1
|
Ortega-Arzola E, Higgins PM, Cockell CS. The minimum energy required to build a cell. Sci Rep 2024; 14:5267. [PMID: 38438463 PMCID: PMC11306549 DOI: 10.1038/s41598-024-54303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/11/2024] [Indexed: 03/06/2024] Open
Abstract
Understanding the energy requirements for cell synthesis accurately and comprehensively has been a longstanding challenge. We introduce a computational model that estimates the minimum energy necessary to build any cell from its constituent parts. This method combines omics and internal cell compositions from various sources to calculate the Gibbs Free Energy of biosynthesis independently of specific metabolic pathways. Our public tool, Synercell, can be used with other models for minumum species-specific energy estimations in any well-sequenced species. The energy for synthesising the genome, transcriptome, proteome, and lipid bilayer of four cell types: Escherichia coli, Saccharomyces cerevisiae, an average mammalian cell and JCVI-syn3A were estimated. Their modelled minimum synthesis energies at 298 K were 9.54 × 10 - 11 J/cell, 4.99 × 10 - 9 J/cell, 3.71 × 10 - 7 J/cell and 3.69 × 10 - 12 respectively. Gram-for-gram synthesis of lipid bilayers requires the most energy, followed by the proteome, genome, and transcriptome. The average per gram cost of biomass synthesis is in the 300s of J/g for all four cells. Implications for the generalisability of cell construction and applications to biogeosciences, cellular biology, biotechnology, and astrobiology are discussed.
Collapse
Affiliation(s)
- Edwin Ortega-Arzola
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | - Peter M Higgins
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- Department of Earth Sciences, University of Toronto, Toronto, ON, Canada
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Neish C, Malaska MJ, Sotin C, Lopes RMC, Nixon CA, Affholder A, Chatain A, Cockell C, Farnsworth KK, Higgins PM, Miller KE, Soderlund KM. Organic Input to Titan's Subsurface Ocean Through Impact Cratering. ASTROBIOLOGY 2024; 24:177-189. [PMID: 38306187 DOI: 10.1089/ast.2023.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Titan has an organic-rich atmosphere and surface with a subsurface liquid water ocean that may represent a habitable environment. In this work, we determined the amount of organic material that can be delivered from Titan's surface to its ocean through impact cratering. We assumed that Titan's craters produce impact melt deposits composed of liquid water that can founder in its lower-density ice crust and estimated the amount of organic molecules that could be incorporated into these melt lenses. We used known yields for HCN and Titan haze hydrolysis to determine the amount of glycine produced in the melt lenses and found a range of possible flux rates of glycine from the surface to the subsurface ocean. These ranged from 0 to 1011 mol/Gyr for HCN hydrolysis and from 0 to 1014 mol/Gyr for haze hydrolysis. These fluxes suggest an upper limit for biomass productivity of ∼103 kgC/year from a glycine fermentation metabolism. This upper limit is significantly less than recent estimates of the hypothetical biomass production supported by Enceladus's subsurface ocean. Unless biologically available compounds can be sourced from Titan's interior, or be delivered from the surface by other mechanisms, our calculations suggest that even the most organic-rich ocean world in the Solar System may not be able to support a large biosphere.
Collapse
Affiliation(s)
- Catherine Neish
- Department of Earth Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Michael J Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Christophe Sotin
- Laboratoire de Planétologie et Géosciences, Nantes Université, Univ Angers, Le Mans Université, CNRS, UMR 6112, Nantes, France
| | - Rosaly M C Lopes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Conor A Nixon
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Antonin Affholder
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Audrey Chatain
- Departamento de Física Aplicada, Escuela de Ingeniería de Bilbao, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Charles Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Kendra K Farnsworth
- NASA Postdoctoral Program Fellow, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Peter M Higgins
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Krista M Soderlund
- Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Halpern A, Bartsch LR, Ibrahim K, Harrison SA, Ahn M, Christodoulou J, Lane N. Biophysical Interactions Underpin the Emergence of Information in the Genetic Code. Life (Basel) 2023; 13:1129. [PMID: 37240774 PMCID: PMC10221087 DOI: 10.3390/life13051129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
The genetic code conceals a 'code within the codons', which hints at biophysical interactions between amino acids and their cognate nucleotides. Yet, research over decades has failed to corroborate systematic biophysical interactions across the code. Using molecular dynamics simulations and NMR, we have analysed interactions between the 20 standard proteinogenic amino acids and 4 RNA mononucleotides in 3 charge states. Our simulations show that 50% of amino acids bind best with their anticodonic middle base in the -1 charge state common to the backbone of RNA, while 95% of amino acids interact most strongly with at least 1 of their codonic or anticodonic bases. Preference for the cognate anticodonic middle base was greater than 99% of randomised assignments. We verify a selection of our results using NMR, and highlight challenges with both techniques for interrogating large numbers of weak interactions. Finally, we extend our simulations to a range of amino acids and dinucleotides, and corroborate similar preferences for cognate nucleotides. Despite some discrepancies between the predicted patterns and those observed in biology, the existence of weak stereochemical interactions means that random RNA sequences could template non-random peptides. This offers a compelling explanation for the emergence of genetic information in biology.
Collapse
Affiliation(s)
- Aaron Halpern
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Lilly R. Bartsch
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Kaan Ibrahim
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Stuart A. Harrison
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Minkoo Ahn
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology (ISMB), University College London, London WC1E 6BT, UK
| | - John Christodoulou
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology (ISMB), University College London, London WC1E 6BT, UK
| | - Nick Lane
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
4
|
Zhang Z, Jiang H, Ju P, Pan L, Rouillard J, Zhou G, Huang F, Hao J. Evaluating the abiotic synthesis potential and the stability of building blocks of life beneath an impact-induced steam atmosphere. Front Microbiol 2023; 14:1032073. [PMID: 37089554 PMCID: PMC10116804 DOI: 10.3389/fmicb.2023.1032073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
A prerequisite for prebiotic chemistry is the accumulation of critical building blocks of life. Some studies argue that more frequent impact events on the primitive Earth could have induced a more reducing steam atmosphere and thus favor widespread and more efficient synthesis of life building blocks. However, elevated temperature is also proposed to threaten the stability of organics and whether life building blocks could accumulate to appreciable levels in the reducing yet hot surface seawater beneath the steam atmosphere is still poorly examined. Here, we used a thermodynamic tool to examine the synthesis affinity of various life building blocks using inorganic gasses as reactants at elevated temperatures and corresponding steam pressures relevant with the steam-seawater interface. Our calculations show that although the synthesis affinity of all life building blocks decreases when temperature increases, many organics, including methane, methanol, and carboxylic acids, have positive synthesis affinity over a wide range of temperatures, implying that these species were favorable to form (>10-6 molal) in the surface seawater. However, cyanide and formaldehyde have overall negative affinities, suggesting that these critical compounds would tend to undergo hydrolysis in the surface seawaters. Most of the 18 investigated amino acids have positive affinities at temperature <220°C and their synthesis affinity increases under more alkaline conditions. Sugars, ribose, and nucleobases have overall negative synthesis affinities at the investigated range of temperatures. Synthesis affinities are shown to be sensitive to the hydrogen fugacity. Higher hydrogen fugacity (in equilibrium with FQI or IW) favors the synthesis and accumulation of nearly all the investigated compounds, except for HCN and its derivate products. In summary, our results suggest that reducing conditions induced by primitive impacts could indeed favor the synthesis/accumulation of some life building blocks, but some critical species, particularly HCN and nucleosides, were still unfavorable to accumulate to appreciable levels. Our results can provide helpful guidance for future efforts to search for or understand the stability of biomolecules on other planets like Mars and icy moons. We advocate examining craters formed by more reducing impactors to look for the preservation of prebiotic materials.
Collapse
Affiliation(s)
- Zongbin Zhang
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Haofan Jiang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Pengcheng Ju
- State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, China
- Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi’an, China
| | - Lu Pan
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, China
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joti Rouillard
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Gentao Zhou
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Fang Huang
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, China
| | - Jihua Hao
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China (USTC), Hefei, Anhui, China
| |
Collapse
|
5
|
Mayers KMJ, Kuhlisch C, Basso JTR, Saltvedt MR, Buchan A, Sandaa RA. Grazing on Marine Viruses and Its Biogeochemical Implications. mBio 2023; 14:e0192121. [PMID: 36715508 PMCID: PMC9973340 DOI: 10.1128/mbio.01921-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Viruses are the most abundant biological entities in the ocean and show great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host cell lysis to release their progeny and thereby redirect nutrients from higher to lower trophic levels. Studies continue to show that marine viruses can be ingested by nonhost organisms. However, not much is known about the role of viral particles as a nutrient source and whether they possess a nutritional value to the grazing organisms. This review seeks to assess the elemental composition and biogeochemical relevance of marine viruses, including roseophages, which are a highly abundant group of bacteriophages in the marine environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of the largest viral particles in the marine plankton that are well in the size range of prey for marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon and energy sources, which further increases their nutritional value. Marine viruses may thus be an important nutritional component of the marine plankton, which can be reintegrated into the classical food web by nonhost organism grazing, a process that we coin the "viral sweep." Possibilities for future research to resolve this process are highlighted and discussed in light of current technological advancements.
Collapse
Affiliation(s)
- Kyle M. J. Mayers
- Environment and Climate Division, NORCE Norwegian Research Centre, Bergen, Norway
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonelle T. R. Basso
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Ruth-Anne Sandaa
- Department of Microbiology, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Nunes Palmeira R, Colnaghi M, Harrison SA, Pomiankowski A, Lane N. The limits of metabolic heredity in protocells. Proc Biol Sci 2022; 289:20221469. [PMID: 36350219 PMCID: PMC9653231 DOI: 10.1098/rspb.2022.1469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The universal core of metabolism could have emerged from thermodynamically favoured prebiotic pathways at the origin of life. Starting with H
2
and CO
2
, the synthesis of amino acids and mixed fatty acids, which self-assemble into protocells, is favoured under warm anoxic conditions. Here, we address whether it is possible for protocells to evolve greater metabolic complexity, through positive feedbacks involving nucleotide catalysis. Using mathematical simulations to model metabolic heredity in protocells, based on branch points in protometabolic flux, we show that nucleotide catalysis can indeed promote protocell growth. This outcome only occurs when nucleotides directly catalyse CO
2
fixation. Strong nucleotide catalysis of other pathways (e.g. fatty acids and amino acids) generally unbalances metabolism and slows down protocell growth, and when there is competition between catalytic functions cell growth collapses. Autocatalysis of nucleotide synthesis can promote growth but only if nucleotides also catalyse CO
2
fixation; autocatalysis alone leads to the accumulation of nucleotides at the expense of CO
2
fixation and protocell growth rate. Our findings offer a new framework for the emergence of greater metabolic complexity, in which nucleotides catalyse broad-spectrum processes such as CO
2
fixation, hydrogenation and phosphorylation important to the emergence of genetic heredity at the origin of life.
