1
|
Yadav S, Kumar S, Haritash AK. A comprehensive review of chlorophenols: Fate, toxicology and its treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118254. [PMID: 37295147 DOI: 10.1016/j.jenvman.2023.118254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Chlorophenols represent one of the most abundant families of toxic pollutants emerging from various industrial manufacturing units. The toxicity of these chloroderivatives is proportional to the number and position of chlorine atoms on the benzene ring. In the aquatic environment, these pollutants accumulate in the tissues of living organisms, primarily in fishes, inducing mortality at an early embryonic stage. Contemplating the behaviour of such xenobiotics and their prevalence in different environmental components, it is crucial to understand the methods used to remove/degrade the chlorophenol from contaminated environment. The current review describes the different treatment methods and their mechanism towards the degradation of these pollutants. Both abiotic and biotic methods are investigated for the removal of chlorophenols. Chlorophenols are either degraded through photochemical reactions in the natural environment, or microbes, the most diverse communities on earth, perform various metabolic functions to detoxify the environment. Biological treatment is a slow process because of the more complex and stable structure of pollutants. Advanced Oxidation Processes are effective in degrading such organics with enhanced rate and efficiency. Based on their ability to generate hydroxyl radicals, source of energy, catalyst type, etc., different processes such as sonication, ozonation, photocatalysis, and Fenton's process are discussed for the treatment or remediation efficiency towards the degradation of chlorophenols. The review entails both advantages and limitations of treatment methods. The study also focuses on reclamation of chlorophenol-contaminated sites. Different remediation methods are discussed to restore the degraded ecosystem back in its natural condition.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
| | - Sunil Kumar
- Solaris Chemtech Industries, Bhuj, Gujarat, India
| | - A K Haritash
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
2
|
Cai X, Li J, Guan F, Luo X, Yu Z, Yuan Y. Complete pentachlorophenol biodegradation in a dual-working electrode bioelectrochemical system: Performance and functional microorganism identification. WATER RESEARCH 2023; 230:119529. [PMID: 36580804 DOI: 10.1016/j.watres.2022.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Bioelectrochemical system (BES) can effectively promote the reductive dechlorination of chlorophenols (CPs). However, the complete degradation of CPs with sequential dechlorination and mineralization processes has rarely achieved from the BES. Here, a dual-working electrode BES was constructed and applied for the complete degradation of pentachlorophenol (PCP). Combined with DNA-stable isotope probing (DNA-SIP), the biofilms attached on the anodic and cathodic electrode in the BES were analyzed to explore the dechlorinating and mineralizing microorganisms. Results showed that PCP removal efficiency in the dual-working BES (84% for 21 days) was 4.1 and 4.7 times higher than those of conventional BESs with a single anodic or cathodic working electrode, respectively. Based on DNA-SIP and high-throughput sequencing analysis, the cathodic working electrode harbored the potential dechlorinators (Comamonas, Pseudomonas, Methylobacillus, and Dechlorosoma), and the anodic working enriched the potential intermediate mineralizing bacteria (Comamonas, Stenotrophomonas, and Geobacter), indicating that PCP could be completely degraded under the synergetic effect of these functional microorganisms. Besides, the potential autotrophic functional bacteria that might be involved in the PCP dechlorination were also identified by SIP labeled with 13C-NaHCO3. Our results proved that the dual-working BES could accelerate the complete degradation of PCP and enrich separately the functional microbial consortium for the PCP dechlorination and mineralization, which has broad potential for bioelectrochemical techniques in the treatment of wastewater contaminated with CPs or other halogenated organic compounds.
Collapse
Affiliation(s)
- Xixi Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Fengyi Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoshan Luo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Bioremediation of river sediment polluted with polychlorinated biphenyls: A laboratory study. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc211217113z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Persistent organic pollutants (POPs) are lipophilic, constant and bioaccumulative toxic compounds. In general, they are considered resistant to biological, photolytic, and chemical degradation with polychlorinated biphenyls (PCBs) belonging to these chemicals. PCBs were never produced in Serbia, but they were imported and mainly used in electrical equipment, transformers, and capacitors. Our study aimed to analyse sequential multi-stage aerobic/anaerobic microbial biodegradation of PCBs present in the river sediment from the area known for long-term pollution with these chemicals. The study with an autochthonous natural microbial community (NMC model system) and NMC augmented with allochthonous hydrocarbon-degrading (AHD) microorganisms (isolated from location contaminated with petroleum products) (NMC-AHD model system) was performed in order to estimate the potential of these microorganisms for possible use in future bioremediation treatment of these sites. The laboratory biodegradation study lasted 70 days, after which an overall >33 % reduction in the concentration of total PCBs was observed. This study confirmed the strong potential of the NMC for the reduction of the level of PCBs in the river sediment under alternating multi-stage aerobic/anaerobic conditions.
