1
|
Freas CA, Narenda A, Murray T, Cheng K. Polarised moonlight guides nocturnal bull ants home. eLife 2024; 13:RP97615. [PMID: 39652383 PMCID: PMC11627510 DOI: 10.7554/elife.97615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
For the first time in any animal, we show that nocturnal bull ants use the exceedingly dim polarisation pattern produced by the moon for overnight navigation. The sun or moon can provide directional information via their position; however, they can often be obstructed by clouds, canopy, or the horizon. Despite being hidden, these bodies can still provide compass information through the polarised light pattern they produce/reflect. Sunlight produces polarised light patterns across the overhead sky as it enters the atmosphere, and solar polarised light is a well-known compass cue for navigating animals. Moonlight produces an analogous pattern, albeit a million times dimmer than sunlight. Here, we show evidence that polarised moonlight forms part of the celestial compass of navigating nocturnal ants. Nocturnal bull ants leave their nest at twilight and rely heavily on the overhead solar polarisation pattern to navigate. Yet many foragers return home overnight when the sun cannot guide them. We demonstrate that these bull ants use polarised moonlight to navigate home during the night, by rotating the overhead polarisation pattern above homing ants, who alter their headings in response. Furthermore, these ants can detect this cue throughout the lunar month, even under crescent moons, when polarised light levels are at their lowest. Finally, we show the long-term incorporation of this moonlight pattern into the ants' path integration system throughout the night for homing, as polarised sunlight is incorporated throughout the day.
Collapse
Affiliation(s)
- Cody A Freas
- School of Natural Sciences, Macquarie UniversitySydneyAustralia
| | - Ajay Narenda
- School of Natural Sciences, Macquarie UniversitySydneyAustralia
| | - Trevor Murray
- School of Natural Sciences, Macquarie UniversitySydneyAustralia
| | - Ken Cheng
- School of Natural Sciences, Macquarie UniversitySydneyAustralia
| |
Collapse
|
2
|
Pae H, Liao J, Yuen N, Giraldo YM. Drosophila require both green and UV wavelengths for sun orientation but lack a time-compensated sun compass. J Exp Biol 2024; 227:jeb246817. [PMID: 39397575 PMCID: PMC11529886 DOI: 10.1242/jeb.246817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Celestial orientation and navigation are performed by many organisms in contexts as diverse as migration, nest finding and straight-line orientation. The vinegar fly, Drosophila melanogaster, performs menotaxis in response to celestial cues during tethered flight and can disperse more than 10 km under field conditions. However, we still do not understand how spectral components of celestial cues and pauses in flight impact heading direction in flies. To assess individual heading, we began by testing flies in a rotating tether arena using a single green LED as a stimulus. We found that flies robustly perform menotaxis and fly straight for at least 20 min. Flies maintain their preferred heading directions after experiencing a period of darkness or stopping flight, even up to 2 h, but reset their heading when the LED changes position, suggesting that flies do not treat this stimulus as the sun. Next, we assessed the flies' responses to a UV spot alone or a paired UV-green stimulus - two dots situated 180 deg apart to simulate the solar and antisolar hemispheres. We found that flies respond to UV much as they do to green light; however, when the stimuli are paired, flies adjust for sudden 90 deg movements, performing sun orientation. Lastly, we found no evidence of a time-compensated sun compass when we moved the paired stimuli at 15 deg h-1 for 6 h. This study demonstrates that wavelength influences how flies respond to visual cues during flight, shaping the interpretation of visual information to execute an appropriate behavioral response.
Collapse
Affiliation(s)
- Haneal Pae
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingzhu Liao
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Nicole Yuen
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ysabel Milton Giraldo
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Coppola VJ, Caram HE, Robeson C, Beeler SM, Hebets EA, Wiegmann DD, Bingman VP. Investigating boundary-geometry use by whip spiders (Phrynus marginemaculatus) during goal-directed navigation. Learn Behav 2024; 52:170-178. [PMID: 37620643 DOI: 10.3758/s13420-023-00600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Previous studies have shown that whip spiders (Amblypygi) can use a variety of cues to navigate to and recognize a home refuge. The current study aimed to determine whether whip spiders were capable of using the boundary geometry of an experimental space (geometric information) to guide goal-directed navigation and to investigate any preferential use of geometric or feature (visual) information. Animals were first trained to find a goal location situated in one corner of a rectangular arena (geometric information) fronting a dark-green-colored wall, which created a brightness contrast with the other three white walls (feature information). Various probe trials were then implemented to determine cue use. It was found that animals were capable of directing their choice behavior towards geometrically correct corners at a rate significantly higher than chance, even when the feature cue was removed. By contrast, choice behavior dropped to random chance when geometric information was removed (test in a square arena) and only feature information remained. Choice behavior was also reduced to chance when geometric and feature information were set in conflict (by moving the feature cue to one of the longer walls in the rectangular arena). The data thus suggest that whip spiders are capable of using geometric information to guide goal-directed navigation and that geometric information is preferred over feature guidance, although a feature cue may set the context for activating geometry-guided navigation. Experimental design limitations and future directions are discussed.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA.
| | - Hannah E Caram
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Cecilia Robeson
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Sophia M Beeler
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Verner P Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
4
|
Bijma NN, Billeschou P, Baird E, Dacke M, Kovalev A, Filippov AE, Manoonpong P, Gorb SN. The effect of surface topography on the ball-rolling ability of Kheper lamarcki (Scarabaeidae). J Exp Biol 2024; 227:jeb245920. [PMID: 38018408 DOI: 10.1242/jeb.245920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
The most effective way to avoid intense inter- and intra-specific competition at the dung source, and to increase the distance to the other competitors, is to follow a single straight bearing. While ball-rolling dung beetles manage to roll their dung balls along nearly perfect straight paths when traversing flat terrain, the paths that they take when traversing more complex (natural) terrain are not well understood. In this study, we investigate the effect of complex surface topographies on the ball-rolling ability of Kheper lamarcki. Our results reveal that ball-rolling trajectories are strongly influenced by the characteristic scale of the surface structure. Surfaces with an increasing similarity between the average distance of elevations and the ball radius cause progressively more difficulties during ball transportation. The most important factor causing difficulties in ball transportation appears to be the slope of the substrate. Our results show that, on surfaces with a slope of 7.5 deg, more than 60% of the dung beetles lose control of their ball. Although dung beetles still successfully roll their dung ball against the slope on such inclinations, their ability to roll the dung ball sideways diminishes. However, dung beetles do not seem to adapt their path on inclines such that they roll their ball in the direction against the slope. We conclude that dung beetles strive for a straight trajectory away from the dung pile, and that their actual path is the result of adaptations to particular surface topographies.