Collapse
Affiliation(s)
- Raquel Nunes Palmeira
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Marco Colnaghi
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Stuart A. Harrison
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
7
|
Harrison SA, Palmeira RN, Halpern A, Lane N. A biophysical basis for the emergence of the genetic code in protocells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148597. [PMID: 35868450 DOI: 10.1016/j.bbabio.2022.148597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
The origin of the genetic code is an abiding mystery in biology. Hints of a 'code within the codons' suggest biophysical interactions, but these patterns have resisted interpretation. Here, we present a new framework, grounded in the autotrophic growth of protocells from CO2 and H2. Recent work suggests that the universal core of metabolism recapitulates a thermodynamically favoured protometabolism right up to nucleotide synthesis. Considering the genetic code in relation to an extended protometabolism allows us to predict most codon assignments. We show that the first letter of the codon corresponds to the distance from CO2 fixation, with amino acids encoded by the purines (G followed by A) being closest to CO2 fixation. These associations suggest a purine-rich early metabolism with a restricted pool of amino acids. The second position of the anticodon corresponds to the hydrophobicity of the amino acid encoded. We combine multiple measures of hydrophobicity to show that this correlation holds strongly for early amino acids but is weaker for later species. Finally, we demonstrate that redundancy at the third position is not randomly distributed around the code: non-redundant amino acids can be assigned based on size, specifically length. We attribute this to additional stereochemical interactions at the anticodon. These rules imply an iterative expansion of the genetic code over time with codon assignments depending on both distance from CO2 and biophysical interactions between nucleotide sequences and amino acids. In this way the earliest RNA polymers could produce non-random peptide sequences with selectable functions in autotrophic protocells.
Collapse
Affiliation(s)
- Stuart A Harrison
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Raquel Nunes Palmeira
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Aaron Halpern
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
8
|
Simona C, Venturi S, Tassi F, Simona R, Cabassi J, Capecchiacci F, Bicocchi G, Vaselli O, Morrison HG, Sogin ML, Fazi S. Geochemical and microbiological profiles in hydrothermal extreme acidic environments (Pisciarelli Spring, Campi Flegrei, Italy). FEMS Microbiol Ecol 2022; 98:6650346. [PMID: 35883234 DOI: 10.1093/femsec/fiac088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 11/14/2022] Open
Abstract
Although terrestrial hydrothermal systems are considered among the most fascinating environments, how their unique and extreme conditions can affect microorganisms selection and the role in biogeochemical cycles has not yet been well elucidated. A combined geochemical and microbiological exploration in waters and sediments from ten sampling points along a sharp temperature gradient (15-90 °C) within an extremely acidic hydrothermal system (Pisciarelli Spring, Campi Flegrei area, southern Italy) displayed how hydrothermal fluids influence the microbial dynamics. This area was characterized by high levels of reduced gaseous species (e.g. H2S, H2, CH4, CO), and very low pH values (<2.3). Thermodynamic calculations revealed a high microbial catabolic potential in oxidation/reduction reactions of N-, S-, and Fe-bearing species. Overall, an increase of the archaeal/bacterial abundance ratio was observed by decreasing temperature and pH values. In particular, Archaea and Bacteria were present in almost equal cell abundance (up to 1.1 × 109 and 9.3 × 108 cell/g, respectively) in the <70 °C sampling points (average pH = 2.09); on the contrary, highest temperature waters (85-90 °C; average pH = 2.26) were characterized by low abundance of archaeal cells. The high-throughput sequencing of 16S rRNA gene indicated strong differences in archaeal and bacterial communities' composition along temperature gradient. However, the microbiome in this extreme environment was mainly constituted by chemoautotrophic microorganisms that were likely involved in N-, S-, and Fe-bearing species transformations (e.g. Acidianus infernus, Ferroplasma acidarmanus, Acidithiobacillus, Sulfobacillus, Thaumarchaeota), in agreement with thermodynamic calculations.
Collapse
Affiliation(s)
- Crognale Simona
- IRSA - CNR Water Research Institute, Via Salaria km 29.300 - CP10, 00015 Monterotondo, Rome (Italy)
| | - Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence (Italy).,IGG - CNR Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Florence (Italy)
| | - Franco Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence (Italy).,IGG - CNR Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Florence (Italy)
| | - Rossetti Simona
- IRSA - CNR Water Research Institute, Via Salaria km 29.300 - CP10, 00015 Monterotondo, Rome (Italy)
| | - Jacopo Cabassi
- IGG - CNR Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Florence (Italy)
| | - Francesco Capecchiacci
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence (Italy).,IGG - CNR Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Florence (Italy).,Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Napoli, Osservatorio Vesuviano, Via Diocleziano 328, 80125 Napoli, Italy
| | - Gabriele Bicocchi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence (Italy)
| | - Orlando Vaselli
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence (Italy).,IGG - CNR Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Florence (Italy)
| | | | | | - Stefano Fazi
- IRSA - CNR Water Research Institute, Via Salaria km 29.300 - CP10, 00015 Monterotondo, Rome (Italy)
| |
Collapse
|
9
|
Wimmer JLE, Xavier JC, Vieira ADN, Pereira DPH, Leidner J, Sousa FL, Kleinermanns K, Preiner M, Martin WF. Energy at Origins: Favorable Thermodynamics of Biosynthetic Reactions in the Last Universal Common Ancestor (LUCA). Front Microbiol 2021; 12:793664. [PMID: 34966373 PMCID: PMC8710812 DOI: 10.3389/fmicb.2021.793664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Though all theories for the origin of life require a source of energy to promote primordial chemical reactions, the nature of energy that drove the emergence of metabolism at origins is still debated. We reasoned that evidence for the nature of energy at origins should be preserved in the biochemical reactions of life itself, whereby changes in free energy, ΔG, which determine whether a reaction can go forward or not, should help specify the source. By calculating values of ΔG across the conserved and universal core of 402 individual reactions that synthesize amino acids, nucleotides and cofactors from H2, CO2, NH3, H2S and phosphate in modern cells, we find that 95-97% of these reactions are exergonic (ΔG ≤ 0 kJ⋅mol-1) at pH 7-10 and 80-100°C under nonequilibrium conditions with H2 replacing biochemical reductants. While 23% of the core's reactions involve ATP hydrolysis, 77% are ATP-independent, thermodynamically driven by ΔG of reactions involving carbon bonds. We identified 174 reactions that are exergonic by -20 to -300 kJ⋅mol-1 at pH 9 and 80°C and that fall into ten reaction types: six pterin dependent alkyl or acyl transfers, ten S-adenosylmethionine dependent alkyl transfers, four acyl phosphate hydrolyses, 14 thioester hydrolyses, 30 decarboxylations, 35 ring closure reactions, 31 aromatic ring formations, and 44 carbon reductions by reduced nicotinamide, flavins, ferredoxin, or formate. The 402 reactions of the biosynthetic core trace to the last universal common ancestor (LUCA), and reveal that synthesis of LUCA's chemical constituents required no external energy inputs such as electric discharge, UV-light or phosphide minerals. The biosynthetic reactions of LUCA uncover a natural thermodynamic tendency of metabolism to unfold from energy released by reactions of H2, CO2, NH3, H2S, and phosphate.
Collapse
Affiliation(s)
- Jessica L. E. Wimmer
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joana C. Xavier
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrey d. N. Vieira
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Delfina P. H. Pereira
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jacqueline Leidner
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Filipa L. Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Karl Kleinermanns
- Department of Chemistry, Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Preiner
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - William F. Martin
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Evolutionary Aspects of the Oxido-Reductive Network of Methylglyoxal. J Mol Evol 2021; 89:618-638. [PMID: 34718825 DOI: 10.1007/s00239-021-10031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
In the chemoautotrophic theory for the origin of life, offered as an alternative to broth theory, the archaic reductive citric acid cycle operating without enzymes is in the center. The non-enzymatic (methyl)glyoxalase pathway has been suggested to be the anaplerotic route for the reductive citric acid cycle. In the recent years, much has been learned about methylglyoxal, but its importance in the metabolic machinery is still uncovered. If methylglyoxal had been essential participant of the early stage of evolution, then it is a legitimate question whether it might have played a role in the early oxido-reduction network, too. Therefore, an oxido-reduction network of methylglyoxal that might have functioned under ancient circumstances without enzymes was constructed and analyzed by virtue of group contribution method. Taking methylglyoxal as input material, it turned out that the evolutionary value of reactions and biomolecules were not similar. Glycerol, glycerate, and tartonate, the output components, were conserved to different degrees. Although the tartonate route was similarly favorable from energetic point of view, its intermediates are almost not present in extant biochemistry. The presence of two carboxyl or aldehyde groups, or their combination in tricarbons of the constructed network seemed disadvantageous for selection, and the inductive effect, resulting in an asymmetry in electron cloud of chemicals, might have been important. The evolutionary role for cysteine, H2S, and formaldehyde in the emergence of high-energy bonds in the form of thioesters and in Fe-S cluster formation as well as in imidazole synthesis was shown to bridge the gap between prebiotic chemistry and contemporary biochemistry. Overall, the ideas developed here represent an approach fitting to chemoautotrophic origin of life and implying to the role of methylglyoxal in triose formation. The proposed network is expected to have an impact upon how one may think of prebiological chemical processes on methylglyoxal, too. Finally, along the evolutionary time line, the network functioning without enzymes is situated between the formation of simple organic compounds and primeval cells, being closer to the former and well preceding the last common metabolic ancestor developed after primitive cells emerged.