Collapse
|
4
|
Yang K, Zhao Y, Ji M, Li Z, Zhai S, Zhou X, Wang Q, Wang C, Liang B. Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. WATER RESEARCH 2021; 193:116862. [PMID: 33550168 DOI: 10.1016/j.watres.2021.116862] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols (CPs) are highly toxic and refractory contaminants which widely exist in various environments and cause serious harm to human and environment health and safety. This review provides comprehensive information on typical CPs biodegradation technologies, the most green and benign ones for CPs removal. The known aerobic and anaerobic degradative bacteria, functional enzymes, and metabolic pathways of CPs as well as several improving methods and critical parameters affecting the overall degradation efficiency are systematically summarized and clarified. The challenges for CPs mineralization are also discussed, mainly including the dechlorination of polychlorophenols (poly-CPs) under aerobic condition and the ring-cleavage of monochlorophenols (MCPs) under anaerobic condition. The coupling of functional materials and degraders as well as the operation of sequential anaerobic-aerobic bioreactors and bioelectrochemical system (BES) are promising strategies to overcome some current limitations. Future perspective and research gaps in this field are also proposed, including the further understanding of microbial information and the specific role of materials in CPs biodegradation, the potential application of innovative biotechnologies and new operating modes to optimize and maximize the function of the system, and the scale-up of bioreactors towards the efficient biodegradation of CPs.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Whole-genome sequencing, genome mining, metabolic reconstruction and evolution of pentachlorophenol and other xenobiotic degradation pathways in Bacillus tropicus strain AOA-CPS1. Funct Integr Genomics 2021; 21:171-193. [PMID: 33547987 DOI: 10.1007/s10142-021-00768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 09/30/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
A pentachlorophenol degrading bacterium was isolated from effluent of a wastewater treatment plant in Durban, South Africa, and identified as Bacillus tropicus strain AOA-CPS1 (BtAOA). The isolate degraded 29% of pentachlorophenol (PCP) within 9 days at an initial PCP concentration of 100 mg L-1 and 62% of PCP when the initial concentration was set at 350 mg L-1. The whole-genome of BtAOA was sequenced using Pacific Biosciences RS II sequencer with the Single Molecule, Real-Time (SMRT) Link (version 7.0.1.66975) and analysed using the HGAP4-de-novo assembly application. The contigs were annotated at NCBI, RASTtk and PROKKA prokaryotic genome annotation pipelines. The BtAOA genome is comprised of a 5,246,860-bp chromosome and a 58,449-bp plasmid with a GC content of 35.4%. The metabolic reconstruction for BtAOA showed that the organism has been naturally exposed to various chlorophenolic compounds including PCP and other xenobiotics. The chromosome encodes genes for core processes, stress response and PCP catabolic genes. Analogues of PCP catabolic gene (cpsBDCAE, and p450) sequences were identified from the NCBI annotation data, PCR-amplified from the whole genome of BtAOA, cloned into pET15b expression vector, overexpressed in E. coli BL21 (DE3) expression host, purified and characterized. Sequence mining and comparative analysis of the metabolic reconstruction of the BtAOA genome with closely related strains suggests that the operon encoding the first two enzymes in the PCP degradation pathway were acquired from a pre-existing pterin-carbinolamine dehydratase subsystem. The other two enzymes were recruited via horizontal gene transfer (HGT) from the pool of hypothetical proteins with no previous specific function, while the last enzyme was recruited from pre-existing enzymes from the TCA or serine-glyoxalase cycle via HGT events. This study provides a comprehensive understanding of the role of BtAOA in PCP degradation and its potential exploitation for bioremediation of other xenobiotic compounds.
