-57132-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Haberkern H, Hedwig B. Behavioural integration of auditory and antennal stimulation during phonotaxis in the field cricket Gryllus bimaculatus. J Exp Biol 2016; 219:3575-3586. [PMID: 27609761 PMCID: PMC5117196 DOI: 10.1242/jeb.141606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022]
Abstract
Animals need to flexibly respond to stimuli from their environment without compromising behavioural consistency. For example, female crickets orienting toward a conspecific male's calling song in search of a mating partner need to stay responsive to other signals that provide information about obstacles and predators. Here, we investigate how spontaneously walking crickets and crickets engaging in acoustically guided goal-directed navigation, i.e. phonotaxis, respond to mechanosensory stimuli detected by their long antennae. We monitored walking behaviour of female crickets on a trackball during lateral antennal stimulation, which was achieved by moving a wire mesh transiently into reach of one antenna. During antennal stimulation alone, females reduced their walking speed, oriented toward the object and actively explored it with antennal movements. Additionally, some crickets initially turned away from the approaching object. Females responded in a similar way when the antennal stimulus was presented during ongoing phonotaxis: forward velocity was reduced and phonotactic steering was suppressed while the females turned toward and explored the object. Further, rapid steering bouts to individual chirps, typical for female phonotaxis, no longer occurred. Our data reveal that in this experimental situation, antennal stimulation overrides phonotaxis for extended time periods. Phonotaxis in natural environments, which require the integration of multiple sensory cues, may therefore be more variable than phonotaxis measured under ideal laboratory conditions. Combining this new behavioural paradigm with neurophysiological methods will show where the sensory-motor integration of antennal and acoustic stimulation occurs and how this is achieved on a mechanistic level.
Collapse
Affiliation(s)
- Hannah Haberkern
- Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
- Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| |
Collapse
|
13
|
Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain. PLoS One 2016; 11:e0150667. [PMID: 26982717 PMCID: PMC4794219 DOI: 10.1371/journal.pone.0150667] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.
Collapse
|
14
|
Mongeau JM, Sponberg SN, Miller JP, Full RJ. Sensory processing within antenna enables rapid implementation of feedback control for high-speed running maneuvers. J Exp Biol 2015; 218:2344-54. [DOI: 10.1242/jeb.118604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/17/2015] [Indexed: 11/20/2022]
Abstract
Animals are remarkably stable during high-speed maneuvers. As the speed of locomotion increases, neural bandwidth and processing delays can limit the ability to achieve and maintain stable control. Processing the information of sensory stimuli into a control signal within the sensor itself could enable rapid implementation of whole-body feedback control during high-speed locomotion. Here, we show that processing in antennal afferents is sufficient to act as control signal for a fast sensorimotor loop. American cockroaches Periplaneta americana use their antennae to mediate escape running by tracking vertical surfaces such as walls. A control theoretic model of wall following predicts that stable control is possible if the animal can compute wall position (P) and velocity, its derivative, (D). Previous whole-nerve recordings from the antenna during simulated turning experiments demonstrated a population response consistent with P and D encoding, and suggested that the response was synchronized with the timing of a turn executed while wall following. Here, we record extracellularly from individual mechanoreceptors distributed along the antenna and show that these receptors encode D and have distinct latencies and filtering properties. When summed, receptors transform the stimulus into a control signal that could control rapid steering maneuvers. The D encoding within the antenna in addition to the temporal filtering properties and P dependence of the population of afferents support a sensory encoding hypothesis from control theory. Our findings support the hypothesis that peripheral sensory processing can enable rapid implementation of whole-body feedback control during rapid running maneuvers.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, CA 94720-3220, USA
| | - Simon N. Sponberg
- Department of Integrative Biology, University of California – Berkeley, Berkeley, CA 94720-3140, USA
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - John P. Miller
- Center for Computational Biology, Montana State University, Bozeman, MT 59717-3148, USA
| | - Robert J. Full
- Department of Integrative Biology, University of California – Berkeley, Berkeley, CA 94720-3140, USA
| |
Collapse
|
15
|
Yamawaki Y, Ishibashi W. Antennal pointing at a looming object in the cricket Acheta domesticus. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:80-91. [PMID: 24287453 DOI: 10.1016/j.jinsphys.2013.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 06/02/2023]
Abstract
Antennal pointing responses to approaching objects were observed in the house cricket Acheta domesticus. In response to a ball approaching from the lateral side, crickets oriented the antenna ipsilateral to the ball towards it. In response to a ball approaching from the front, crickets oriented both antennae forward. Response rates of antennal pointing were higher when the ball was approaching from the front than from behind. The antennal angle ipsilateral to the approaching ball was positively correlated with approaching angle of the ball. Obstructing the cricket's sight decreased the response rate of antennal pointing, suggesting that this response was elicited mainly by visual stimuli. Although the response rates of antennal pointing decreased when the object ceased its approach at a great distance from the cricket, antennal pointing appeared to be resistant to habituation and was not substantially affected by the velocity, size and trajectory of an approaching ball. When presented with computer-generated visual stimuli, crickets frequently showed the antennal pointing response to a darkening stimulus as well as looming and linearly-expanding stimuli. Drifting gratings rarely elicited the antennal pointing. These results suggest that luminance change is sufficient to elicit antennal pointing.