Collapse
|
11
|
Thermodynamics of Potential CHO Metabolites in a Reducing Environment. Life (Basel) 2021; 11:life11101025. [PMID: 34685396 PMCID: PMC8537574 DOI: 10.3390/life11101025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
How did metabolism arise and evolve? What chemical compounds might be suitable to support and sustain a proto-metabolism before the advent of more complex co-factors? We explore these questions by using first-principles quantum chemistry to calculate the free energies of CHO compounds in aqueous solution, allowing us to probe the thermodynamics of core extant cycles and their closely related chemical cousins. By framing our analysis in terms of the simplest feasible cycle and its permutations, we analyze potentially favorable thermodynamic cycles for CO2 fixation with H2 as a reductant. We find that paying attention to redox states illuminates which reactions are endergonic or exergonic. Our results highlight the role of acetate in proto-metabolic cycles, and its connection to other prebiotic molecules such as glyoxalate, glycolaldehyde, and glycolic acid.
Collapse
|
12
|
Cron B, Macalady JL, Cosmidis J. Organic Stabilization of Extracellular Elemental Sulfur in a Sulfurovum-Rich Biofilm: A New Role for Extracellular Polymeric Substances? Front Microbiol 2021; 12:720101. [PMID: 34421879 PMCID: PMC8377587 DOI: 10.3389/fmicb.2021.720101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
This work shines light on the role of extracellular polymeric substance (EPS) in the formation and preservation of elemental sulfur biominerals produced by sulfur-oxidizing bacteria. We characterized elemental sulfur particles produced within a Sulfurovum-rich biofilm in the Frasassi Cave System (Italy). The particles adopt spherical and bipyramidal morphologies, and display both stable (α-S8) and metastable (β-S8) crystal structures. Elemental sulfur is embedded within a dense matrix of EPS, and the particles are surrounded by organic envelopes rich in amide and carboxylic groups. Organic encapsulation and the presence of metastable crystal structures are consistent with elemental sulfur organomineralization, i.e., the formation and stabilization of elemental sulfur in the presence of organics, a mechanism that has previously been observed in laboratory studies. This research provides new evidence for the important role of microbial EPS in mineral formation in the environment. We hypothesize that the extracellular organics are used by sulfur-oxidizing bacteria for the stabilization of elemental sulfur minerals outside of the cell wall as a store of chemical energy. The stabilization of energy sources (in the form of a solid electron acceptor) in biofilms is a potential new role for microbial EPS that requires further investigation.
Collapse
Affiliation(s)
- Brandi Cron
- Salish Sea Research Center, Northwest Indian College, Bellingham, WA, United States
- Department of Geosciences, The Pennsylvania State University, University Park, PA, United States
| | - Jennifer L. Macalady
- Department of Geosciences, The Pennsylvania State University, University Park, PA, United States
| | - Julie Cosmidis
- Department of Geosciences, The Pennsylvania State University, University Park, PA, United States
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Savoie ER, Lanclos VC, Henson MW, Cheng C, Getz EW, Barnes SJ, LaRowe DE, Rappé MS, Thrash JC. Ecophysiology of the Cosmopolitan OM252 Bacterioplankton ( Gammaproteobacteria). mSystems 2021; 6:e0027621. [PMID: 34184914 PMCID: PMC8269220 DOI: 10.1128/msystems.00276-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Among the thousands of species that comprise marine bacterioplankton communities, most remain functionally obscure. One key cosmopolitan group in this understudied majority is the OM252 clade of Gammaproteobacteria. Although frequently found in sequence data and even previously cultured, the diversity, metabolic potential, physiology, and distribution of this clade has not been thoroughly investigated. Here, we examined these features of OM252 bacterioplankton using a newly isolated strain and genomes from publicly available databases. We demonstrated that this group constitutes a globally distributed novel genus ("Candidatus Halomarinus"), sister to Litoricola, comprising two subclades and multiple distinct species. OM252 organisms have small genomes (median, 2.21 Mbp) and are predicted obligate aerobes capable of alternating between chemoorganoheterotrophic and chemolithotrophic growth using reduced sulfur compounds as electron donors. Subclade I genomes encode genes for the Calvin-Benson-Bassham cycle for carbon fixation. One representative strain of subclade I, LSUCC0096, had extensive halotolerance and a mesophilic temperature range for growth, with a maximum rate of 0.36 doublings/h at 35°C. Cells were curved rod/spirillum-shaped, ∼1.5 by 0.2 μm. Growth yield on thiosulfate as the sole electron donor under autotrophic conditions was roughly one-third that of heterotrophic growth, even though calculations indicated similar Gibbs energies for both catabolisms. These phenotypic data show that some "Ca. Halomarinus" organisms can switch between serving as carbon sources or sinks and indicate the likely anabolic cost of lithoautotrophic growth. Our results thus provide new hypotheses about the roles of these organisms in global biogeochemical cycling of carbon and sulfur. IMPORTANCE Marine microbial communities are teeming with understudied taxa due to the sheer numbers of species in any given sample of seawater. One group, the OM252 clade of Gammaproteobacteria, has been identified in gene surveys from myriad locations, and one isolated organism has even been genome sequenced (HIMB30). However, further study of these organisms has not occurred. Using another isolated representative (strain LSUCC0096) and publicly available genome sequences from metagenomic and single-cell genomic data sets, we examined the diversity within the OM252 clade and the distribution of these taxa in the world's oceans, reconstructed the predicted metabolism of the group, and quantified growth dynamics in LSUCC0096. Our results generate new knowledge about the previously enigmatic OM252 clade and point toward the importance of facultative chemolithoautotrophy for supporting some clades of ostensibly "heterotrophic" taxa.
Collapse
Affiliation(s)
- Emily R. Savoie
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - V. Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael W. Henson
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Chuankai Cheng
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Eric W. Getz
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Shelby J. Barnes
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Douglas E. LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael S. Rappé
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Kāneʻohe, Hawaii, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
14
|
LaRowe DE, Carlson HK, Amend JP. The Energetic Potential for Undiscovered Manganese Metabolisms in Nature. Front Microbiol 2021; 12:636145. [PMID: 34177823 PMCID: PMC8220133 DOI: 10.3389/fmicb.2021.636145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are found in nearly every surface and near-surface environment, where they gain energy by catalyzing reactions among a wide variety of chemical compounds. The discovery of new catabolic strategies and microbial habitats can therefore be guided by determining which redox reactions can supply energy under environmentally-relevant conditions. In this study, we have explored the thermodynamic potential of redox reactions involving manganese, one of the most abundant transition metals in the Earth's crust. In particular, we have assessed the Gibbs energies of comproportionation and disproportionation reactions involving Mn2+ and several Mn-bearing oxide and oxyhydroxide minerals containing Mn in the +II, +III, and +IV oxidation states as a function of temperature (0-100°C) and pH (1-13). In addition, we also calculated the energetic potential of Mn2+ oxidation coupled to O2, NO2 -, NO3 -, and FeOOH. Results show that these reactions-none of which, except O2 + Mn2+, are known catabolisms-can provide energy to microorganisms, particularly at higher pH values and temperatures. Comproportionation between Mn2+ and pyrolusite, for example, can yield 10 s of kJ (mol Mn)-1. Disproportionation of Mn3+ can yield more than 100 kJ (mol Mn)-1 at conditions relevant to natural settings such as sediments, ferromanganese nodules and crusts, bioreactors and suboxic portions of the water column. Of the Mn2+ oxidation reactions, the one with nitrite as the electron acceptor is most energy yielding under most combinations of pH and temperature. We posit that several Mn redox reactions represent heretofore unknown microbial metabolisms.
Collapse
Affiliation(s)
- Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Harold K Carlson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
15
|
Dick JM. Water as a reactant in the differential expression of proteins in cancer. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jeffrey M. Dick
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education School of Geosciences and Info‐Physics Central South University Changsha China
| |
Collapse
|
16
|
Hart C, Gorman-Lewis D. Energetics of Acidianus ambivalens growth in response to oxygen availability. GEOBIOLOGY 2021; 19:48-62. [PMID: 32902110 DOI: 10.1111/gbi.12413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
All life requires energy to drive metabolic reactions such as growth and cell maintenance; therefore, fluctuations in energy availability can alter microbial activity. There is a gap in our knowledge concerning how energy availability affects the growth of extreme chemolithoautotrophs. Toward this end, we investigated the growth of thermoacidophile Acidianus ambivalens during sulfur oxidation under aerobic to microaerophilic conditions. Calorimetry was used to measure enthalpy (ΔHinc ) of microbial activity, and chemical changes in growth media were measured to calculate Gibbs energy change (ΔGinc ) during incubation. In all experiments, Gibbs energy was primarily dissipated through the release of heat, which suggests enthalpy-driven growth. In microaerophilic conditions, growth was significantly more efficient in terms of biomass yield (defined as C-mol biomass per mole sulfur consumed) and resulted in lower ΔGinc and ΔHinc . ΔGinc in oxygen-limited (OL) and oxygen- and CO2 -limited (OCL) microaerophilic growth conditions resulted in averages of -1.44 × 103 kJ/C-mol and -7.56 × 102 kJ/C-mol, respectively, and average ΔHinc values of -1.11 × 105 kJ/C-mol and -4.43 × 104 kJ/C-mol, respectively. High-oxygen experiments resulted in lower biomass yield values, an increase in ΔGinc to -1.71 × 104 kJ/C-mol, and more exothermic ΔHinc values of -4.71 × 105 kJ/C-mol. The observed inefficiency in high-oxygen conditions may suggest larger maintenance energy demands due to oxidative stresses and a preference for growth in microaerophilic environments.
Collapse
Affiliation(s)
- Chloe Hart
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Drew Gorman-Lewis
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Zakem EJ, Polz MF, Follows MJ. Redox-informed models of global biogeochemical cycles. Nat Commun 2020; 11:5680. [PMID: 33173062 PMCID: PMC7656242 DOI: 10.1038/s41467-020-19454-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Microbial activity mediates the fluxes of greenhouse gases. However, in the global models of the marine and terrestrial biospheres used for climate change projections, typically only photosynthetic microbial activity is resolved mechanistically. To move forward, we argue that global biogeochemical models need a theoretically grounded framework with which to constrain parameterizations of diverse microbial metabolisms. Here, we explain how the key redox chemistry underlying metabolisms provides a path towards this goal. Using this first-principles approach, the presence or absence of metabolic functional types emerges dynamically from ecological interactions, expanding model applicability to unobserved environments. “Nothing is less real than realism. It is only by selection, by elimination, by emphasis, that we get at the real meaning of things.” –Georgia O’Keefe Marine microbial activities fuel biogeochemical cycles that impact the climate, but global models do not account for the myriad physiological processes that microbes perform. Here the authors argue for a model framework that reinterprets the ocean as physics coupled to biologically-driven redox chemistry.