Collapse
|
6
|
Biotransformation of pentachlorophenol by an indigenous Bacillus cereus AOA-CPS1 isolated from wastewater effluent in Durban, South Africa. Biodegradation 2020; 31:369-383. [DOI: 10.1007/s10532-020-09915-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
|
7
|
Zhao S, Rogers MJ, He J. Abundance of organohalide respiring bacteria and their role in dehalogenating antimicrobials in wastewater treatment plants. WATER RESEARCH 2020; 181:115893. [PMID: 32502751 DOI: 10.1016/j.watres.2020.115893] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/25/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic organohalide contaminants present in wastewater treatment plants (WWTPs) often remain untreated and can be discharged into the environment. Although organohalide respiring bacteria (OHRB) contribute to the elimination of anthropogenic organohalides in natural anaerobic environments, reductive dehalogenation by OHRB in mainstream WWTPs remains poorly understood. In this study, we quantified OHRB during a long-term operation of a municipal WWTP with short hydraulic and sludge retention times (3 h and 1.5-5 days, respectively). The obligate OHRB were detected at high levels (averaging 2.56 ± 1.73 × 107 and 3.11 ± 1.16 × 107 16S rRNA gene copies/ml MLSS sludge in anoxic and aerobic zones, respectively) over the entire sampling period and throughout the wastewater treatment train. Microcosms derived from mainstream activated sludge contained an unidentified member of the Dehalococcoides genus that metabolically dechlorinated triclosan, used as a representative emerging organohalide antimicrobial, to diclosan, suggesting the potential of anaerobic degradation of emerging contaminants in WWTPs. To further understand the mechanisms for such antimicrobials' removal, an investigation of dechlorination of triclosan by Dehalococcoides strains was conducted. Dechlorination of environmentally relevant concentrations of triclosan to diclosan was observed in Dehalococcoides mccartyi strain CG1, yielding 4.59 ± 0.34 × 108 cells/μmole Cl- removed at a rate of 0.062 μM/day and a minimal inhibitory concentration of 0.5 mg/L. Notably, both the tolerance of strain CG1 to triclosan and the rate of triclosan dechlorination increased when CG1 was cultured in the presence of both triclosan and tetrachloroethene. Taken together, our results suggest that anaerobic degradation of organohalide antimicrobials might be more prevalent in mainstream WWTPs than previously speculated, though the low growth yields that are supported by triclosan dechlorination seem to indicate that other organohalide substrates could be necessary to sustain OHRB populations in these systems.
Collapse
Affiliation(s)
- Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore.
| |
Collapse
|
8
|
Qiu L, Fang W, He H, Liang Z, Zhan Y, Lu Q, Liang D, He Z, Mai B, Wang S. Organohalide-Respiring Bacteria in Polluted Urban Rivers Employ Novel Bifunctional Reductive Dehalogenases to Dechlorinate Polychlorinated Biphenyls and Tetrachloroethene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8791-8800. [PMID: 32551541 DOI: 10.1021/acs.est.0c01569] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polluted urban river sediments could be a sink of persistent and toxic polychlorinated biphenyls (PCBs) in urban areas and provide desired growth niches for organohalide-respiring bacteria (OHRB). In this study, microcosms were set up with surface sediments of nationwide polluted urban rivers in China, of which 164 cultures could dechlorinate tetrachloroethene (PCE) to dichloroethenes (DCEs) and to vinyl chloride and/or ethene. Further in vivo tests showed extensive PCB dechlorination with different pathways in 135 PCE pregrown cultures. Taking reductive dechlorination of PCB180 (2345-245-CB) as an example, 121 and 14 cultures preferentially removed flanked para- and meta-chlorines, respectively. Strikingly, all in vitro assays with the 135 PCE pregrown cultures showed identical PCB dechlorination pathways with their living cultures, implying the involvement of bifunctional reductive dehalogenases (RDases) to dechlorinate both PCBs and PCE. Further 16S rRNA and RDase gene-based analyses, together with enantioselective dechlorination of chiral PCBs, suggested that Dehalococcoides and Dehalogenimonas in the 135 cultures largely employed distinctively different novel bifunctional RDases to catalyze PCB/PCE dechlorination. Quantitative assessment of the community assembly process with the modified stochasticity ratio (MST) indicated three different stages in enrichment of OHRB. The second stage, as the only one controlled by stochastic processes (MST > 0.5), required extra attention in monitoring community successional patterns to minimize stochastic variance for enriching the PCB/PCE-dechlorinating OHRB.