Collapse
Affiliation(s)
- Yoshifumi Yamawaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan.
| | - Wakako Ishibashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
16
|
Watanabe H, Shimohigashi M, Yokohari F. Serotonin-immunoreactive sensory neurons in the antenna of the cockroachPeriplaneta americana. J Comp Neurol 2013; 522:414-34. [DOI: 10.1002/cne.23419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Hidehiro Watanabe
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| | - Miki Shimohigashi
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| | - Fumio Yokohari
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| |
Collapse
|
17
|
Ache JM, Dürr V. Encoding of near-range spatial information by descending interneurons in the stick insect antennal mechanosensory pathway. J Neurophysiol 2013; 110:2099-112. [DOI: 10.1152/jn.00281.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Much like mammals use their whiskers, insects use their antennae for tactile near-range orientation during locomotion. Stick insects rapidly transfer spatial information about antennal touch location to the front legs, allowing for aimed reach-to-grasp movements. This adaptive behavior requires a spatial coordinate transformation from “antennal contact space” to “leg posture space.” Therefore, a neural pathway must convey proprioceptive and tactile information about antennal posture and contact site to thoracic motor networks. Here we analyze proprioceptive encoding properties of descending interneurons (DINs) that convey information about antennal posture and movement to the thoracic ganglia. On the basis of response properties of 110 DINs to imposed movement of the distal antennal joint, we distinguish five functional DIN groups according to their sensitivity to three parameters: movement direction, movement velocity, and antennal joint angle. These groups are simple position-sensitive DINs, which signal the antennal joint angle; dynamic position-sensitive DINs, which signal the joint angle with strong dependence on movement; unspecific movement-sensitive DINs, which signal movement but not the velocity, position, or direction of movement; and ON- and OFF-type velocity-sensitive DINs. The activity of the latter two groups is increased/attenuated during antennal movement, with the spike rate increasing/decreasing linearly with antennal joint angle velocity. Some movement-sensitive DINs convey spikes to the thorax within 11 ms, suggesting a rapid, direct pathway from antennal mechanosensory to thoracic motor networks. We discuss how the population of DINs could provide the neural basis for the intersegmental spatial coordinate transfer between a touch sensor of the head and thoracic motor networks.
Collapse
Affiliation(s)
- Jan M. Ache
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany; and
- Cognitive Interaction Technology—Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany; and
- Cognitive Interaction Technology—Center of Excellence, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
18
|
Stevenson PA, Schildberger K. Mechanisms of experience dependent control of aggression in crickets. Curr Opin Neurobiol 2013; 23:318-23. [PMID: 23537901 DOI: 10.1016/j.conb.2013.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/19/2012] [Accepted: 03/02/2013] [Indexed: 11/29/2022]
Abstract
Aggression is a highly plastic behaviour, shaped by numerous experiences, and potential costs and benefits of competing, to optimize fitness and survival. Recent studies on crickets provide insights into how nervous systems achieve this. Their fighting behaviour is promoted by physical exertion, winning disputes and possession of resources. These effects are each mediated by octopamine, the invertebrate analogue of noradrenaline. Submissive behaviour, in less well understood. It is induced when the accumulated sum of the opponent's agonistic signals surpass some critical level, and probably mediated by nitric oxide, serotonin and other neuromodulators. We propose that animals can make the decision to fight or flee by modulating the respective behavioural thresholds in response to potentially rewarding and aversive attributes of experiences.