Collapse
Affiliation(s)
- Nienke N Bijma
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Peter Billeschou
- SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Emily Baird
- Department of Functional Zoomorphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Alexander E Filippov
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
- Donetsk Institute for Physics and Engineering, National Academy of Sciences of Ukraine, 83114 Donetsk, Ukraine
| | - Poramate Manoonpong
- SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
- Bio-inspired Robotics & Neural Engineering Lab, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
5
|
Massy R, Wotton KR. The efficiency of varying methods and degrees of time compensation for the solar azimuth. Biol Lett 2023; 19:20230355. [PMID: 37990564 PMCID: PMC10663790 DOI: 10.1098/rsbl.2023.0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
Daytime migrants are known to orientate using the position of the sun, compensating for its changing position throughout the day with a 'time-compensated sun compass'. This compass has been demonstrated in many migratory species, with various degrees of accuracy for the actual movement of the sun. Here, we present a model for differing levels of compensation for the solar ephemeris that shows that a high degree of efficiency, in terms of distance travelled, can be achieved without full time compensation. In our model, compensating for the sun's position had a diminishing return with an accuracy of 80% leading to only a 2% reduction in distance travelled. We compare various modes of time compensation-full, partial, time averaged and step-revealing their directional efficiency in terms of distance travelled under an autumn migration scenario. We find that the benefit of time compensation varies with latitude, with time averaging performing very well, especially at all high latitudes, but step compensation performing better at very low latitudes. Importantly, even rudimentary adjustment can dramatically increase the efficiency of migration, which suggests an easy pathway for the independent evolution of time compensation.
Collapse
Affiliation(s)
- Richard Massy
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Karl R Wotton
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| |
Collapse
|
6
|
Mitchell R, Shaverdian S, Dacke M, Webb B. A model of cue integration as vector summation in the insect brain. Proc Biol Sci 2023; 290:20230767. [PMID: 37357865 PMCID: PMC10291719 DOI: 10.1098/rspb.2023.0767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023] Open
Abstract
Ball-rolling dung beetles are known to integrate multiple cues in order to facilitate their straight-line orientation behaviour. Recent work has suggested that orientation cues are integrated according to a vector sum, that is, compass cues are represented by vectors and summed to give a combined orientation estimate. Further, cue weight (vector magnitude) appears to be set according to cue reliability. This is consistent with the popular Bayesian view of cue integration: cues are integrated to reduce or minimize an agent's uncertainty about the external world. Integration of orientation cues is believed to occur at the input to the insect central complex. Here, we demonstrate that a model of the head direction circuit of the central complex, including plasticity in input synapses, can act as a substrate for cue integration as vector summation. Further, we show that cue influence is not necessarily driven by cue reliability. Finally, we present a dung beetle behavioural experiment which, in combination with simulation, strongly suggests that these beetles do not weight cues according to reliability. We suggest an alternative strategy whereby cues are weighted according to relative contrast, which can also explain previous results.
Collapse
Affiliation(s)
- Robert Mitchell
- Institute for Perception, Action, and Behaviour, The University of Edinburgh School of Informatics, Edinburgh, Edinburgh EH8 9AB, UK
| | - Shahrzad Shaverdian
- Lund Vision Group, Department of Biology, Lund University, Lund SE-223 62, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Lund SE-223 62, Sweden
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, The University of Edinburgh School of Informatics, Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
7
|
Ugolini A, Hariyama T, Wilcockson DC, Mercatelli L. The use of polarized light in the zonal orientation of the sandhopper Talitrus saltator (Montagu). ZOOLOGICAL LETTERS 2023; 9:10. [PMID: 37202801 DOI: 10.1186/s40851-023-00207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/16/2023] [Indexed: 05/20/2023]
Abstract
It is well known that the celestial polarization is used as a compass cue by many species of insects and crustaceans. Although it has been shown that the sandhopper Talitrus saltator perceives polarized light and possesses an arrangement of the rhabdomeres that could allow e-vector interpretation and utilization, T. saltator does not use the e-vector of the skylight polarization as a compass cue when making excursions along the sea-land axis of sandy shores. We performed tests in confined conditions to clarify if skylight polarization is somehow involved in the zonal recovery of T. saltator. We observed the directional responses of sandhoppers in a transparent bowl under an artificial sky (an opaline Plexiglas dome). The bowl was covered by a blue gelatin filter with a grey filter (control condition) and a linear polarizing filter (experimental conditions) positioned under the blue one in such a way as to occupy half of the upper surface of the Plexiglas bowl so as to create a linear polarization gradient. Our experiments confirm that T. saltator perceives polarized light and highlight that this visual capability determines the perception, or perhaps the increase, of the radiance and/or spectral gradient and their use as compass cues in the zonal orientation. Moreover, our findings confirm that the radiance gradient is used as a chronometric compass orienting reference in the absence of other celestial orienting cues.
Collapse
Affiliation(s)
- Alberto Ugolini
- Dipartimento Di Biologia, Università Di Firenze, Via Romana 17-19, 50125, Florence, Italy.
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University, School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan.
| | - David C Wilcockson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, UK
| | - Luca Mercatelli
- Istituto Nazionale di Ottica - CNR, Largo E. Fermi 6, 50125, Florence, Italy
| |
Collapse
|
8
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
9
|
Shaverdian S, Dirlik E, Mitchell R, Tocco C, Webb B, Dacke M. Weighted cue integration for straight-line orientation. iScience 2022; 25:105207. [PMID: 36274940 PMCID: PMC9583106 DOI: 10.1016/j.isci.2022.105207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Animals commonly integrate multiple sources of information to guide their behavior. Among insects, previous studies have suggested that the relative reliability of cues affects their weighting in behavior, but have not systematically explored how well alternative integration strategies can account for the observed directional choices. Here, we characterize the directional reliability of an ersatz sun at different elevations and wind at different speeds as guiding cues for a species of ball-rolling dung beetle. The relative reliability is then shown to determine which cue dominates when the cues are put in conflict. We further show through modeling that the results are best explained by continuous integration of the cues as a vector-sum (rather than switching between them) but with non-optimal weighting and small individual biases. The neural circuitry in the insect central complex appears to provide an ideal substrate for this type of vector-sum-based integration mechanism.