Collapse
Affiliation(s)
- Emily J Zakem
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Higgins PM, Cockell CS. A bioenergetic model to predict habitability, biomass and biosignatures in astrobiology and extreme conditions. J R Soc Interface 2020; 17:20200588. [PMID: 33081642 PMCID: PMC7653372 DOI: 10.1098/rsif.2020.0588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022] Open
Abstract
In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ([Formula: see text]) and total methane production ([Formula: see text]) despite an increase in peak growth rates ([Formula: see text]) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Collapse
Affiliation(s)
- P. M. Higgins
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - C. S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Bioenergetic characterization of a shallow-sea hydrothermal vent system: Milos Island, Greece. PLoS One 2020; 15:e0234175. [PMID: 32502166 PMCID: PMC7274409 DOI: 10.1371/journal.pone.0234175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/19/2020] [Indexed: 11/19/2022] Open
Abstract
Shallow-sea hydrothermal systems, like their deep-sea and terrestrial counterparts, can serve as relatively accessible portals into the microbial ecology of subsurface environments. In this study, we determined the chemical composition of 47 sediment porewater samples along a transect from a diffuse shallow-sea hydrothermal vent to a non-thermal background area in Paleochori Bay, Milos Island, Greece. These geochemical data were combined with thermodynamic calculations to quantify potential sources of energy that may support in situ chemolithotrophy. The Gibbs energies (ΔGr) of 730 redox reactions involving 23 inorganic H-, O-, C-, N-, S-, Fe-, Mn-, and As-bearing compounds were calculated. Of these reactions, 379 were exergonic at one or more sampling locations. The greatest energy yields were from anaerobic CO oxidation with NO2- (-136 to -162 kJ/mol e-), followed by reactions in which the electron acceptor/donor pairs were O2/CO, NO3-/CO, and NO2-/H2S. When expressed as energy densities (where the concentration of the limiting reactant is taken into account), a different set of redox reactions are the most exergonic: in sediments affected by hydrothermal input, sulfide oxidation with a range of electron acceptors or nitrite reduction with different electron donors provide 85~245 J per kg of sediment, whereas in sediments less affected or unaffected by hydrothermal input, various S0 oxidation reactions and aerobic respiration reactions with several different electron donors are most energy-yielding (80~95 J per kg of sediment). A model that considers seawater mixing with hydrothermal fluids revealed that there is up to ~50 times more energy available for microorganisms that can use S0 or H2S as electron donors and NO2- or O2 as electron acceptors compared to other reactions. In addition to revealing likely metabolic pathways in the near-surface and subsurface mixing zones, thermodynamic calculations like these can help guide novel microbial cultivation efforts to isolate new species.
Collapse
|
20
|
Preiner M, Asche S, Becker S, Betts HC, Boniface A, Camprubi E, Chandru K, Erastova V, Garg SG, Khawaja N, Kostyrka G, Machné R, Moggioli G, Muchowska KB, Neukirchen S, Peter B, Pichlhöfer E, Radványi Á, Rossetto D, Salditt A, Schmelling NM, Sousa FL, Tria FDK, Vörös D, Xavier JC. The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life (Basel) 2020; 10:E20. [PMID: 32110893 PMCID: PMC7151616 DOI: 10.3390/life10030020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.
Collapse
Affiliation(s)
- Martina Preiner
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Silke Asche
- School of Chemistry, University of Glasgow, Glasgow G128QQ, UK;
| | - Sidney Becker
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Holly C. Betts
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK;
| | - Adrien Boniface
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 69130 Ecully, France;
| | - Eloi Camprubi
- Origins Center, Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands;
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, UKM Bangi 43600, Selangor, Malaysia;
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6–Dejvice, Czech Republic
| | - Valentina Erastova
- UK Centre for Astrobiology, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Sriram G. Garg
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Nozair Khawaja
- Institut für Geologische Wissenschaften, Freie Universität Berlin, 12249 Berlin, Germany;
| | | | - Rainer Machné
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Quantitative and Theoretical Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Giacomo Moggioli
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4DQ, UK;
| | - Kamila B. Muchowska
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France;
| | - Sinje Neukirchen
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Benedikt Peter
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Edith Pichlhöfer
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Ádám Radványi
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Daniele Rossetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Annalena Salditt
- Systems Biophysics, Physics Department, Ludwig-Maximilians-Universität München, 80799 Munich, Germany;
| | - Nicolas M. Schmelling
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Filipa L. Sousa
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Fernando D. K. Tria
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Dániel Vörös
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Joana C. Xavier
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| |
Collapse
|
21
|
Jain S, Dietrich HM, Müller V, Basen M. Formate Is Required for Growth of the Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui Lacking Hydrogen-Dependent Carbon Dioxide Reductase (HDCR). Front Microbiol 2020; 11:59. [PMID: 32082286 PMCID: PMC7005907 DOI: 10.3389/fmicb.2020.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
The hydrogen-dependent carbon dioxide reductase is a soluble enzyme complex that directly utilizes hydrogen (H2) for the reduction of carbon dioxide (CO2) to formate in the first step of the acetyl-coenzyme A- or Wood-Ljungdahl pathway (WLP). HDCR consists of 2 catalytic subunits, a hydrogenase and a formate dehydrogenase (FDH) and two small subunits carrying iron-sulfur clusters. The enzyme complex has been purified and characterized from two acetogenic bacteria, from the mesophile Acetobacterium woodii and, recently, from the thermophile Thermoanaerobacter kivui. Physiological studies toward the importance of the HDCR for growth and formate metabolism in acetogens have not been carried out yet, due to the lack of genetic tools. Here, we deleted the genes encoding HDCR in T. kivui taking advantage of the recently developed genetic system. As expected, the deletion mutant (strain TKV_MB013) did not grow with formate as single substrate or under autotrophic conditions with H2 + CO2. Surprisingly, the strain did also not grow on any other substrate (sugars, mannitol or pyruvate), except for when formate was added. Concentrated cell suspensions quickly consumed formate in the presence of glucose only. In conclusion, HDCR provides formate which was essential for growth of the T. kivui mutant. Alternatively, extracellularly added formate served as terminal electron acceptor in addition to CO2, complementing the growth deficiency. The results show a tight coupling of multi-carbon substrate oxidation to the WLP. The metabolism in the mutant can be viewed as a coupled formate + CO2 respiration, which may be an ancient metabolic trait.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Helge M Dietrich
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mirko Basen
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Maltais TR, VanderVelde D, LaRowe DE, Goldman AD, Barge LM. Reactivity of Metabolic Intermediates and Cofactor Stability under Model Early Earth Conditions. ORIGINS LIFE EVOL B 2020; 50:35-55. [PMID: 31981046 DOI: 10.1007/s11084-019-09590-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/30/2019] [Indexed: 01/24/2023]
Abstract
Understanding the emergence of metabolic pathways is key to unraveling the factors that promoted the origin of life. One popular view is that protein cofactors acted as catalysts prior to the evolution of the protein enzymes with which they are now associated. We investigated the stability of acetyl coenzyme A (Acetyl Co-A, the group transfer cofactor in citric acid synthesis in the TCA cycle) under early Earth conditions, as well as whether Acetyl Co-A or its small molecule analogs thioacetate or acetate can catalyze the transfer of an acetyl group onto oxaloacetate in the absence of the citrate synthase enzyme. Several different temperatures, pH ranges, and compositions of aqueous environments were tested to simulate the Earth's early ocean and its possible components; the effect of these variables on oxaloacetate and cofactor chemistry were assessed under ambient and anoxic conditions. The cofactors tested are chemically stable under early Earth conditions, but none of the three compounds (Acetyl Co-A, thioacetate, or acetate) promoted synthesis of citric acid from oxaloacetate under the conditions tested. Oxaloacetate reacted with itself and/or decomposed to form a sequence of other products under ambient conditions, and under anoxic conditions was more stable; under ambient conditions the specific chemical pathways observed depended on the environmental conditions such as pH and presence/absence of bicarbonate or salt ions in early Earth ocean simulants. This work demonstrates the stability of these metabolic intermediates under anoxic conditions. However, even though free cofactors may be stable in a geological environmental setting, an enzyme or other mechanism to promote reaction specificity would likely be necessary for at least this particular reaction to proceed.
Collapse
Affiliation(s)
- Thora R Maltais
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - David VanderVelde
- Department of Chemistry, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA
| | - Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA, 90089, USA
| | - Aaron D Goldman
- Department of Biology, Oberlin College, Science Center K123 119 Woodland St., Oberlin, OH, 44074, USA.,Blue Marble Space Institute for Science, Seattle, Washington, 98154, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA.
| |
Collapse
|
23
|
Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry. Life (Basel) 2020; 10:life10010006. [PMID: 31963928 PMCID: PMC7175156 DOI: 10.3390/life10010006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
A variety of organic chemicals were likely available on prebiotic Earth. These derived from diverse processes including atmospheric and geochemical synthesis and extraterrestrial input, and were delivered to environments including oceans, lakes, and subaerial hot springs. Prebiotic chemistry generates both molecules used by modern organisms, such as proteinaceous amino acids, as well as many molecule types not used in biochemistry. As prebiotic chemical diversity was likely high, and the core of biochemistry uses a rather small set of common building blocks, the majority of prebiotically available organic compounds may not have been those used in modern biochemistry. Chemical evolution was unlikely to have been able to discriminate which molecules would eventually be used in biology, and instead, interactions among compounds were governed simply by abundance and chemical reactivity. Previous work has shown that likely prebiotically available α-hydroxy acids can combinatorially polymerize into polyesters that self-assemble to create new phases which are able to compartmentalize other molecule types. The unexpectedly rich complexity of hydroxy acid chemistry and the likely enormous structural diversity of prebiotic organic chemistry suggests chemical evolution could have been heavily influenced by molecules not used in contemporary biochemistry, and that there is a considerable amount of prebiotic chemistry which remains unexplored.