Collapse
Affiliation(s)
- Paul A Stevenson
- Institute for Biology, Leipzig University, Talstr. 33, 04103 Leipzig, Germany.
| | | |
Collapse
|
19
|
Sense, memory, and decision-making in the somatosensory cortical network. Curr Opin Neurobiol 2012; 22:914-9. [PMID: 22939031 DOI: 10.1016/j.conb.2012.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/04/2012] [Accepted: 08/12/2012] [Indexed: 11/23/2022]
|
20
|
Abstract
Active sensing systems are purposive and information-seeking sensory systems. Active sensing usually entails sensor movement, but more fundamentally, it involves control of the sensor apparatus, in whatever manner best suits the task, so as to maximize information gain. In animals, active sensing is perhaps most evident in the modality of touch. In this theme issue, we look at active touch across a broad range of species from insects, terrestrial and marine mammals, through to humans. In addition to analysing natural touch, we also consider how engineering is beginning to exploit physical analogues of these biological systems so as to endow robots with rich tactile sensing capabilities. The different contributions show not only the varieties of active touch--antennae, whiskers and fingertips--but also their commonalities. They explore how active touch sensing has evolved in different animal lineages, how it serves to provide rapid and reliable cues for controlling ongoing behaviour, and even how it can disintegrate when our brains begin to fail. They demonstrate that research on active touch offers a means both to understand this essential and primary sensory modality, and to investigate how animals, including man, combine movement with sensing so as to make sense of, and act effectively in, the world.
Collapse
Affiliation(s)
- Tony J Prescott
- University of Sheffield-Psychology, Western Bank, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
21
|
Behavioral response to antennal tactile stimulation in the field cricket Gryllus bimaculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:557-65. [PMID: 22534774 DOI: 10.1007/s00359-012-0729-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 04/12/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
We examined behavioral responses of the field cricket Gryllus bimaculatus to tactile stimuli to the antennae. Three stimulants of similar shape and size but different textures were used: a tibia from the hunting spider Heteropoda venatoria (potential predator), a tibia from the orb-web spider Argiope bruennichi (less likely predator), and a glass rod. Each stimulus session comprised a first gentle contact and a second strong contact. The evoked behavioral responses were classified into four categories: aversion, aggression, antennal search, and no response. Regardless of the stimulants, the crickets exhibited antennal search and aversion most frequently in response to the first and second stimuli, respectively. The frequency of aversion was significantly higher to the tibia of H. venatoria than to other stimulants. The most striking observation was that aggressive responses were exclusive to the H. venatoria tibia. To specify the hair type that induced aggression, we manipulated two types of common hairs (bristle and fine) on the tibia of the predatory spider. When bristle hairs were removed from the H. venatoria tibia, aggression was significantly reduced. These results suggest that antennae can discriminate the tactile texture of external objects and elicit adaptive behavioral responses.
Collapse
|
22
|
Brecht M, Naumann R, Anjum F, Wolfe J, Munz M, Mende C, Roth-Alpermann C. The neurobiology of Etruscan shrew active touch. Philos Trans R Soc Lond B Biol Sci 2011; 366:3026-36. [PMID: 21969684 PMCID: PMC3172601 DOI: 10.1098/rstb.2011.0160] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Etruscan shrew, Suncus etruscus, is not only the smallest terrestrial mammal, but also one of the fastest and most tactile hunters described to date. The shrew's skeletal muscle consists entirely of fast-twitch types and lacks slow fibres. Etruscan shrews detect, overwhelm, and kill insect prey in large numbers in darkness. The cricket prey is exquisitely mechanosensitive and fast-moving, and is as big as the shrew itself. Experiments with prey replica show that shape cues are both necessary and sufficient for evoking attacks. Shrew attacks are whisker guided by motion- and size-invariant Gestalt-like prey representations. Shrews often attack their prey prior to any signs of evasive manoeuvres. Shrews whisk at frequencies of approximately 14 Hz and can react with latencies as short as 25-30 ms to prey movement. The speed of attacks suggests that shrews identify and classify prey with a single touch. Large parts of the shrew's brain respond to vibrissal touch, which is represented in at least four cortical areas comprising collectively about a third of the cortical volume. Etruscan shrews can enter a torpid state and reduce their body temperature; we observed that cortical response latencies become two to three times longer when body temperature drops from 36°C to 24°C, suggesting that endothermy contributes to the animal's high-speed sensorimotor performance. We argue that small size, high-speed behaviour and extreme dependence on touch are not coincidental, but reflect an evolutionary strategy, in which the metabolic costs of small body size are outweighed by the advantages of being a short-range high-speed touch and kill predator.
Collapse
Affiliation(s)
- Michael Brecht
- BCCN, Humboldt University Berlin, Philippstrasse 13, House 6, 10115 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|