Collapse
Affiliation(s)
- Shahrzad Shaverdian
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Elin Dirlik
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden,Corresponding author
| | - Robert Mitchell
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Barbara Webb
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
10
|
Patel RN, Kempenaers J, Heinze S. Vector navigation in walking bumblebees. Curr Biol 2022; 32:2871-2883.e4. [DOI: 10.1016/j.cub.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 01/20/2023]
|
11
|
Lipman J, Fergusson L, Bonshek A, Schneider RH. Managing the Built Environment for Health Promotion and Disease Prevention With Maharishi Vastu Architecture: A Review. Glob Adv Health Med 2022; 11:2164957X221077084. [PMID: 35558577 PMCID: PMC9087237 DOI: 10.1177/2164957x221077084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Background and objectives The evolution of healthcare from 18th-century reductionism to 21st-century postgenomic holism has been described in terms of systems medicine, and the impact of the built environment on human health is the focus of investigation and development, leading to the new specialty of evidence-based, therapeutic architecture. The traditional system of Vāstu architecture-a design paradigm for buildings which is proposed to promote mental and physical health-has been applied and studied in the West in the last 20 years, and features elements absent from other approaches. This review critically evaluates the theory and research of a well-developed, standardized form of Vāstu-Maharishi Vastu® architecture (MVA). MVA's principles include development of the architect's consciousness, universal recommendations for building orientation, siting, and dimensions; placement of key functions; and occupants' head direction when sleeping or performing tasks. The effects of isolated Vāstu elements included in MVA are presented. However, the full value of MVA, documented as a systematic, globally applicable practice, is in the effect of its complete package, and thus this review of MVA includes evaluating the experience of living and working in MVA buildings. Methods The published medical and health-related literature was systematically surveyed for research on factors related to isolated principles applied in MVA as well as on the complete system. Results Published research suggests that incorporating MVA principles into buildings correlates with significant improvements in occupants' physical and mental health and quality of life: better sleep, greater happiness of children, and the experience of heightened sense of security and reduced stress. The frequency of burglaries, a social determinant of health, also correlates. Potential neurophysiological mechanisms are described. Conclusions Findings suggest that MVA offers an actionable approach for managing a key social determinant of health by using architectural design as preventive medicine and in public health.
Collapse
Affiliation(s)
- Jon Lipman
- Institute for Vedic Architecture,
Maharishi International University, Fairfield, IA, USA
| | - Lee Fergusson
- Professor, Maharishi Vedic Research
Institute, Gold Coast, AU-QLD, Australia
| | - Anna Bonshek
- Professor, Maharishi Vedic Research
Institute, Gold Coast, AU-QLD, Australia
| | - Robert H. Schneider
- College of Integrative Medicine, Maharishi International
University, Fairfield, IA, USA
| |
Collapse
|
12
|
Khaldy L, Foster JJ, Yilmaz A, Belušič G, Gagnon Y, Tocco C, Byrne MJ, Dacke M. The interplay of directional information provided by unpolarised and polarised light in the heading direction network of the diurnal dung beetle Kheper lamarcki. J Exp Biol 2022; 225:274310. [PMID: 35037692 PMCID: PMC8918814 DOI: 10.1242/jeb.243734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
The sun is the most prominent source of directional information in the heading direction network of the diurnal, ball-rolling dung beetle Kheper lamarcki. If this celestial body is occluded from the beetle's field of view, the distribution of the relative weight between the directional cues that remain shifts in favour of the celestial pattern of polarised light. In this study, we continue to explore the interplay of the sun and polarisation pattern as directional cues in the heading direction network of K. lamarcki. By systematically altering the intensity and degree of the two cues presented, we effectively change the relative reliability of these directional cues as they appear to the dung beetle. The response of the ball-rolling beetle to these modifications allows us to closely examine how the weighting relationship of these two sources of directional information is influenced and altered in the heading direction network of the beetle. We conclude that the process in which K. lamarcki relies on directional information is very likely done based on Bayesian reasoning, where directional information conveying the highest certainty at a particular moment is afforded the greatest weight.
Collapse
Affiliation(s)
- Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - James J Foster
- Zoology II, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ayse Yilmaz
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Yakir Gagnon
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.,School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| |
Collapse
|
13
|
Mathematical modeling shows that ball-rolling dung beetles can use dances to avoid competition. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Khaldy L, Tocco C, Byrne M, Dacke M. Compass Cue Integration and Its Relation to the Visual Ecology of Three Tribes of Ball-Rolling Dung Beetles. INSECTS 2021; 12:insects12060526. [PMID: 34204081 PMCID: PMC8229028 DOI: 10.3390/insects12060526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
To guide their characteristic straight-line orientation away from the dung pile, ball-rolling dung beetles steer according to directional information provided by celestial cues, which, among the most relevant are the sun and polarised skylight. Most studies regarding the use of celestial cues and their influence on the orientation system of the diurnal ball-rolling beetle have been performed on beetles of the tribe Scarabaeini living in open habitats. These beetles steer primarily according to the directional information provided by the sun. In contrast, Sisyphus fasciculatus, a species from a different dung-beetle tribe (the Sisyphini) that lives in habitats with closely spaced trees and tall grass, relies predominantly on directional information from the celestial pattern of polarised light. To investigate the influence of visual ecology on the relative weight of these cues, we studied the orientation strategy of three different tribes of dung beetles (Scarabaeini, Sisyphini and Gymnopleurini) living within the same biome, but in different habitat types. We found that species within a tribe share the same orientation strategy, but that this strategy differs across the tribes; Scarabaeini, living in open habitats, attribute the greatest relative weight to the directional information from the sun; Sisyphini, living in closed habitats, mainly relies on directional information from polarised skylight; and Gymnopleurini, also living in open habitats, appear to weight both cues equally. We conclude that, despite exhibiting different body size, eye size and morphology, dung beetles nevertheless manage to solve the challenge of straight-line orientation by weighting visual cues that are particular to the habitat in which they are found. This system is however dynamic, allowing them to operate equally well even in the absence of the cue given the greatest relative weight by the particular species.
Collapse
Affiliation(s)
- Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; (C.T.); (M.D.)
- Correspondence:
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; (C.T.); (M.D.)
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa;
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa;
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; (C.T.); (M.D.)
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa;
| |
Collapse
|
15
|
Grob R, el Jundi B, Fleischmann PN. Towards a common terminology for arthropod spatial orientation. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1905075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Basil el Jundi
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Pauline N. Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
16
|
Navigation and orientation in Coleoptera: a review of strategies and mechanisms. Anim Cogn 2021; 24:1153-1164. [PMID: 33846895 DOI: 10.1007/s10071-021-01513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
Spatial orientation is important for animals to forage, mate, migrate, and escape certain threats, and can require simple to complex cognitive abilities and behaviours. As these behaviours are more difficult to experimentally test in vertebrates, considerable research has focussed on investigating spatial orientation in insects. However, the majority of insect spatial orientation research tends to focus on a few taxa of interest, especially social insects. Beetles present an interesting insect group to study in this respect, due to their diverse taxonomy and biology, and prevalence as agricultural pests. In this article, I review research on beetle spatial orientation. Then, I use this synthesis to discuss mechanisms beetles employ in the context of different behaviours that require orientation or navigation. I conclude by discussing two future avenues for behavioural research on this topic, which could lead to more robust conclusions on how species in this diverse order are able to traverse through a wide variety of environments.