Collapse
|
24
|
Sanden SA, Yi R, Hara M, McGlynn SE. Simultaneous synthesis of thioesters and iron–sulfur clusters in water: two universal components of energy metabolism. Chem Commun (Camb) 2020; 56:11989-11992. [DOI: 10.1039/d0cc04078a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thioesters and peptide ligated [Fe–S] clusters can be synthesized simultaneously from thioacetic acid in an aqueous one-pot reaction.
Collapse
Affiliation(s)
- Sebastian A. Sanden
- Earth Life Science Institute
- Tokyo Institute of Technology
- Meguro
- Japan
- School of Materials and Chemical Technology
| | - Ruiqin Yi
- Earth Life Science Institute
- Tokyo Institute of Technology
- Meguro
- Japan
| | - Masahiko Hara
- Earth Life Science Institute
- Tokyo Institute of Technology
- Meguro
- Japan
- School of Materials and Chemical Technology
| | - Shawn E. McGlynn
- Earth Life Science Institute
- Tokyo Institute of Technology
- Meguro
- Japan
- Center for Sustainable Resource Science
| |
Collapse
|
25
|
Vasiliadou R, Dimov N, Szita N, Jordan SF, Lane N. Possible mechanisms of CO 2 reduction by H 2 via prebiotic vectorial electrochemistry. Interface Focus 2019; 9:20190073. [PMID: 31641439 PMCID: PMC6802132 DOI: 10.1098/rsfs.2019.0073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Methanogens are putatively ancestral autotrophs that reduce CO2 with H2 to form biomass using a membrane-bound, proton-motive Fe(Ni)S protein called the energy-converting hydrogenase (Ech). At the origin of life, geologically sustained H+ gradients across inorganic barriers containing Fe(Ni)S minerals could theoretically have driven CO2 reduction by H2 through vectorial chemistry in a similar way to Ech. pH modulation of the redox potentials of H2, CO2 and Fe(Ni)S minerals could in principle enable an otherwise endergonic reaction. Here, we analyse whether vectorial electrochemistry can facilitate the reduction of CO2 by H2 under alkaline hydrothermal conditions using a microfluidic reactor. We present pilot data showing that steep pH gradients of approximately 5 pH units can be sustained over greater than 5 h across Fe(Ni)S barriers, with H+-flux across the barrier about two million-fold faster than OH--flux. This high flux produces a calculated 3-pH unit-gradient (equating to 180 mV) across single approximately 25-nm Fe(Ni)S nanocrystals, which is close to that required to reduce CO2. However, the poor solubility of H2 at atmospheric pressure limits CO2 reduction by H2, explaining why organic synthesis has so far proved elusive in our reactor. Higher H2 concentration will be needed in future to facilitate CO2 reduction through prebiotic vectorial electrochemistry.
Collapse
Affiliation(s)
- Rafaela Vasiliadou
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Nikolay Dimov
- School of Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Sean F. Jordan
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
26
|
Liu Y, Sumpter DJT. Mathematical modeling reveals spontaneous emergence of self-replication in chemical reaction systems. J Biol Chem 2018; 293:18854-18863. [PMID: 30282809 PMCID: PMC6295724 DOI: 10.1074/jbc.ra118.003795] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/29/2018] [Indexed: 01/20/2023] Open
Abstract
Explaining the origin of life requires us to elucidate how self-replication arises. To be specific, how can a self-replicating entity develop spontaneously from a chemical reaction system in which no reaction is self-replicating? Previously proposed mathematical models either supply an explicit framework for a minimal living system or consider only catalyzed reactions, and thus fail to provide a comprehensive theory. Here, we set up a general mathematical model for chemical reaction systems that properly accounts for energetics, kinetics, and the conservation law. We found that 1) some systems are collectively catalytic, a mode whereby reactants are transformed into end products with the assistance of intermediates (as in the citric acid cycle), whereas some others are self-replicating, that is, different parts replicate each other and the system self-replicates as a whole (as in the formose reaction, in which sugar is replicated from formaldehyde); 2) side reactions do not always inhibit such systems; 3) randomly chosen chemical universes (namely random artificial chemistries) often contain one or more such systems; 4) it is possible to construct a self-replicating system in which the entropy of some parts spontaneously decreases, in a manner similar to that discussed by Schrödinger; and 5) complex self-replicating molecules can emerge spontaneously and relatively easily from simple chemical reaction systems through a sequence of transitions. Together, these results start to explain the origins of prebiotic evolution.
Collapse
Affiliation(s)
- Yu Liu
- From the Department of Mathematics, Uppsala University, 75105 Uppsala, Sweden
| | - David J T Sumpter
- From the Department of Mathematics, Uppsala University, 75105 Uppsala, Sweden
| |
Collapse
|
27
|
Sleep NH. Geological and Geochemical Constraints on the Origin and Evolution of Life. ASTROBIOLOGY 2018; 18:1199-1219. [PMID: 30124324 DOI: 10.1089/ast.2017.1778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The traditional tree of life from molecular biology with last universal common ancestor (LUCA) branching into bacteria and archaea (though fuzzy) is likely formally valid enough to be a basis for discussion of geological processes on the early Earth. Biologists infer likely properties of nodal organisms within the tree and, hence, the environment they inhabited. Geologists both vet tenuous trees and putative origin of life scenarios for geological and ecological reasonability and conversely infer geological information from trees. The latter approach is valuable as geologists have only weakly constrained the time when the Earth became habitable and the later time when life actually existed to the long interval between ∼4.5 and ∼3.85 Ga where no intact surface rocks are known. With regard to vetting, origin and early evolution hypotheses from molecular biology have recently centered on serpentinite settings in marine and alternatively land settings that are exposed to ultraviolet sunlight. The existence of these niches on the Hadean Earth is virtually certain. With regard to inferring geological environment from genomics, nodes on the tree of life can arise from true bottlenecks implied by the marine serpentinite origin scenario and by asteroid impact. Innovation of a very useful trait through a threshold allows the successful organism to quickly become very abundant and later root a large clade. The origin of life itself, that is, the initial Darwinian ancestor, the bacterial and archaeal roots as free-living cellular organisms that independently escaped hydrothermal chimneys above marine serpentinite or alternatively from shallow pore-water environments on land, the Selabacteria root with anoxygenic photosynthesis, and the Terrabacteria root colonizing land are attractive examples that predate the geological record. Conversely, geological reasoning presents likely events for appraisal by biologists. Asteroid impacts may have produced bottlenecks by decimating life. Thermophile roots of bacteria and archaea as well as a thermophile LUCA are attractive.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University , Stanford, California
| |
Collapse
|
28
|
Gutekunst K. Hypothesis on the Synchronistic Evolution of Autotrophy and Heterotrophy. Trends Biochem Sci 2018; 43:402-411. [DOI: 10.1016/j.tibs.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
29
|
West T, Sojo V, Pomiankowski A, Lane N. The origin of heredity in protocells. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0419. [PMID: 29061892 PMCID: PMC5665807 DOI: 10.1098/rstb.2016.0419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2017] [Indexed: 12/27/2022] Open
Abstract
Here we develop a computational model that examines one of the first major biological innovations-the origin of heredity in simple protocells. The model assumes that the earliest protocells were autotrophic, producing organic matter from CO2 and H2 Carbon fixation was facilitated by geologically sustained proton gradients across fatty acid membranes, via iron-sulfur nanocrystals lodged within the membranes. Thermodynamic models suggest that organics formed this way should include amino acids and fatty acids. We assume that fatty acids partition to the membrane. Some hydrophobic amino acids chelate FeS nanocrystals, producing three positive feedbacks: (i) an increase in catalytic surface area; (ii) partitioning of FeS nanocrystals to the membrane; and (iii) a proton-motive active site for carbon fixing that mimics the enzyme Ech. These positive feedbacks enable the fastest-growing protocells to dominate the early ecosystem through a simple form of heredity. We propose that as new organics are produced inside the protocells, the localized high-energy environment is more likely to form ribonucleotides, linking RNA replication to its ability to drive protocell growth from the beginning. Our novel conceptualization sets out conditions under which protocell heredity and competition could arise, and points to where crucial experimental work is required.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Timothy West
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.,Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK
| | - Victor Sojo
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.,Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK.,Systems Biophysics, Faculty of Physics, Ludwig-Maximilian University of Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Andrew Pomiankowski
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.,Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK .,Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
30
|
Whicher A, Camprubi E, Pinna S, Herschy B, Lane N. Acetyl Phosphate as a Primordial Energy Currency at the Origin of Life. ORIGINS LIFE EVOL B 2018; 48:159-179. [PMID: 29502283 PMCID: PMC6061221 DOI: 10.1007/s11084-018-9555-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/24/2018] [Indexed: 11/30/2022]
Abstract
Metabolism is primed through the formation of thioesters via acetyl CoA and the phosphorylation of substrates by ATP. Prebiotic equivalents such as methyl thioacetate and acetyl phosphate have been proposed to catalyse analogous reactions at the origin of life, but their propensity to hydrolyse challenges this view. Here we show that acetyl phosphate (AcP) can be synthesised in water within minutes from thioacetate (but not methyl thioacetate) under ambient conditions. AcP is stable over hours, depending on temperature, pH and cation content, giving it an ideal poise between stability and reactivity. We show that AcP can phosphorylate nucleotide precursors such as ribose to ribose-5-phosphate and adenosine to adenosine monophosphate, at modest (~2%) yield in water, and at a range of pH. AcP can also phosphorylate ADP to ATP in water over several hours at 50 °C. But AcP did not promote polymerization of either glycine or AMP. The amino group of glycine was preferentially acetylated by AcP, especially at alkaline pH, hindering the formation of polypeptides. AMP formed small stacks of up to 7 monomers, but these did not polymerise in the presence of AcP in aqueous solution. We conclude that AcP can phosphorylate biologically meaningful substrates in a manner analogous to ATP, promoting the origins of metabolism, but is unlikely to have driven polymerization of macromolecules such as polypeptides or RNA in free solution. This is consistent with the idea that a period of monomer (cofactor) catalysis preceded the emergence of polymeric enzymes or ribozymes at the origin of life.