Collapse
Affiliation(s)
- Lan Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Haozheng He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Yangyue Zhan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Dawei Liang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Beijing, China 100191
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China 510640
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| |
Collapse
|
9
|
Lopez-Echartea E, Strejcek M, Mateju V, Vosahlova S, Kyclt R, Demnerova K, Uhlik O. Bioremediation of chlorophenol-contaminated sawmill soil using pilot-scale bioreactors under consecutive anaerobic-aerobic conditions. CHEMOSPHERE 2019; 227:670-680. [PMID: 31022668 DOI: 10.1016/j.chemosphere.2019.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/07/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Chlorophenols (CPs), including pentachlorophenol (PCP), are chemicals of concern due to their toxicity and persistence. Here we describe a successful reactor-based remediation of CP-contaminated soil and assess changes in the toxicity patterns and bacterial communities during the remediation. The remediation consisted of separating half of the contaminated soil to be ground (samples M) in order to test whether the grinding expedited the remediation, the other half was left unground (samples P). Both soils were mixed with wastewater treatment sludge to increase their bacterial diversity and facilitate the degradation of CPs, and the resultant mixtures were placed in 2 bioreactors, M and P, operated for 16 months under anaerobic conditions to favor dehalogenation and for an additional 16 months under aerobic conditions to achieve complete mineralization. Samples were taken every 4 months for toxicity and microbial analyses. The results showed a 64% removal of total CPs (ΣCPs) in reactor P after just 18 months of remediation, whereas similar depletion in reactor M occurred after ∼25 months, indicating that the grinding decelerated the remediation. By the end of the experiment, both reactors achieved 93.5-95% removal. The toxicity tests showed a decrease in toxicity as the remediation progressed. The succession of bacterial communities over time was significantly associated with pH, anaerobic/aerobic phase and the concentration of the majority of CP congeners. Our data indicate that the supplementation of contaminated soil with sludge and further incubation in pilot-scale bioreactors under consecutive anaerobic-aerobic conditions proved to be effective at the remediation of CP-contaminated soil.
Collapse
Affiliation(s)
- Eglantina Lopez-Echartea
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | | | | | | | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
10
|
Abstract
Organohalide respiration (OHR) is an anaerobic metabolism by which bacteria conserve energy with the use of halogenated compounds as terminal electron acceptors. Genes involved in OHR are organized in reductive dehalogenase (rdh) gene clusters and can be found in relatively high copy numbers in the genomes of organohalide-respiring bacteria (OHRB). The minimal rdh gene set is composed by rdhA and rdhB, encoding the catalytic enzyme involved in reductive dehalogenation and its putative membrane anchor, respectively. In this chapter, we present the major findings concerning the regulatory strategies developed by OHRB to control the expression of the rdh gene clusters. The first section focuses on the description of regulation patterns obtained from targeted transcriptional analyses, and from transcriptomic and proteomic studies, while the second section offers a detailed overview of the biochemically characterized OHR regulatory proteins identified so far. Depending on OHRB, transcriptional regulators belonging to three different protein families are found in the direct vicinity of rdh gene clusters, suggesting that they activate the transcription of their cognate gene cluster. In this chapter, strong emphasis was laid on the family of CRP/FNR-type RdhK regulators which belong to members of the genera Dehalobacter and Desulfitobacterium. Whereas only chlorophenols have been identified as effectors for RdhK regulators, the protein sequence diversity suggests a broader organohalide spectrum. Thus, effector identification of new regulators offers a promising alternative to elucidate the substrates of yet uncharacterized reductive dehalogenases. Future work investigating the possible cross-talk between OHR regulators and their possible use as biosensors is discussed.