Collapse
|
17
|
Goedeker SJ, Wrynn TE, Gall BG. Orientation behavior of riparian long-jawed orb weavers ( Tetragnatha elongata) after displacement over water. Ecol Evol 2021; 11:2899-2906. [PMID: 33767845 PMCID: PMC7981236 DOI: 10.1002/ece3.7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/06/2022] Open
Abstract
Many organisms possess remarkable abilities to orient and navigate within their environment to achieve goals. We examined the orientation behavior of a riparian spider, the Long-Jawed Orb Weaver (Tetragnatha elongata), when displaced onto the surface of the water. When displaced, spiders move with alternating movements of the first three leg pairs while dragging the most posterior pair of legs behind them. In addition, spiders often perform a series of orientation behaviors consisting of concentric circles before ultimately choosing a path of travel directly toward the nearest point to land. While the number of orientation behaviors increased with increasing distance from shore, distance from shore had no effect on the direction of travel, which was significantly oriented toward the closest shoreline. These results indicate a complex ability to orient toward land when displaced onto water, possibly to decrease the amount of time on the surface of the water and thus decrease predation risk.
Collapse
|
18
|
Ciofini A, Mercatelli L, Hariyama T, Ugolini A. Sky radiance and spectral gradient are orienting cues for the sandhopper Talitrus saltator (Crustacea, Amphipoda). J Exp Biol 2021; 224:jeb239574. [PMID: 33328290 DOI: 10.1242/jeb.239574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
The sandhopper Talitrus saltator relies on both the sun and the moon compasses to return to the belt of damp sand on the beach in which it lives buried during the day. In addition to the sun, the gradient of radiance and the spectral distribution across the sky could provide directional information that T. saltator can potentially use to orient itself during the day even when the sun is not visible (e.g. cloudy sky). The scope of this work was (1) to determine the intensity levels of sky radiance that the sandhoppers use in their zonal recovery and (2) to investigate whether this species relies on the celestial spectral gradient in its zonal recovery. Sandhoppers were tested in the laboratory under artificial radiance or spectral gradients. Our results show that under an artificial sky simulating the natural radiance gradient on a cloudless day, sandhoppers orientated toward the correct seaward direction of their home beach; however, individuals lost their ability to use the intensity gradient as an orientation cue when the radiance was attenuated by at least 40%. Sandhoppers were also able to head in the correct seaward direction of their home beach at any time of the day by using the spectral gradient as their only source of visual orientation reference.
Collapse
Affiliation(s)
- Alice Ciofini
- Dipartimento di Biologia, Università di Firenze, Via Romana 17/19, 50125 Firenze, Italy
| | - Luca Mercatelli
- Istituto Nazionale di Ottica - CNR, Largo Enrico Fermi 6, 50125 Firenze, Italy
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University, School of Medicine, Hamamatsu, 431-3192, Japan
| | - Alberto Ugolini
- Dipartimento di Biologia, Università di Firenze, Via Romana 17/19, 50125 Firenze, Italy
| |
Collapse
|
19
|
Dacke M, Baird E, El Jundi B, Warrant EJ, Byrne M. How Dung Beetles Steer Straight. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:243-256. [PMID: 32822556 DOI: 10.1146/annurev-ento-042020-102149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Distant and predictable features in the environment make ideal compass cues to allow movement along a straight path. Ball-rolling dung beetles use a wide range of different signals in the day or night sky to steer themselves along a fixed bearing. These include the sun, the Milky Way, and the polarization pattern generated by the moon. Almost two decades of research into these remarkable creatures have shown that the dung beetle's compass is flexible and readily adapts to the cues available in its current surroundings. In the morning and afternoon, dung beetles use the sun to orient, but at midday, they prefer to use the wind, and at night or in a forest, they rely primarily on polarized skylight to maintain straight paths. We are just starting to understand the neuronal substrate underlying the dung beetle's compass and the mystery of why these beetles start each journey with a dance.
Collapse
Affiliation(s)
- Marie Dacke
- Department of Biology, Lund University, 223 62 Lund, Sweden; ,
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| | - Emily Baird
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden;
| | - Basil El Jundi
- Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany;
| | - Eric J Warrant
- Department of Biology, Lund University, 223 62 Lund, Sweden; ,
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| |
Collapse
|
20
|
Framework for Developing Bio-Inspired Morphologies for Walking Robots. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Morphology is a defining trait of any walking entity, animal or robot, and is crucial in obtaining movement versatility, dexterity and durability. Collaborations between biologist and engineers create opportunities for implementing bio-inspired morphologies in walking robots. However, there is little guidance for such interdisciplinary collaborations and what tools to use. We propose a development framework for transferring animal morphologies to robots and substantiate it with a replication of the ability of the dung beetle species Scarabaeus galenus to use the same morphology for both locomotion and object manipulation. As such, we demonstrate the advantages of a bio-inspired dung beetle-like robot, ALPHA, and how its morphology outperforms a conventional hexapod by increasing the (1) step length by 50.0%, (2) forward and upward reach by 95.5%, and by lowering the (3) overall motor acceleration by 7.9%, and (4) step frequency by 21.1% at the same walking speed. Thereby, the bio-inspired robot has longer and fewer steps that lower fatigue-inducing impulses, a greater variety of step patterns, and can potentially better utilise its workspace to overcome obstacles. Hence, we demonstrate how the framework can be used to develop legged robots with bio-inspired morphologies that embody greater movement versatility, dexterity and durability.
Collapse
|
21
|
Homing in the arachnid taxa Araneae and Amblypygi. Anim Cogn 2020; 23:1189-1204. [PMID: 32894371 DOI: 10.1007/s10071-020-01424-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
Adequate homing is essential for the survival of any animal when it leaves its home to find prey or a mate. There are several strategies by which homing can be carried out: (a) retrace the outbound path; (b) use a 'cognitive map'; or (c) use path integration (PI). Here, I review the state of the art of research on spiders (Araneae) and whip spiders (Amblypygi) homing behaviour. The main strategy described in the literature as being used by these arachnids is PI. Behavioural and neural substrates of PI are described in a small group of spider families (Agelenidae, Lycosidae, Gnaphosidae, Ctenidae and Theraphosidae) and a whip spider family (Phrynidae). In spiders, the cues used to detect the position of the animal relative to its home are the position of the sun, polarized light patterns, web elasticity and landmarks. In whip spiders, the cues used are olfactory, tactile and, with a more minor role, visual. The use of a magnetic field in whip spiders has been rejected both with field and laboratory studies. Concerning the distance walked in PI, the possibility of using optic flow and idiothetic information in spiders is considered. The studies about outbound and inbound paths in whip spiders seem to suggest they do not follow the PI rules. As a conclusion, these arachnids' navigation relies on multimodal cues. We have detailed knowledge about the sensory origin (visual, olfactory, mechanosensory receptors) of neural information, but we are far from knowing the central neural structures where sensory information is integrated.