Collapse
Affiliation(s)
- Alexandra Whicher
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Eloi Camprubi
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Silvana Pinna
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Barry Herschy
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
31
|
Russell MJ, Nitschke W. Methane: Fuel or Exhaust at the Emergence of Life? ASTROBIOLOGY 2017; 17:1053-1066. [PMID: 28949766 PMCID: PMC5655419 DOI: 10.1089/ast.2016.1599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/20/2017] [Indexed: 05/28/2023]
Abstract
As many of the methanogens first encountered at hydrothermal vents were thermophilic to hyperthermophilic and comprised one of the lower roots of the evolutionary tree, it has been assumed that methanogenesis was one of the earliest, if not the earliest, pathway to life. It being well known that hydrothermal springs associated with serpentinization also bore abiotic methane, it had been further assumed that emergent biochemistry merely adopted and quickened this supposed serpentinization reaction. Yet, recent hydrothermal experiments simulating serpentinization have failed to generate methane so far, thus casting doubt on this assumption. The idea that the inverse view is worthy of debate, that is, that methanotrophy was the earlier, is stymied by the "fact" that methanotrophy itself has been termed "reverse methanogenesis," so allotting the methanogens the founding pedigree. Thus, attempting to suggest instead that methanogenesis might be termed reverse methanotrophy would require "unlearning"-a challenge to the subconscious! Here we re-examine the "impossibility" of methanotrophy predating methanogenesis as in what we have termed the "denitrifying methanotrophic acetogenic pathway." Advantages offered by such thinking are that methane would not only be a fuel but also a ready source of reduced carbon to combine with formate or carbon monoxide-available in hydrothermal fluids-to generate acetate, a target molecule of the first autotrophs. And the nitrate/nitrite required for the putative oxidation of methane with activated NO would also be a ready source of fixed nitrogen for amination reactions. Theoretical conditions for such a putative pathway would be met in a hydrothermal green rust-bearing exhalative pile and associated chimneys subject to proton and electron counter gradients. This hypothesis could be put to test in a high-pressure hydrothermal reaction chamber in which a cool carbonate/nitrate/nitrite-bearing early acidulous ocean simulant is juxtaposed across a precipitate membrane to an alkaline solution of hydrogen and methane. Key Words: Green rust-Methanotrophy-Nitrate reduction-Emergence of life. Astrobiology 17, 1053-1066.
Collapse
Affiliation(s)
- Michael J. Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Wolfgang Nitschke
- CNRS/Aix-Marseille University, BIP UMR 7281, IMM FR 3479, Marseille, France
| |
Collapse
|
32
|
Dick JM. Chemical composition and the potential for proteomic transformation in cancer, hypoxia, and hyperosmotic stress. PeerJ 2017; 5:e3421. [PMID: 28603672 PMCID: PMC5463988 DOI: 10.7717/peerj.3421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
The changes of protein expression that are monitored in proteomic experiments are a type of biological transformation that also involves changes in chemical composition. Accompanying the myriad molecular-level interactions that underlie any proteomic transformation, there is an overall thermodynamic potential that is sensitive to microenvironmental conditions, including local oxidation and hydration potential. Here, up- and down-expressed proteins identified in 71 comparative proteomics studies were analyzed using the average oxidation state of carbon (ZC) and water demand per residue (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O), calculated using elemental abundances and stoichiometric reactions to form proteins from basis species. Experimental lowering of oxygen availability (hypoxia) or water activity (hyperosmotic stress) generally results in decreased ZC or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O of up-expressed compared to down-expressed proteins. This correspondence of chemical composition with experimental conditions provides evidence for attraction of the proteomes to a low-energy state. An opposite compositional change, toward higher average oxidation or hydration state, is found for proteomic transformations in colorectal and pancreatic cancer, and in two experiments for adipose-derived stem cells. Calculations of chemical affinity were used to estimate the thermodynamic potentials for proteomic transformations as a function of fugacity of O2 and activity of H2O, which serve as scales of oxidation and hydration potential. Diagrams summarizing the relative potential for formation of up- and down-expressed proteins have predicted equipotential lines that cluster around particular values of oxygen fugacity and water activity for similar datasets. The changes in chemical composition of proteomes are likely linked with reactions among other cellular molecules. A redox balance calculation indicates that an increase in the lipid to protein ratio in cancer cells by 20% over hypoxic cells would generate a large enough electron sink for oxidation of the cancer proteomes. The datasets and computer code used here are made available in a new R package, canprot.
Collapse
|
33
|
Abstract
Chemiosmotic coupling - the harnessing of electrochemical ion gradients across membranes to drive metabolism - is as universally conserved as the genetic code. As argued previously in these pages, such deep conservation suggests that ion gradients arose early in evolution, and might have played a role in the origin of life. Alkaline hydrothermal vents harbour pH gradients of similar polarity and magnitude to those employed by modern cells, one of many properties that make them attractive models for life's origin. Their congruence with the physiology of anaerobic autotrophs that use the acetyl CoA pathway to fix CO2 gives the alkaline vent model broad appeal to biologists. Recently, however, a paper by Baz Jackson criticized the hypothesis, concluding that natural pH gradients were unlikely to have played any role in the origin of life. Unfortunately, Jackson mainly criticized his own interpretations of the theory, not what the literature says. This counterpoint is intended to set the record straight.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
34
|
Mathis C, Bhattacharya T, Walker SI. The Emergence of Life as a First-Order Phase Transition. ASTROBIOLOGY 2017; 17:266-276. [PMID: 28323481 DOI: 10.1089/ast.2016.1481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
It is well known that life on Earth alters its environment over evolutionary and geological timescales. An important open question is whether this is a result of evolutionary optimization or a universal feature of life. In the latter case, the origin of life would be coincident with a shift in environmental conditions. Here we present a model for the emergence of life in which replicators are explicitly coupled to their environment through the recycling of a finite supply of resources. The model exhibits a dynamic, first-order phase transition from nonlife to life, where the life phase is distinguished by selection on replicators. We show that environmental coupling plays an important role in the dynamics of the transition. The transition corresponds to a redistribution of matter in replicators and their environment, driven by selection on replicators, exhibiting an explosive growth in diversity as replicators are selected. The transition is accurately tracked by the mutual information shared between replicators and their environment. In the absence of successfully repartitioning system resources, the transition fails to complete, leading to the possibility of many frustrated trials before life first emerges. Often, the replicators that initiate the transition are not those that are ultimately selected. The results are consistent with the view that life's propensity to shape its environment is indeed a universal feature of replicators, characteristic of the transition from nonlife to life. We discuss the implications of these results for understanding life's emergence and evolutionary transitions more broadly. Key Words: Origin of life-Prebiotic evolution-Astrobiology-Biopolymers-Life. Astrobiology 17, 266-276.
Collapse
Affiliation(s)
- Cole Mathis
- 1 Department of Physics, Arizona State University , Tempe, Arizona
| | - Tanmoy Bhattacharya
- 2 Santa Fe Institute , Santa Fe, New Mexico
- 3 Los Alamos National Laboratory , Los Alamos, New Mexico
| | - Sara Imari Walker
- 4 Beyond Center for Fundamental Concepts in Science and School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
- 5 Blue Marble Space Institute of Science , Seattle, Washington
| |
Collapse
|
35
|
Pisapia C, Gérard E, Gérard M, Lecourt L, Lang SQ, Pelletier B, Payri CE, Monnin C, Guentas L, Postec A, Quéméneur M, Erauso G, Ménez B. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems. Front Microbiol 2017; 8:57. [PMID: 28197130 PMCID: PMC5281578 DOI: 10.3389/fmicb.2017.00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica, are identified as the first chimneys inhabitants before archaeal Methanosarcinales. They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that the Firmicutes identified at PHF may have a versatile metabolism with the capability to use diverse organic compounds from biological or abiotic origin. From that perspective, this study sheds new light on the structure of deep microbial communities living at the energetic edge in serpentinites and may provide an alternative model of the earliest metabolisms.
Collapse
Affiliation(s)
- Céline Pisapia
- Geomicrobiology Group, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche ScientifiqueParis, France
- DISCO beamline, Synchrotron SOLEILSaint Aubin, France
| | - Emmanuelle Gérard
- Geomicrobiology Group, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche ScientifiqueParis, France
| | - Martine Gérard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Institut de Recherche pour le Développement, Université Pierre et Marie CurieParis, France
| | - Léna Lecourt
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Institut de Recherche pour le Développement, Université Pierre et Marie CurieParis, France
| | - Susan Q. Lang
- Department of Earth and Ocean Sciences, School of the Earth, Ocean and Environment, University of South Carolina, ColumbiaSC, USA
| | - Bernard Pelletier
- GIS Grand Observatoire de l’environnement et de la biodiversité terrestre et marine dans le Pacifique Sud, Centre IRD de NouméaNouméa, New Caledonia
| | | | - Christophe Monnin
- Géosciences Environnement Toulouse, Université Paul Sabatier, Centre National de la Recherche Scientifique, Institut de Recherche pour le DéveloppementToulouse, France
| | - Linda Guentas
- UR227 COREUS, Centre IRD de NouméaNouméa, New Caledonia
- Laboratoire Matériaux Polymères Interfaces Environnement Marin EA 4323, Université de ToulonLa Garde, France
- Mediterranean Institute of Oceanography, Centre IRD de NouméaNouméa, New Caledonia
- Laboratoire Insulaire du Vivant et de l’Environnement, Université de la Nouvelle-CalédonieNouméa, New Caledonia
| | - Anne Postec
- Aix Marseille Université, Centre National de la Recherche Scientifique – Institut National des Sciences de L’Univers, Université de Toulon, Institut de Recherche pour le Développement, Mediterranean Institute of OceanographyMarseille, France
| | - Marianne Quéméneur
- Aix Marseille Université, Centre National de la Recherche Scientifique – Institut National des Sciences de L’Univers, Université de Toulon, Institut de Recherche pour le Développement, Mediterranean Institute of OceanographyMarseille, France
| | - Gaël Erauso
- Aix Marseille Université, Centre National de la Recherche Scientifique – Institut National des Sciences de L’Univers, Université de Toulon, Institut de Recherche pour le Développement, Mediterranean Institute of OceanographyMarseille, France
| | - Bénédicte Ménez
- Geomicrobiology Group, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche ScientifiqueParis, France
| |
Collapse
|
36
|
Abstract
Thermophilic microorganisms as well as acetogenic bacteria are both considered ancient. Interestingly, only a few species of bacteria, all belonging to the family Thermoanaerobacteraceae, are described to conserve energy from acetate formation with hydrogen as electron donor and carbon dioxide as electron acceptor. This review reflects the metabolic differences between Moorella spp., Thermoanaerobacter kivui and Thermacetogenium phaeum, with focus on the biochemistry of autotrophic growth and energy conservation. The potential of these thermophilic acetogens for biotechnological applications is discussed briefly.