Collapse
|
11
|
El-Sayed WS, Al-Senani SR, Elbahloul Y. Diversity of dehalorespiring bacteria and selective enrichment of aryl halides-dechlorinating consortium from sedimentary environment near an oil refinery. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1080/16583655.2018.1495869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wael S. El-Sayed
- Department of Biology, Faculty of Science, Taibah University, Medina, KSA
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Yasser Elbahloul
- Department of Biology, Faculty of Science, Taibah University, Medina, KSA
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
El-Sayed WS. Characterization of a Highly Enriched Microbial Consortium Reductively Dechlorinating 2,3-Dichlorophenol and 2,4,6-Trichlorophenol and the Corresponding cprA Genes from River Sediment. Pol J Microbiol 2018; 65:341-352. [PMID: 29334051 DOI: 10.5604/17331331.1215613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anaerobic reductive dechlorination of 2,3-dichlorophenol (2,3DCP) and 2,4,6-trichlorophenol (2,4,6TCP) was investigated in microcosms from River Nile sediment. A stable sediment-free anaerobic microbial consortium reductively dechlorinating 2,3DCP and 2,4,6TCP was established. Defined sediment-free cultures showing stable dechlorination were restricted to ortho chlorine when enriched with hydrogen as the electron donor, acetate as the carbon source, and either 2,3-DCP or 2,4,6-TCP as electron acceptors. When acetate, formate, or pyruvate were used as electron donors, dechlorination activity was lost. Only lactate can replace dihydrogen as an electron donor. However, the dechlorination potential was decreased after successive transfers. To reveal chlororespiring species, the microbial community structure of chlorophenol-reductive dechlorinating enrichment cultures was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Eight dominant bacteria were detected in the dechlorinating microcosms including members of the genera Citrobacter, Geobacter, Pseudomonas, Desulfitobacterium, Desulfovibrio and Clostridium. Highly enriched dechlorinating cultures were dominated by four bacterial species belonging to the genera Pseudomonas, Desulfitobacterium, and Clostridium. Desulfitobacterium represented the major fraction in DGGE profiles indicating its importance in dechlorination activity, which was further confirmed by its absence resulting in complete loss of dechlorination. Reductive dechlorination was confirmed by the stoichiometric dechlorination of 2,3DCP and 2,4,6TCP to metabolites with less chloride groups and by the detection of chlorophenol RD cprA gene fragments in dechlorinating cultures. PCR amplified cprA gene fragments were cloned and sequenced and found to cluster with the cprA/pceA type genes of Dehalobacter restrictus.
Collapse
Affiliation(s)
- Wael S El-Sayed
- Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, KSA; Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Zhang S, Adrian L, Schüürmann G. Interaction Mode and Regioselectivity in Vitamin B 12-Dependent Dehalogenation of Aryl Halides by Dehalococcoides mccartyi Strain CBDB1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1834-1843. [PMID: 29283566 DOI: 10.1021/acs.est.7b04278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The bacterium Dehalococcoides, strain CBDB1, transforms aromatic halides through reductive dehalogenation. So far, however, the structures of its vitamin B12-containing dehalogenases are unknown, hampering clarification of the catalytic mechanism and substrate specificity as basis for targeted remediation strategies. This study employs a quantum chemical donor-acceptor approach for the Co(I)-substrate electron transfer. Computational characterization of the substrate electron affinity at carbon-halogen bonds enables discriminating aromatic halides ready for dehalogenation by strain CBDB1 (active substrates) from nondehalogenated (inactive) counterparts with 92% accuracy, covering 86 of 93 bromobenzenes, chlorobenzenes, chlorophenols, chloroanilines, polychlorinated biphenyls, and dibenzo-p-dioxins. Moreover, experimental regioselectivity is predicted with 78% accuracy by a site-specific parameter encoding the overlap potential between the Co(I) HOMO (highest occupied molecular orbital) and the lowest-energy unoccupied sigma-symmetry substrate MO (σ*), and the observed dehalogenation pathways are rationalized with a success rate of 81%. Molecular orbital analysis reveals that the most reactive unoccupied sigma-symmetry orbital of carbon-attached halogen X (σC-X*) mediates its reductive cleavage. The discussion includes predictions for untested substrates, thus providing opportunities for targeted experimental investigations. Overall, the presently introduced orbital interaction model supports the view that with bacterial strain CBDB1, an inner-sphere electron transfer from the supernucleophile B12 Co(I) to the halogen substituent of the aromatic halide is likely to represent the rate-determining step of the reductive dehalogenation.