Collapse
|
22
|
Jundi BE. Underwater Path Integration: Using the Celestial Dome to Get Back Home. Curr Biol 2020; 30:R639-R642. [DOI: 10.1016/j.cub.2020.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Liang H, Bai H, Liu N, Shen K. Limitation of Rayleigh sky model for bioinspired polarized skylight navigation in three-dimensional attitude determination. BIOINSPIRATION & BIOMIMETICS 2020; 15:046007. [PMID: 32106105 DOI: 10.1088/1748-3190/ab7ab7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Insects such as desert ants and drosophilae can sense polarized skylight for navigation. Inspired by insects, many researchers have begun to study how to use skylight polarization patterns for attitude determination. The Rayleigh sky model has become the most widely used skylight polarization model for bioinspired polarized skylight navigation due to its simplicity and practicality. However, this is an ideal model considering only single Rayleigh scatter events, and the limitation of this model in bio-inspired attitude determination has not been paid much attention and lacks strict inference proof. To address this problem, the rotational and plane symmetry of the Rayleigh sky model are analyzed in detail, and it is theoretically proved that this model contains only single solar vector information, which contains only two independent scalar pieces of attitude information, so it is impossible to determine three Euler angles simultaneously in real-time. To further verify this conclusion, based on a designed hypothetical polarization camera, we discuss what conditions different three-dimensional attitudes must satisfy so that the polarization images taken at different 3D attitudes are the same; this indicates that multiple solutions will appear when only using the Rayleigh sky model to determine 3D attitude. In conclusion, due to its single solar vector information and the existence of multiple solutions, it is fully proved that 3D attitude cannot be determined in real time based only upon the Rayleigh sky model. Code is available at: https://github.com/HuajuLiang/HypotheticalPolarizationCamera.
Collapse
Affiliation(s)
- Huaju Liang
- School of Energy and Power Engineering, Nanjing University of Science and Technology (NJUST), Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Khaldy L, Peleg O, Tocco C, Mahadevan L, Byrne M, Dacke M. The effect of step size on straight-line orientation. J R Soc Interface 2019; 16:20190181. [PMID: 31387484 PMCID: PMC6731515 DOI: 10.1098/rsif.2019.0181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/03/2019] [Indexed: 11/20/2022] Open
Abstract
Moving along a straight path is a surprisingly difficult task. This is because, with each ensuing step, noise is generated in the motor and sensory systems, causing the animal to deviate from its intended route. When relying solely on internal sensory information to correct for this noise, the directional error generated with each stride accumulates, ultimately leading to a curved path. In contrast, external compass cues effectively allow the animal to correct for errors in its bearing. Here, we studied straight-line orientation in two different sized dung beetles. This allowed us to characterize and model the size of the directional error generated with each step, in the absence of external visual compass cues (motor error) as well as in the presence of these cues (compass and motor errors). In addition, we model how dung beetles balance the influence of internal and external orientation cues as they orient along straight paths under the open sky. We conclude that the directional error that unavoidably accumulates as the beetle travels is inversely proportional to the step size of the insect, and that both beetle species weigh the two sources of directional information in a similar fashion.
Collapse
Affiliation(s)
- Lana Khaldy
- Department of Biology, Lund Vision Group, Lund University, Lund, Sweden
| | - Orit Peleg
- Department of Computer Science, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Claudia Tocco
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - L. Mahadevan
- Departments of Organismic and Evolutionary Biology and Physics, School of Engineering and Applied Sciences, Kavli Institute for NanoBio Science and Technology, Harvard University, Cambridge, MA, USA
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marie Dacke
- Department of Biology, Lund Vision Group, Lund University, Lund, Sweden
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Freas CA, Plowes NJR, Spetch ML. Not just going with the flow: foraging ants attend to polarised light even while on the pheromone trail. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:755-767. [PMID: 31422422 DOI: 10.1007/s00359-019-01363-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
The polarisation pattern of skylight serves as an orientation cue for many invertebrates. Solitary foraging ants, in particular, rely on polarised light to orient along with a number of other visual cues. Yet it is unknown, if this cue is actively used in socially foraging species that use pheromone trails to navigate. Here, we explore the use of polarised light in the presence of the pheromone cues of the foraging trail. The desert harvester ant, Veromessor pergandei, relies on pheromone cues and path integration in separate stages of their foraging ecology (column and fan, respectively). Here, we show that foragers actively orient to an altered overhead polarisation pattern, both while navigating individually in the fan and while on the pheromone-based column. These heading changes occurred during twilight, as well as in the early morning and late afternoon before sunset. Differences in shift size indicate that foragers attend to both the polarisation pattern and the sun's position when available, yet during twilight, headings are dominated by the polarisation pattern. Finally, when the sun's position was experimentally blocked before sunset, shift sizes increased similar to twilight testing. These findings show that celestial cues provide directional information on the pheromone trail.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada.
| | - Nicola J R Plowes
- Department of Life Sciences, Mesa Community College, 1833 Southern Avenue, Mesa, AZ, 85202, USA
| | - Marcia L Spetch
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
26
|
Jang H, Boesch C, Mundry R, Kandza V, Janmaat KRL. Sun, age and test location affect spatial orientation in human foragers in rainforests. Proc Biol Sci 2019; 286:20190934. [PMID: 31337316 PMCID: PMC6661361 DOI: 10.1098/rspb.2019.0934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
The ability to know the direction of food sources is important for the foraging success of hunter-gatherers, especially in rainforests where dense vegetation limits visual detection distances. Besides sex and age, prior experience with the environment and the use of environmental cues are known to influence orientation abilities of humans. Among environmental cues, the position of the sun in the sky is important for orientation of diurnal animal species. However, whether or to what extent humans use the sun is largely unknown. Here, we investigated orientation abilities of the Mbendjele BaYaka people in the Republic of Congo, by conducting pointing tests (Nparticipants = 54, age: 6-76 years) in different locations in the rainforest. The Mbendjele were overall highly accurate at pointing to out-of-sight targets (median error: 6°). Pointing accuracy increased with age, but sex did not affect accuracy. Crucially, sun visibility increased pointing accuracy in young participants, especially when they were far from the camp. However, this effect became less apparent in older participants who exhibited high pointing accuracy, also when the sun was not visible. This study extends our understandings of orientation abilities of human foragers and provides the first behavioural evidence for sun compass use in humans.
Collapse
Affiliation(s)
- Haneul Jang
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Roger Mundry
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vidrich Kandza
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institut de Recherche en Sciences Exactes et Naturelles, Brazzaville, the Republic of Congo
| | - Karline R. L. Janmaat
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Gkanias E, Risse B, Mangan M, Webb B. From skylight input to behavioural output: A computational model of the insect polarised light compass. PLoS Comput Biol 2019; 15:e1007123. [PMID: 31318859 PMCID: PMC6638774 DOI: 10.1371/journal.pcbi.1007123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/22/2019] [Indexed: 01/30/2023] Open
Abstract
Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information could be reliably computed by the insect brain, given realistic constraints on the sky polarisation pattern and the insect eye sensor array. By processing the degree of polarisation in different directions for different parts of the sky, our model can directly estimate the solar azimuth and also infer the confidence of the estimate. We introduce a method to correct for tilting of the sensor array, as might be caused by travel over uneven terrain. We also show that the confidence can be used to approximate the change in sun position over time, allowing the compass to remain fixed with respect to 'true north' during long excursions. We demonstrate that the compass is robust to disturbances and can be effectively used as input to an existing neural model of insect path integration. We discuss the plausibility of our model to be mapped to known neural circuits, and to be implemented for robot navigation.