Collapse
Affiliation(s)
- Mirko Basen
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany.
| |
Collapse
|
37
|
Araujo Granda P, Gras A, Ginovart M. MbT-Tool: An open-access tool based on Thermodynamic Electron Equivalents Model to obtain microbial-metabolic reactions to be used in biotechnological process. Comput Struct Biotechnol J 2016; 14:325-32. [PMID: 27635191 PMCID: PMC5013251 DOI: 10.1016/j.csbj.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022] Open
Abstract
Modelling cellular metabolism is a strategic factor in investigating microbial behaviour and interactions, especially for bio-technological processes. A key factor for modelling microbial activity is the calculation of nutrient amounts and products generated as a result of the microbial metabolism. Representing metabolic pathways through balanced reactions is a complex and time-consuming task for biologists, ecologists, modellers and engineers. A new computational tool to represent microbial pathways through microbial metabolic reactions (MMRs) using the approach of the Thermodynamic Electron Equivalents Model has been designed and implemented in the open-access framework NetLogo. This computational tool, called MbT-Tool (Metabolism based on Thermodynamics) can write MMRs for different microbial functional groups, such as aerobic heterotrophs, nitrifiers, denitrifiers, methanogens, sulphate reducers, sulphide oxidizers and fermenters. The MbT-Tool's code contains eighteen organic and twenty inorganic reduction-half-reactions, four N-sources (NH4 (+), NO3 (-), NO2 (-), N2) to biomass synthesis and twenty-four microbial empirical formulas, one of which can be determined by the user (CnHaObNc). MbT-Tool is an open-source program capable of writing MMRs based on thermodynamic concepts, which are applicable in a wide range of academic research interested in designing, optimizing and modelling microbial activity without any extensive chemical, microbiological and programing experience.
Collapse
Affiliation(s)
- Pablo Araujo Granda
- Chemical Engineering Faculty, Central University of Ecuador, Ciudad Universitaria – Ritter s/n y Bolivia, P.O. Box. 17-01-3972, Quito, Ecuador
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Edifici D4, Esteve Terradas 8, 08860 Castelldefels, Barcelona, Spain
| | - Anna Gras
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Edifici D4, Esteve Terradas 8, 08860 Castelldefels, Barcelona, Spain
| | - Marta Ginovart
- Department of Mathematics, Universitat Politència de Catalunya, Edifici D4, Esteve Terradas 8, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
38
|
Domagal-Goldman SD, Wright KE, Adamala K, Arina de la Rubia L, Bond J, Dartnell LR, Goldman AD, Lynch K, Naud ME, Paulino-Lima IG, Singer K, Walther-Antonio M, Abrevaya XC, Anderson R, Arney G, Atri D, Azúa-Bustos A, Bowman JS, Brazelton WJ, Brennecka GA, Carns R, Chopra A, Colangelo-Lillis J, Crockett CJ, DeMarines J, Frank EA, Frantz C, de la Fuente E, Galante D, Glass J, Gleeson D, Glein CR, Goldblatt C, Horak R, Horodyskyj L, Kaçar B, Kereszturi A, Knowles E, Mayeur P, McGlynn S, Miguel Y, Montgomery M, Neish C, Noack L, Rugheimer S, Stüeken EE, Tamez-Hidalgo P, Imari Walker S, Wong T. The Astrobiology Primer v2.0. ASTROBIOLOGY 2016; 16:561-653. [PMID: 27532777 PMCID: PMC5008114 DOI: 10.1089/ast.2015.1460] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/06/2016] [Indexed: 05/09/2023]
Affiliation(s)
- Shawn D Domagal-Goldman
- 1 NASA Goddard Space Flight Center , Greenbelt, Maryland, USA
- 2 Virtual Planetary Laboratory , Seattle, Washington, USA
| | - Katherine E Wright
- 3 University of Colorado at Boulder , Colorado, USA
- 4 Present address: UK Space Agency, UK
| | - Katarzyna Adamala
- 5 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota, USA
| | | | - Jade Bond
- 7 Department of Physics, University of New South Wales , Sydney, Australia
| | | | | | - Kennda Lynch
- 10 Division of Biological Sciences, University of Montana , Missoula, Montana, USA
| | - Marie-Eve Naud
- 11 Institute for research on exoplanets (iREx) , Université de Montréal, Montréal, Canada
| | - Ivan G Paulino-Lima
- 12 Universities Space Research Association , Mountain View, California, USA
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | - Kelsi Singer
- 14 Southwest Research Institute , Boulder, Colorado, USA
| | | | - Ximena C Abrevaya
- 16 Instituto de Astronomía y Física del Espacio (IAFE) , UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rika Anderson
- 17 Department of Biology, Carleton College , Northfield, Minnesota, USA
| | - Giada Arney
- 18 University of Washington Astronomy Department and Astrobiology Program , Seattle, Washington, USA
| | - Dimitra Atri
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Jeff S Bowman
- 19 Lamont-Doherty Earth Observatory, Columbia University , Palisades, New York, USA
| | | | | | - Regina Carns
- 22 Polar Science Center, Applied Physics Laboratory, University of Washington , Seattle, Washington, USA
| | - Aditya Chopra
- 23 Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University , Canberra, Australia
| | - Jesse Colangelo-Lillis
- 24 Earth and Planetary Science, McGill University , and the McGill Space Institute, Montréal, Canada
| | | | - Julia DeMarines
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Carie Frantz
- 27 Department of Geosciences, Weber State University , Ogden, Utah, USA
| | - Eduardo de la Fuente
- 28 IAM-Departamento de Fisica, CUCEI , Universidad de Guadalajara, Guadalajara, México
| | - Douglas Galante
- 29 Brazilian Synchrotron Light Laboratory , Campinas, Brazil
| | - Jennifer Glass
- 30 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia , USA
| | | | | | - Colin Goldblatt
- 33 School of Earth and Ocean Sciences, University of Victoria , Victoria, Canada
| | - Rachel Horak
- 34 American Society for Microbiology , Washington, DC, USA
| | | | - Betül Kaçar
- 36 Harvard University , Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
| | - Akos Kereszturi
- 37 Research Centre for Astronomy and Earth Sciences , Hungarian Academy of Sciences, Budapest, Hungary
| | - Emily Knowles
- 38 Johnson & Wales University , Denver, Colorado, USA
| | - Paul Mayeur
- 39 Rensselaer Polytechnic Institute , Troy, New York, USA
| | - Shawn McGlynn
- 40 Earth Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
| | - Yamila Miguel
- 41 Laboratoire Lagrange, UMR 7293, Université Nice Sophia Antipolis , CNRS, Observatoire de la Côte d'Azur, Nice, France
| | | | - Catherine Neish
- 43 Department of Earth Sciences, The University of Western Ontario , London, Canada
| | - Lena Noack
- 44 Royal Observatory of Belgium , Brussels, Belgium
| | - Sarah Rugheimer
- 45 Department of Astronomy, Harvard University , Cambridge, Massachusetts, USA
- 46 University of St. Andrews , St. Andrews, UK
| | - Eva E Stüeken
- 47 University of Washington , Seattle, Washington, USA
- 48 University of California , Riverside, California, USA
| | | | - Sara Imari Walker
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
- 50 School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University , Tempe, Arizona, USA
| | - Teresa Wong
- 51 Department of Earth and Planetary Sciences, Washington University in St. Louis , St. Louis, Missouri, USA
| |
Collapse
|
39
|
The physiology and habitat of the last universal common ancestor. Nat Microbiol 2016; 1:16116. [DOI: 10.1038/nmicrobiol.2016.116] [Citation(s) in RCA: 545] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/21/2016] [Indexed: 02/03/2023]
|
40
|
Dick JM. Proteomic indicators of oxidation and hydration state in colorectal cancer. PeerJ 2016; 4:e2238. [PMID: 27547546 PMCID: PMC4958012 DOI: 10.7717/peerj.2238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
New integrative approaches are needed to harness the potential of rapidly growing datasets of protein expression and microbial community composition in colorectal cancer. Chemical and thermodynamic models offer theoretical tools to describe populations of biomacromolecules and their relative potential for formation in different microenvironmental conditions. The average oxidation state of carbon (ZC) can be calculated as an elemental ratio from the chemical formulas of proteins, and water demand per residue (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O) is computed by writing the overall formation reactions of proteins from basis species. Using results reported in proteomic studies of clinical samples, many datasets exhibit higher mean ZC or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O of proteins in carcinoma or adenoma compared to normal tissue. In contrast, average protein compositions in bacterial genomes often have lower ZC for bacteria enriched in fecal samples from cancer patients compared to healthy donors. In thermodynamic calculations, the potential for formation of the cancer-related proteins is energetically favored by changes in the chemical activity of H2O and fugacity of O2 that reflect the compositional differences. The compositional analysis suggests that a systematic change in chemical composition is an essential feature of cancer proteomes, and the thermodynamic descriptions show that the observed proteomic transformations in host tissue could be promoted by relatively high microenvironmental oxidation and hydration states.