Collapse
Affiliation(s)
- Shangwei Zhang
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Technical University Bergakademie Freiberg , Institute for Organic Chemistry, Leipziger Straße 29, 09596 Freiberg, German y
| | - Lorenz Adrian
- UFZ Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Technische Universität Berlin , Chair of Geobiotechnology, Ackerstraße 76, 13355 Berlin, Germany
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Technical University Bergakademie Freiberg , Institute for Organic Chemistry, Leipziger Straße 29, 09596 Freiberg, German y
| |
Collapse
|
14
|
Teng Y, Wang X, Zhu Y, Chen W, Christie P, Li Z, Luo Y. Biodegradation of pentachloronitrobenzene by Cupriavidus sp. YNS-85 and its potential for remediation of contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9538-9547. [PMID: 28238184 DOI: 10.1007/s11356-017-8640-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Pentachloronitrobenzene (PCNB) is a toxic chlorinated nitroaromatic compound. However, only a few bacteria have been reported to be able to utilize PCNB. In the present study, one pentachloronitrobenzene (PCNB)-degrading bacterium, Cupriavidus sp. YNS-85, was isolated from a contaminated Panax notoginseng plantation. The strain co-metabolized 200 mg L-1 PCNB in aqueous solution with a removal rate of 73.8% after 5 days. The bacterium also degraded PCNB effectively under acid conditions (pH 4-6) and showed resistance to toxic trace elements (arsenic, copper, and cadmium). Its ability to utilize proposed PCNB intermediates as sole carbon sources was also confirmed. The soil microcosm experiment further demonstrated that bacterial bioaugmentation enhanced the removal of PCNB (37.8%) from soil and the accumulation of pentachloroaniline (89.3%) after 30 days. Soil enzyme activity and microbial community functional diversity were positively influenced after bioremediation. These findings indicate that Cupriavidus sp. YNS-85 may be a suitable inoculant for in situ bioremediation of PCNB-polluted sites, especially those with acid soils co-contaminated with heavy metal(loid)s.
Collapse
Affiliation(s)
- Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhengao Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
15
|
Bacterial Biotransformation of Pentachlorophenol and Micropollutants Formed during Its Production Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111146. [PMID: 27869691 PMCID: PMC5129356 DOI: 10.3390/ijerph13111146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022]
Abstract
Pentachlorophenol (PCP) is a toxic and persistent wood and cellulose preservative extensively used in the past decades. The production process of PCP generates polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) as micropollutants. PCDD/Fs are also known to be very persistent and dangerous for human health and ecosystem functioning. Several physico-chemical and biological technologies have been used to remove PCP and PCDD/Fs from the environment. Bacterial degradation appears to be a cost-effective way of removing these contaminants from soil while causing little impact on the environment. Several bacteria that cometabolize or use these pollutants as their sole source of carbon have been isolated and characterized. This review summarizes current knowledge on the metabolic pathways of bacterial degradation of PCP and PCDD/Fs. PCP can be successfully degraded aerobically or anaerobically by bacteria. Highly chlorinated PCDD/Fs are more likely to be reductively dechlorinated, while less chlorinated PCDD/Fs are more prone to aerobic degradation. The biochemical and genetic basis of these pollutants’ degradation is also described. There are several documented studies of effective applications of bioremediation techniques for the removal of PCP and PCDD/Fs from soil and sediments. These findings suggest that biodegradation can occur and be applied to treat these contaminants.
Collapse
|
16
|
Sjuts H, Dunstan MS, Fisher K, Leys D. Structures of the methyltransferase component of Desulfitobacterium hafniense DCB-2 O-demethylase shed light on methyltetrahydrofolate formation. ACTA ACUST UNITED AC 2015; 71:1900-8. [PMID: 26327380 DOI: 10.1107/s1399004715013061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Abstract
O-Demethylation by acetogenic or organohalide-respiring bacteria leads to the formation of methyltetrahydrofolate from aromatic methyl ethers. O-Demethylases, which are cobalamin-dependent, three-component enzyme systems, catalyse methyl-group transfers from aromatic methyl ethers to tetrahydrofolate via methylcobalamin intermediates. In this study, crystal structures of the tetrahydrofolate-binding methyltransferase module from a Desulfitobacterium hafniense DCB-2 O-demethylase were determined both in complex with tetrahydrofolate and the product methyltetrahydrofolate. While these structures are similar to previously determined methyltransferase structures, the position of key active-site residues is subtly altered. A strictly conserved Asn is displaced to establish a putative proton-transfer network between the substrate N5 and solvent. It is proposed that this supports the efficient catalysis of methyltetrahydrofolate formation, which is necessary for efficient O-demethylation.