Collapse
Affiliation(s)
- Evripidis Gkanias
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Risse
- Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - Michael Mangan
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Barbara Webb
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Abstract
South African ball-rolling dung beetles exhibit a unique orientation behavior to avoid competition for food: after forming a piece of dung into a ball, they efficiently escape with it from the dung pile along a straight-line path. To keep track of their heading, these animals use celestial cues, such as the sun, as an orientation reference. Here we show that wind can also be used as a guiding cue for the ball-rolling beetles. We demonstrate that this mechanosensory compass cue is only used when skylight cues are difficult to read, i.e., when the sun is close to the zenith. This raises the question of how the beetles combine multimodal orientation input to obtain a robust heading estimate. To study this, we performed behavioral experiments in a tightly controlled indoor arena. This revealed that the beetles register directional information provided by the sun and the wind and can use them in a weighted manner. Moreover, the directional information can be transferred between these 2 sensory modalities, suggesting that they are combined in the spatial memory network in the beetle's brain. This flexible use of compass cue preferences relative to the prevailing visual and mechanosensory scenery provides a simple, yet effective, mechanism for enabling precise compass orientation at any time of the day.
Collapse
|
29
|
Khaldy L, Tocco C, Byrne M, Baird E, Dacke M. Straight-line orientation in the woodland-living beetle Sisyphus fasciculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:327-335. [PMID: 30955076 PMCID: PMC7192865 DOI: 10.1007/s00359-019-01331-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/06/2019] [Accepted: 03/21/2019] [Indexed: 11/28/2022]
Abstract
To transport their balls of dung along a constant bearing, diurnal savannah-living dung beetles rely primarily on the sun for compass information. However, in more cluttered environments, such as woodlands, this solitary compass cue is frequently hidden from view by surrounding vegetation. In these types of habitats, insects can, instead, rely on surrounding landmarks, the canopy pattern, or wide-field celestial cues, such as polarised skylight, for directional information. Here, we investigate the compass orientation strategy behind straight-line orientation in the diurnal woodland-living beetle Sisyphus fasciculatus. We found that, when manipulating the direction of polarised skylight, Si. fasciculatus responded to this change with a similar change in bearing. However, when the apparent position of the sun was moved, the woodland-living beetle did not change its direction of travel. In contrast, the savannah-living beetle Scarabaeus lamarcki responded to the manipulation of the solar position with a corresponding change in bearing. These results suggest that the dominant compass cue used for straight-line orientation in dung beetles may be determined by the celestial cue that is most prominent in their preferred habitat.
Collapse
Affiliation(s)
- Lana Khaldy
- Department of Biology, Lund Vision Group, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Claudia Tocco
- School of Animal, Plant and Environmental Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Marcus Byrne
- School of Animal, Plant and Environmental Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Emily Baird
- Department of Biology, Lund Vision Group, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.,Department of Zoology, Functional Morphology, Stockholm University, Stockholm, Sweden
| | - Marie Dacke
- Department of Biology, Lund Vision Group, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.,School of Animal, Plant and Environmental Science, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Honkanen A, Adden A, da Silva Freitas J, Heinze S. The insect central complex and the neural basis of navigational strategies. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb188854. [PMID: 30728235 DOI: 10.1242/jeb.188854] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oriented behaviour is present in almost all animals, indicating that it is an ancient feature that has emerged from animal brains hundreds of millions of years ago. Although many complex navigation strategies have been described, each strategy can be broken down into a series of elementary navigational decisions. In each moment in time, an animal has to compare its current heading with its desired direction and compensate for any mismatch by producing a steering response either to the right or to the left. Different from reflex-driven movements, target-directed navigation is not only initiated in response to sensory input, but also takes into account previous experience and motivational state. Once a series of elementary decisions are chained together to form one of many coherent navigation strategies, the animal can pursue a navigational target, e.g. a food source, a nest entrance or a constant flight direction during migrations. Insects show a great variety of complex navigation behaviours and, owing to their small brains, the pursuit of the neural circuits controlling navigation has made substantial progress over the last years. A brain region as ancient as insects themselves, called the central complex, has emerged as the likely navigation centre of the brain. Research across many species has shown that the central complex contains the circuitry that might comprise the neural substrate of elementary navigational decisions. Although this region is also involved in a wide range of other functions, we hypothesize in this Review that its role in mediating the animal's next move during target-directed behaviour is its ancestral function, around which other functions have been layered over the course of evolution.
Collapse
Affiliation(s)
- Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | | | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
31
|
El Jundi B, Baird E, Byrne MJ, Dacke M. The brain behind straight-line orientation in dung beetles. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb192450. [PMID: 30728239 DOI: 10.1242/jeb.192450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For many insects, celestial compass cues play an important role in keeping track of their directional headings. One well-investigated group of celestial orientating insects are the African ball-rolling dung beetles. After finding a dung pile, these insects detach a piece, form it into a ball and roll it away along a straight path while facing backwards. A brain region, termed the central complex, acts as an internal compass that constantly updates the ball-rolling dung beetle about its heading. In this review, we give insights into the compass network behind straight-line orientation in dung beetles and place it in the context of the orientation mechanisms and neural networks of other insects. We find that the neuronal network behind straight-line orientation in dung beetles has strong similarities to the ones described in path-integrating and migrating insects, with the central complex being the key control point for this behavior. We conclude that, despite substantial differences in behavior and navigational challenges, dung beetles encode compass information in a similar way to other insects.
Collapse
Affiliation(s)
- Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, Emmy-Noether Group, 97074 Würzburg, Germany
| | - Emily Baird
- Stockholm University, Faculty of Science, Department of Zoology, Division of Functional Morphology, 10691 Stockholm, Sweden
| | - Marcus J Byrne
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa
| | - Marie Dacke
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa.,Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| |
Collapse
|
32
|
Dupeyroux J, Viollet S, Serres JR. Polarized skylight-based heading measurements: a bio-inspired approach. J R Soc Interface 2019; 16:20180878. [PMID: 30958149 PMCID: PMC6364636 DOI: 10.1098/rsif.2018.0878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/20/2018] [Indexed: 11/12/2022] Open
Abstract
Many insects such as desert ants, crickets, locusts, dung beetles, bees and monarch butterflies have been found to extract their navigation cues from the regular pattern of the linearly polarized skylight. These species are equipped with ommatidia in the dorsal rim area of their compound eyes, which are sensitive to the angle of polarization of the skylight. In the polarization-based robotic vision, most of the sensors used so far comprise high-definition CCD or CMOS cameras topped with linear polarizers. Here, we present a 2-pixel polarization-sensitive visual sensor, which was strongly inspired by the dorsal rim area of desert ants' compound eyes, designed to determine the direction of polarization of the skylight. The spectral sensitivity of this minimalistic sensor, which requires no lenses, is in the ultraviolet range. Five different methods of computing the direction of polarization were implemented and tested here. Our own methods, the extended and AntBot method, outperformed the other three, giving a mean angular error of only 0.62° ± 0.40° (median: 0.24°) and 0.69° ± 0.52° (median: 0.39°), respectively (mean ± standard deviation). The results obtained in outdoor field studies show that our celestial compass gives excellent results at a very low computational cost, which makes it highly suitable for autonomous outdoor navigation purposes.