Collapse
|
41
|
LaRowe DE, Amend JP. The energetics of anabolism in natural settings. THE ISME JOURNAL 2016; 10:1285-95. [PMID: 26859771 PMCID: PMC5029197 DOI: 10.1038/ismej.2015.227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 11/09/2022]
Abstract
The environmental conditions that describe an ecosystem define the amount of energy available to the resident organisms and the amount of energy required to build biomass. Here, we quantify the amount of energy required to make biomass as a function of temperature, pressure, redox state, the sources of C, N and S, cell mass and the time that an organism requires to double or replace its biomass. Specifically, these energetics are calculated from 0 to 125 °C, 0.1 to 500 MPa and -0.38 to +0.86 V using CO2, acetate or CH4 for C, NO3(-) or NH4(+) for N and SO4(2-) or HS(-) for S. The amounts of energy associated with synthesizing the biomolecules that make up a cell, which varies over 39 kJ (g cell)(-1), are then used to compute energy-based yield coefficients for a vast range of environmental conditions. Taken together, environmental variables and the range of cell sizes leads to a ~4 orders of magnitude difference between the number of microbial cells that can be made from a Joule of Gibbs energy under the most (5.06 × 10(11) cells J(-1)) and least (5.21 × 10(7) cells J(-1)) ideal conditions. When doubling/replacement time is taken into account, the range of anabolism energies can expand even further.
Collapse
Affiliation(s)
- Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
42
|
Sousa FL, Nelson-Sathi S, Martin WF. One step beyond a ribosome: The ancient anaerobic core. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1027-1038. [PMID: 27150504 PMCID: PMC4906156 DOI: 10.1016/j.bbabio.2016.04.284] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 11/23/2022]
Abstract
Life arose in a world without oxygen and the first organisms were anaerobes. Here we investigate the gene repertoire of the prokaryote common ancestor, estimating which genes it contained and to which lineages of modern prokaryotes it was most similar in terms of gene content. Using a phylogenetic approach we found that among trees for all 8779 protein families shared between 134 archaea and 1847 bacterial genomes, only 1045 have sequences from at least two bacterial and two archaeal groups and retain the ancestral archaeal–bacterial split. Among those, the genes shared by anaerobes were identified as candidate genes for the prokaryote common ancestor, which lived in anaerobic environments. We find that these anaerobic prokaryote common ancestor genes are today most frequently distributed among methanogens and clostridia, strict anaerobes that live from low free energy changes near the thermodynamic limit of life. The anaerobic families encompass genes for bifunctional acetyl-CoA-synthase/CO-dehydrogenase, heterodisulfide reductase subunits C and A, ferredoxins, and several subunits of the Mrp-antiporter/hydrogenase family, in addition to numerous S-adenosyl methionine (SAM) dependent methyltransferases. The data indicate a major role for methyl groups in the metabolism of the prokaryote common ancestor. The data furthermore indicate that the prokaryote ancestor possessed a rotor stator ATP synthase, but lacked cytochromes and quinones as well as identifiable redox-dependent ion pumping complexes. The prokaryote ancestor did possess, however, an Mrp-type H+/Na+ antiporter complex, capable of transducing geochemical pH gradients into biologically more stable Na+-gradients. The findings implicate a hydrothermal, autotrophic, and methyl-dependent origin of life. This article is part of a Special Issue entitled ‘EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2–6, 2016’, edited by Prof. Paolo Bernardi. Life arose without oxygen, the universal ancestor (Luca) was an anaerobe. We used phylogenetic and physiological criteria to identify genes present in Luca. An ancient core of 65 metabolic genes shed light on Luca's anaerobic lifestyle. Ancient core genes are most widespread among modern methanogens and clostridia. The data implicate a major role for methyl groups in Luca's anaerobic metabolism.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute for Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany.
| | - Shijulal Nelson-Sathi
- Institute for Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
43
|
Sojo V, Herschy B, Whicher A, Camprubí E, Lane N. The Origin of Life in Alkaline Hydrothermal Vents. ASTROBIOLOGY 2016; 16:181-97. [PMID: 26841066 DOI: 10.1089/ast.2015.1406] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.
Collapse
Affiliation(s)
- Victor Sojo
- 1 Department of Genetics, Evolution and Environment, University College London , London, UK
- 2 CoMPLEX, University College London , London, UK
| | - Barry Herschy
- 1 Department of Genetics, Evolution and Environment, University College London , London, UK
| | - Alexandra Whicher
- 1 Department of Genetics, Evolution and Environment, University College London , London, UK
| | - Eloi Camprubí
- 1 Department of Genetics, Evolution and Environment, University College London , London, UK
| | - Nick Lane
- 1 Department of Genetics, Evolution and Environment, University College London , London, UK
- 2 CoMPLEX, University College London , London, UK
| |
Collapse
|
44
|
Schönheit P, Buckel W, Martin WF. On the Origin of Heterotrophy. Trends Microbiol 2016; 24:12-25. [DOI: 10.1016/j.tim.2015.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
45
|
Keller MA, Zylstra A, Castro C, Turchyn AV, Griffin JL, Ralser M. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. SCIENCE ADVANCES 2016; 2:e1501235. [PMID: 26824074 PMCID: PMC4730858 DOI: 10.1126/sciadv.1501235] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.
Collapse
Affiliation(s)
- Markus A. Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Andre Zylstra
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Cecilia Castro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Alexandra V. Turchyn
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
46
|
Abstract
In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Filipa L Sousa
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Abstract
To better understand the origin, evolution, and extent of life, we seek to determine the minimum flux of energy needed for organisms to remain viable. Despite the difficulties associated with direct measurement of the power limits for life, it is possible to use existing data and models to constrain the minimum flux of energy required to sustain microorganisms. Here, a we apply a bioenergetic model to a well characterized marine sedimentary environment in order to quantify the amount of power organisms use in an ultralow-energy setting. In particular, we show a direct link between power consumption in this environment and the amount of biomass (cells cm-3) found in it. The power supply resulting from the aerobic degradation of particular organic carbon (POC) at IODP Site U1370 in the South Pacific Gyre is between ∼10-12 and 10-16 W cm-3. The rates of POC degradation are calculated using a continuum model while Gibbs energies have been computed using geochemical data describing the sediment as a function of depth. Although laboratory-determined values of maintenance power do a poor job of representing the amount of biomass in U1370 sediments, the number of cells per cm-3 can be well-captured using a maintenance power, 190 zW cell-1, two orders of magnitude lower than the lowest value reported in the literature. In addition, we have combined cell counts and calculated power supplies to determine that, on average, the microorganisms at Site U1370 require 50–3500 zW cell-1, with most values under ∼300 zW cell-1. Furthermore, we carried out an analysis of the absolute minimum power requirement for a single cell to remain viable to be on the order of 1 zW cell-1.
Collapse
Affiliation(s)
- Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles CA, USA
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles CA, USA ; Department of Biological Sciences, University of Southern California, Los Angeles CA, USA
| |
Collapse
|
48
|
Abstract
The formal oxidation state of carbon atoms in organic molecules depends on the covalent structure. In proteins, the average oxidation state of carbon (Z(C)) can be calculated as an elemental ratio from the chemical formula. To investigate oxidation-reduction (redox) patterns, groups of proteins from different subcellular locations and phylogenetic groups were selected for comparison. Extracellular proteins of yeast have a relatively high oxidation state of carbon, corresponding with oxidizing conditions outside of the cell. However, an inverse relationship between Z(C) and redox potential occurs between the endoplasmic reticulum and cytoplasm. This trend provides support for the hypothesis that protein transport and turnover are ultimately coupled to the maintenance of different glutathione redox potentials in subcellular compartments. There are broad changes in Z(C) in whole-genome protein compositions in microbes from different environments, and in Rubisco homologues, lower Z(C) tends to occur in organisms with higher optimal growth temperature. Energetic costs calculated from thermodynamic models are consistent with the notion that thermophilic organisms exhibit molecular adaptation to not only high temperature but also the reducing nature of many hydrothermal fluids. Further characterization of the material requirements of protein metabolism in terms of the chemical conditions of cells and environments may help to reveal other linkages among biochemical processes with implications for changes on evolutionary time scales.
Collapse
Affiliation(s)
- Jeffrey M Dick
- Department of Chemistry, Curtin University, Perth, Western Australia, Australia Department of Applied Geology, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
49
|
Sousa FL, Hordijk W, Steel M, Martin WF. Autocatalytic sets in E. coli metabolism. ACTA ACUST UNITED AC 2015; 6:4. [PMID: 25995773 PMCID: PMC4429071 DOI: 10.1186/s13322-015-0009-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 11/27/2014] [Indexed: 02/01/2023]
Abstract
Background A central unsolved problem in early evolution concerns self-organization towards higher complexity in chemical reaction networks. In theory, autocatalytic sets have useful properties to help model such transitions. Autocatalytic sets are chemical reaction systems in which molecules belonging to the set catalyze the synthesis of other members of the set. Given an external supply of starting molecules – the food set – and the conditions that (i) all reactions are catalyzed by at least one molecule, and (ii) each molecule can be constructed from the food set by a sequence of reactions, the system becomes a reflexively autocatalytic food-generated network (RAF set). Autocatalytic networks and RAFs have been studied extensively as mathematical models for understanding the properties and parameters that influence self-organizational tendencies. However, despite their appeal, the relevance of RAFs for real biochemical networks that exist in nature has, so far, remained virtually unexplored. Results Here we investigate the best-studied metabolic network, that of Escherichia coli, for the existence of RAFs. We find that the largest RAF encompasses almost the entire E. coli cytosolic reaction network. We systematically study its structure by considering the impact of removing catalysts or reactions. We show that, without biological knowledge, finding the minimum food set that maintains a given RAF is NP-complete. We apply a randomized algorithm to find (approximately) smallest subsets of the food set that suffice to sustain the original RAF. Conclusions The existence of RAF sets within a microbial metabolic network indicates that RAFs capture properties germane to biological organization at the level of single cells. Moreover, the interdependency between the different metabolic modules, especially concerning cofactor biosynthesis, points to the important role of spontaneous (non-enzymatic) reactions in the context of early evolution. E. coli metabolic network in the context of autocatalytic sets. ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s13322-015-0009-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, Heinrich Heine Universität, Düsseldorf, Germany
| | | | - Mike Steel
- Allan Wilson Centre Molecular Ecology and Evolution, University of Canterbury, Christchurch, New Zealand
| | - William F Martin
- Institute of Molecular Evolution, Heinrich Heine Universität, Düsseldorf, Germany
| |
Collapse
|
50
|
Affiliation(s)
- William F. Martin
- Institute of Molecular Evolution; University of Düsseldorf; Düsseldorf Germany
| |
Collapse
|