Collapse
Affiliation(s)
- Hanno Sjuts
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, England
| | - Mark S Dunstan
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, England
| | - Karl Fisher
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, England
| | - David Leys
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, England
| |
Collapse
|
17
|
Fricker AD, LaRoe SL, Shea ME, Bedard DL. Dehalococcoides mccartyi strain JNA dechlorinates multiple chlorinated phenols including pentachlorophenol and harbors at least 19 reductive dehalogenase homologous genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14300-14308. [PMID: 25377868 DOI: 10.1021/es503553f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pentachlorophenol and other chlorinated phenols are highly toxic ubiquitous environmental pollutants. Using gas chromatographic analysis we determined that Dehalococcoides mccartyi strain JNA in pure culture dechlorinated pentachlorophenol to 3,5-dichlorophenol (DCP) via removal of the ortho and para chlorines in all of the three possible pathways. In addition, JNA dechlorinated 2,3,4,6-tetrachlorophenol via 2,4,6-trichlorophenol (TCP) and 2,4,5-TCP to 2,4-DCP and 3,4-DCP, respectively, and dechlorinated 2,3,6-TCP to 3-chlorophenol (CP) via 2,5-DCP. JNA converted 2,3,4-TCP to 3,4-DCP and 2,4-DCP by ortho and meta dechlorination, respectively. 2,3-DCP was dechlorinated to 3-CP, and, because cultures using it could be transferred with a low inoculum (0.5 to 1.5% vol/vol), it may act as an electron acceptor to support growth. Using PCR amplification with targeted and degenerate primers followed by cloning and sequencing, we determined that JNA harbors at least 19 reductive dehalogenase homologous (rdh) genes including orthologs of pcbA4 and pcbA5, pceA, and mbrA, but not tceA or vcrA. Many of these genes are shared with D. mccartyi strains CBDB1, DCMB5, GT, and CG5. Strain JNA has previously been shown to extensively dechlorinate the commercial polychlorinated biphenyl (PCB) mixture Aroclor 1260. Collectively the data suggest that strain JNA may be well adapted to survive in sites contaminated with chlorinated aromatics and may be useful for in situ bioremediation.
Collapse
Affiliation(s)
- Ashwana D Fricker
- Department of Biological Sciences and ‡Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute , 110 8th Street, Troy, New York 12180, United States
| | | | | | | |
Collapse
|
18
|
Meyer T, Edwards EA. Anaerobic digestion of pulp and paper mill wastewater and sludge. WATER RESEARCH 2014; 65:321-49. [PMID: 25150519 DOI: 10.1016/j.watres.2014.07.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/20/2014] [Accepted: 07/12/2014] [Indexed: 05/28/2023]
Abstract
Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated sludge) and primary sludge is still in its infancy. Current research is mainly focused on developing efficient pretreatment methods that enable fast hydrolysis of complex organic matter, shorter sludge residence times and as a consequence, smaller sludge digesters. Previous experimental studies indicate that the anaerobic digestibility of non-pretreated biosludge from pulp and paper mills varies widely, with volatile solids (VS) removal rates of 21-55% and specific methane yields ranging between 40 and 200 mL g(-1) VS fed. Pretreatment can increase the digestibility to some extent, however in almost all reported cases, the specific methane yield of pretreated biosludge did not exceed 200 mL g(-1) VS fed. Increases in specific methane yield mostly range between 0 and 90% compared to non-pretreated biosludge, whereas larger improvements were usually achieved with more difficult-to-digest biosludge. Thermal treatment and microwave treatment are two of the more effective methods. The heat required for the elevated temperatures applied in both methods may be provided from surplus heat that is often available at pulp and paper mills. Given the large variability in specific methane yield of non-pretreated biosludge, future research should focus on the links between anaerobic digestibility and sludge properties. Research should also involve mill-derived primary sludge. Although biosludge has been the main target in previous studies, primary sludge often constitutes the bulk of mill-generated sludge, and co-digestion of a mixture between both types of sludge may become practical. The few laboratory studies that have included mill primary sludge indicate that, similar to biosludge, the digestibility can range widely. Long-term studies should be conducted to explore the potential of microbial adaptation to lignocellulosic material which can constitute more than half of the organic matter in pulp and paper mill sludge.
Collapse
Affiliation(s)
- Torsten Meyer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., ON, Canada M5S3E5.