Collapse
|
33
|
Foster JJ, Kirwan JD, El Jundi B, Smolka J, Khaldy L, Baird E, Byrne MJ, Nilsson DE, Johnsen S, Dacke M. Orienting to polarized light at night - matching lunar skylight to performance in a nocturnal beetle. ACTA ACUST UNITED AC 2019; 222:jeb.188532. [PMID: 30530838 DOI: 10.1242/jeb.188532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
For polarized light to inform behaviour, the typical range of degrees of polarization observable in the animal's natural environment must be above the threshold for detection and interpretation. Here, we present the first investigation of the degree of linear polarization threshold for orientation behaviour in a nocturnal species, with specific reference to the range of degrees of polarization measured in the night sky. An effect of lunar phase on the degree of polarization of skylight was found, with smaller illuminated fractions of the moon's surface corresponding to lower degrees of polarization in the night sky. We found that the South African dung beetle Escarabaeus satyrus can orient to polarized light for a range of degrees of polarization similar to that observed in diurnal insects, reaching a lower threshold between 0.04 and 0.32, possibly as low as 0.11. For degrees of polarization lower than 0.23, as measured on a crescent moon night, orientation performance was considerably weaker than that observed for completely linearly polarized stimuli, but was nonetheless stronger than in the absence of polarized light.
Collapse
Affiliation(s)
- James J Foster
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - John D Kirwan
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Basil El Jundi
- Biocenter (Zoology II), University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jochen Smolka
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Emily Baird
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Sönke Johnsen
- Biology Department, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| |
Collapse
|
34
|
El Jundi B, Warrant EJ, Pfeiffer K, Dacke M. Neuroarchitecture of the dung beetle central complex. J Comp Neurol 2018; 526:2612-2630. [PMID: 30136721 DOI: 10.1002/cne.24520] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
Despite their tiny brains, insects show impressive abilities when navigating over short distances during path integration or during migration over thousands of kilometers across entire continents. Celestial compass cues often play an important role as references during navigation. In contrast to many other insects, South African dung beetles rely exclusively on celestial cues for visual reference during orientation. After finding a dung pile, these animals cut off a piece of dung from the pat, shape it into a ball and roll it away along a straight path until a suitable place for underground consumption is found. To maintain a constant bearing, a brain region in the beetle's brain, called the central complex, is crucially involved in the processing of skylight cues, similar to what has already been shown for path-integrating and migrating insects. In this study, we characterized the neuroanatomy of the sky-compass network and the central complex in the dung beetle brain in detail. Using tracer injections, combined with imaging and 3D modeling, we describe the anatomy of the possible sky-compass network in the central brain. We used a quantitative approach to study the central-complex network and found that several types of neuron exhibit a highly organized connectivity pattern. The architecture of the sky-compass network and central complex is similar to that described in insects that perform path integration or are migratory. This suggests that, despite their different orientation behaviors, this neural circuitry for compass orientation is highly conserved among the insects.
Collapse
Affiliation(s)
- Basil El Jundi
- Biocenter, Zoology II, Emmy Noether Animal Navigation Group, University of Würzburg, Germany
| | - Eric J Warrant
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Marie Dacke
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
35
|
The prevalence of olfactory- versus visual-signal encounter by searching bumblebees. Sci Rep 2018; 8:14590. [PMID: 30275496 PMCID: PMC6167322 DOI: 10.1038/s41598-018-32897-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/18/2018] [Indexed: 11/08/2022] Open
Abstract
While the phrase 'foraging bumblebee' brings to mind a bumbling bee flying flower to flower in a sunny meadow, foraging is a complicated series of behaviors such as: locating a floral patch; selecting a flower-type; learning handling skills for pollen and nectar extraction; determining when to move-on from a patch; learning within-patch paths (traplining); and learning efficient hive-to-patch routes (spatial navigation). Thus the term 'forager' encompasses multiple distinct behaviors that rely on different sensory modalities. Despite a robust literature on bumblebee foraging behavior, few studies are directly relevant to sensory-guided search; i.e. how workers locate novel patches. The first step in answering this question is to determine what sensory information is available to searching bumblebees. This manuscript presents a computational model that elucidates the relative frequency of visual and olfactory cues that are available to workers searching for floral resources under a range of ecologically relevant scenarios. Model results indicate that odor is the most common sensory cue encountered during search flights. When the likelihood of odor-plume contact is higher, odor-encounter is ubiquitous. While integrative (visual + olfactory) cues are common when foragers are searching for larger flowers (e.g. Echinacea), they become rare when foragers are searching for small flowers (e.g. Penstemon). Visual cues are only encountered in isolation when foragers are seeking large flowers with a low odor-plume contact probability. These results indicate that despite the multisensory nature of floral signals, different modalities may be encountered in isolation during search-behavior, as opposed to the reliably multimodal signals encountered during patch-exploitation or nectar/ pollen acquisition.
Collapse
|
36
|
Foster JJ, El Jundi B, Smolka J, Khaldy L, Nilsson DE, Byrne MJ, Dacke M. Stellar performance: mechanisms underlying Milky Way orientation in dung beetles. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0079. [PMID: 28193823 DOI: 10.1098/rstb.2016.0079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 11/12/2022] Open
Abstract
Nocturnal dung beetles (Scarabaeus satyrus) are currently the only animals that have been demonstrated to use the Milky Way for reliable orientation. In this study, we tested the capacity of S. satyrus to orient under a range of artificial celestial cues, and compared the properties of these cues with images of the Milky Way simulated for a beetle's visual system. We find that the mechanism that permits accurate stellar orientation under the Milky Way is based on an intensity comparison between different regions of the Milky Way. We determined the beetles' contrast sensitivity for this task in behavioural experiments in the laboratory, and found that the resulting threshold of 13% is sufficient to detect the contrast between the southern and northern arms of the Milky Way under natural conditions. This mechanism should be effective under extremely dim conditions and on nights when the Milky Way forms a near symmetrical band that crosses the zenith. These findings are discussed in the context of studies of stellar orientation in migratory birds and itinerant seals.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- James J Foster
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Basil El Jundi
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Jochen Smolka
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden.,School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| |
Collapse
|
37
|
Immonen EV, Dacke M, Heinze S, El Jundi B. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. J Comp Neurol 2017; 525:1879-1908. [PMID: 28074466 DOI: 10.1002/cne.24169] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular.
Collapse
Affiliation(s)
- Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland.,Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Marie Dacke
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Stanley Heinze
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Basil El Jundi
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
38
|
El Jundi B, Foster JJ, Byrne MJ, Baird E, Dacke M. Spectral information as an orientation cue in dung beetles. Biol Lett 2016; 11:rsbl.2015.0656. [PMID: 26538537 DOI: 10.1098/rsbl.2015.0656] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation.
Collapse
Affiliation(s)
- Basil El Jundi
- Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - James J Foster
- Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Emily Baird
- Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marie Dacke
- Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| |
Collapse
|
39
|
Abstract
The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs.
Collapse
Affiliation(s)
- Thomas Labhart
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zürich CH 8057, Switzerland
| |
Collapse
|
40
|
Hubel TY, Shotton J, Wilshin SD, Horgan J, Klein R, McKenna R, Wilson AM. Cheetah Reunion - The Challenge of Finding Your Friends Again. PLoS One 2016; 11:e0166864. [PMID: 27926915 PMCID: PMC5142782 DOI: 10.1371/journal.pone.0166864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 11/04/2016] [Indexed: 11/29/2022] Open
Abstract
Animals navigate their environment using a variety of senses and strategies. This multiplicity enables them to respond to different navigational requirements resulting from habitat, scale and purpose. One of the challenges social animals face is how to reunite after periods of separation. We explore a variety of possible mechanisms used to reunite the members of a cheetah coalition dispersed within a large area after prolonged separation. Using GPS data from three cheetahs reuniting after weeks of separation, we determined that 1) the likelihood of purely coincidental reunion is miniscule 2) the reunion occurred in an area not normally frequented 3) with very little time spent in the region in advance of the reunion. We therefore propose that timely encounter of scent markings where paths cross is the most likely mechanism used to aid the reunion.
Collapse
Affiliation(s)
- Tatjana Y. Hubel
- Structure and Motion Laboratory, Royal Veterinary College, Hatfield, UK
- * E-mail: (TYH)
| | - Justine Shotton
- Structure and Motion Laboratory, Royal Veterinary College, Hatfield, UK
| | - Simon D. Wilshin
- Structure and Motion Laboratory, Royal Veterinary College, Hatfield, UK
| | - Jane Horgan
- Cheetah Conservation Botswana, Kgale Siding Park, Plot 1069-KO, Gaborone, Botswana
| | - Rebecca Klein
- Cheetah Conservation Botswana, Kgale Siding Park, Plot 1069-KO, Gaborone, Botswana
| | - Rick McKenna
- Cheetah Conservation Botswana, Kgale Siding Park, Plot 1069-KO, Gaborone, Botswana
| | - Alan M. Wilson
- Structure and Motion Laboratory, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
41
|
El Jundi B, Foster JJ, Khaldy L, Byrne MJ, Dacke M, Baird E. A Snapshot-Based Mechanism for Celestial Orientation. Curr Biol 2016; 26:1456-62. [PMID: 27185557 DOI: 10.1016/j.cub.2016.03.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 10/21/2022]
Abstract
In order to protect their food from competitors, ball-rolling dung beetles detach a piece of dung from a pile, shape it into a ball, and roll it away along a straight path [1]. They appear to rely exclusively on celestial compass cues to maintain their bearing [2-8], but the mechanism that enables them to use these cues for orientation remains unknown. Here, we describe the orientation strategy that allows dung beetles to use celestial cues in a dynamic fashion. We tested the underlying orientation mechanism by presenting beetles with a combination of simulated celestial cues (sun, polarized light, and spectral cues). We show that these animals do not rely on an innate prediction of the natural geographical relationship between celestial cues, as other navigating insects seem to [9, 10]. Instead, they appear to form an internal representation of the prevailing celestial scene, a "celestial snapshot," even if that scene represents a physical impossibility for the real sky. We also find that the beetles are able to maintain their bearing with respect to the presented cues only if the cues are visible when the snapshot is taken. This happens during the "dance," a behavior in which the beetle climbs on top of its ball and rotates about its vertical axis [11]. This strategy for reading celestial signals is a simple but efficient mechanism for straight-line orientation.
Collapse
Affiliation(s)
- Basil El Jundi
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden.
| | - James J Foster
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Emily Baird
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
42
|
Smolka J, Baird E, el Jundi B, Reber T, Byrne MJ, Dacke M. Night sky orientation with diurnal and nocturnal eyes: dim-light adaptations are critical when the moon is out of sight. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Abstract
Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity.
Collapse
|
44
|
Abstract
Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity.
Collapse
|
45
|
el Jundi B, Smolka J, Baird E, Byrne MJ, Dacke M. Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation. ACTA ACUST UNITED AC 2014; 217:2422-9. [PMID: 24737763 DOI: 10.1242/jeb.101154] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To escape competition at the dung pile, a ball-rolling dung beetle forms a piece of dung into a ball and rolls it away. To ensure their efficient escape from the dung pile, beetles rely on a 'celestial compass' to move along a straight path. Here, we analyzed the reliability of different skylight cues for this compass and found that dung beetles rely not only on the sun but also on the skylight polarization pattern. Moreover, we show the first evidence of an insect using the celestial light-intensity gradient for orientation. Using a polarizer, we manipulated skylight so that the polarization pattern appeared to turn by 90 deg. The beetles then changed their bearing close to the expected 90 deg. This behavior was abolished if the sun was visible to the beetle, suggesting that polarized light is hierarchically subordinate to the sun. When the sky was depolarized and the sun was invisible, the beetles could still move along straight paths. Therefore, we analyzed the use of the celestial light-intensity gradient for orientation. Artificial rotation of the intensity pattern by 180 deg caused beetles to orient in the opposite direction. This light-intensity cue was also found to be subordinate to the sun and could play a role in disambiguating the polarization signal, especially at low sun elevations.
Collapse
Affiliation(s)
- Basil el Jundi
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Jochen Smolka
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Emily Baird
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Marie Dacke
- Department of Biology, Lund University, 223 62 Lund, Sweden School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| |
Collapse
|
46
|
Integration of polarization and chromatic cues in the insect sky compass. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:575-89. [PMID: 24589854 DOI: 10.1007/s00359-014-0890-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 01/13/2023]
Abstract
Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.
Collapse
|
47
|
Cronin TW, Douglas RH. Seeing and doing: how vision shapes animal behaviour. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130030. [PMID: 24395959 DOI: 10.1098/rstb.2013.0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas W Cronin
- Department of Biological Sciences, UMBC, , 1000 Hilltop Circle, Baltimore, MD, USA
| | | |
Collapse
|