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., ON, Canada M5S3E5
| |
Collapse
|
19
|
Rothery RA, Weiner JH. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination. J Biol Inorg Chem 2014; 20:349-72. [PMID: 25267303 DOI: 10.1007/s00775-014-1194-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023]
Abstract
In this review, we test the hypothesis that pyranopterin coordination plays a critical role in defining substrate reactivities in the four families of mononuclear molybdenum and tungsten enzymes (Mo/W-enzymes). Enzyme families containing a single pyranopterin dithiolene chelate have been demonstrated to have reactivity towards two (sulfite oxidase, SUOX-fold) and five (xanthine dehydrogenase, XDH-fold) types of substrate, whereas the major family of enzymes containing a bis-pyranopterin dithiolene chelate (dimethylsulfoxide reductase, DMSOR-fold) is reactive towards eight types of substrate. A second bis-pyranopterin enzyme (aldehyde oxidoreductase, AOR-fold) family catalyzes a single type of reaction. The diversity of reactions catalyzed by each family correlates with active site variability, and also with the number of pyranopterins and their coordination by the protein. In the case of the AOR-fold enzymes, inflexibility of pyranopterin coordination correlates with their limited substrate specificity (oxidation of aldehydes). In examples of the SUOX-fold and DMSOR-fold enzymes, we observe three types of histidine-containing charge-transfer relays that can: (1) connect the piperazine ring of the pyranopterin to the substrate-binding site (SUOX-fold enzymes); (2) provide inter-pyranopterin communication (DMSOR-fold enzymes); and (3) connect a pyran ring oxygen to deeply buried water molecules (the DMSOR-fold NarGHI-type nitrate reductases). Finally, sequence data mining reveals a number of bacterial species whose predicted proteomes contain large numbers (up to 64) of Mo/W-enzymes, with the DMSOR-fold enzymes being dominant. These analyses also reveal an inverse correlation between Mo/W-enzyme content and pathogenicity.
Collapse
Affiliation(s)
- Richard A Rothery
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | |
Collapse
|
20
|
Diversity of dechlorination pathways and organohalide respiring bacteria in chlorobenzene dechlorinating enrichment cultures originating from river sludge. Biodegradation 2014; 25:757-76. [DOI: 10.1007/s10532-014-9697-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
21
|
Arora PK, Bae H. Bacterial degradation of chlorophenols and their derivatives. Microb Cell Fact 2014; 13:31. [PMID: 24589366 PMCID: PMC3975901 DOI: 10.1186/1475-2859-13-31] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/20/2014] [Indexed: 12/02/2022] Open
Abstract
Chlorophenols (CPs) and their derivatives are persistent environmental pollutants which are used in the manufacture of dyes, drugs, pesticides and other industrial products. CPs, which include monochlorophenols, polychlorophenols, chloronitrophenols, chloroaminophenols and chloromethylphenols, are highly toxic to living beings due to their carcinogenic, mutagenic and cytotoxic properties. Several physico-chemical and biological methods have been used for removal of CPs from the environment. Bacterial degradation has been considered a cost-effective and eco-friendly method of removing CPs from the environment. Several bacteria that use CPs as their sole carbon and energy sources have been isolated and characterized. Additionally, the metabolic pathways for degradation of CPs have been studied in bacteria and the genes and enzymes involved in the degradation of various CPs have been identified and characterized. This review describes the biochemical and genetic basis of the degradation of CPs and their derivatives.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
22
|
Sjuts H, Dunstan MS, Fisher K, Leys D. Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1609-16. [PMID: 23897483 PMCID: PMC3727330 DOI: 10.1107/s0907444913011323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/25/2013] [Indexed: 11/10/2022]
Abstract
This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar to other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.
Collapse
Affiliation(s)
- Hanno Sjuts
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, England
| | - Mark S. Dunstan
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, England
| | - Karl Fisher
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, England
| | - David Leys
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, England
| |
Collapse
|
23
|
Leys D, Adrian L, Smidt H. Organohalide respiration: microbes breathing chlorinated molecules. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120316. [PMID: 23479746 DOI: 10.1098/rstb.2012.0316] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial respiration has taken advantage of almost every redox couple present in the environment. The reduction of organohalide compounds to release the reduced halide ion drives energy production in organohalide respiring bacteria. This process is centred around the reductive dehalogenases, an iron-sulfur and corrinoid containing family of enzymes. These enzymes, transcriptional regulators and the bacteria themselves have potential to contribute to future bioremediation solutions that address the pollution of the environment by halogenated organic compounds.
Collapse
Affiliation(s)
- David Leys
- Manchester Institute of Biotechnology, University of Manchester, MIB 131 Princess Street, Manchester, UK.
| | | | | |
Collapse
|
24
|
Affiliation(s)
- Christopher J Rhodes
- Fresh-lands Environmental Actions, 88 Star Road, Caversham, Berkshire RG4 5BE, UK.
| |
Collapse
|