1
|
Tulli MJ, Carrizo LV. From slenderness to robustness: Understanding long bone shape in sigmodontine rodents. Anat Rec (Hoboken) 2024; 307:3830-3849. [PMID: 38877810 DOI: 10.1002/ar.25521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
The morphological evolution of the appendicular skeleton may reflect the selective pressures specific to different environments, phylogenetic inheritance, or allometry. Covariation in bone shapes enhances morphological integration in response to ecological specializations. In contrast to previous multivariate studies using classical linear morphometry, we use a geometric morphometric approach to explore the morphological diversity of long bones and examine relationships between ecological categories and morphological characters in a species-rich and ecomorphologically diverse group of rodents. We examined the humerus, ulna, femur, and tibiofibula of 19 sigmodontine species with different locomotor types (ambulatory, quadrupedal-saltatorial, natatorial, semifossorial and scansorial) to investigate the influence of locomotor type and phylogeny on limb bone shape and morphological integration of the appendicular skeleton. This study represents the most detailed examination of the morphological diversity of long bones in sigmodontines, employing geometric morphometrics within an ecomorphological framework. Our results indicate that functional demands and evolutionary history jointly influence the shape of forelimb and hindlimb bones. The main variation in bone shape is associated with a slenderness-robustness gradient observed across all ecological categories. Quadrupedal-saltatorial species, with their need for agility, possess slender and elongated limbs, while natatorial and semifossorial species exhibit shorter and more robust bone shapes, suited for their respective environments. This gradient also influences bone covariation within limbs, demonstrating interconnectedness between elements. We found functional covariation between the ulna-tibiofibula and humerus-tibiofibula, likely important for propulsion, and anatomical covariation between the humerus-ulna and femur-tibiofibula, potentially reflecting overall limb structure. This study demonstrates that the versatile morphology of long bones in sigmodontines plays a critical role in their remarkable ecological and phylogenetic diversification.
Collapse
Affiliation(s)
- María José Tulli
- Unidad Ejecutora Lillo, (CONICET-FML), Tucumán, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Luz Valeria Carrizo
- Laboratorio de Genética Evolutiva, UNaM-CONICET, Instituto de Biología Subtropical (IBS)-nodo Posadas, Posadas, Argentina
| |
Collapse
|
2
|
Orkney A, Boerma DB, Hedrick BP. Evolutionary integration of forelimb and hindlimb proportions within the bat wing membrane inhibits ecological adaptation. Nat Ecol Evol 2024:10.1038/s41559-024-02572-9. [PMID: 39487310 DOI: 10.1038/s41559-024-02572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024]
Abstract
Bats and birds are defined by their convergent evolution of flight, hypothesized to require the modular decoupling of wing and leg evolution. Although a wealth of evidence supports this interpretation in birds, there has been no systematic attempt to identify modular organization in the bat limb skeleton. Here we present a phylogenetically representative and ecologically diverse collection of limb skeletal measurements from 111 extant bat species. We compare this dataset with a compendium of 149 bird species, known to exhibit modular evolution and anatomically regionalized skeletal adaptation. We demonstrate that, in contrast to birds, morphological diversification across crown bats is associated with strong trait integration both within and between the forelimb and hindlimb. Different regions of the bat limb skeleton adapt to accommodate variation in distinct ecological activities, with flight-style variety accommodated by adaptation of the distal wing, while the thumb and hindlimb play an important role facilitating adaptive responses to variation in roosting habits. We suggest that the wing membrane enforces evolutionary integration across the bat skeleton, highlighting that the evolution of the bat thumb is less correlated with the evolution of other limb bone proportions. We propose that strong limb integration inhibits bat adaptive responses, explaining their lower rates of phenotypic evolution and relatively homogeneous evolutionary dynamics in contrast to birds. Powered flight, enabled by the membranous wing, is therefore not only a key bat innovation but their defining inhibition.
Collapse
Affiliation(s)
- Andrew Orkney
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.
| | - David B Boerma
- Department of Biology, Dyson College of Arts and Sciences, Pace University, New York, NY, USA
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Brandon P Hedrick
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Arlegi M, Lorenzo C. Evolutionary selection and morphological integration in the hand of modern humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25024. [PMID: 39228137 DOI: 10.1002/ajpa.25024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES To enhance our understanding of the evolutionary dynamics of the modern human hand by analyzing the degree of integration and ability to respond to selection pressures of each phalanx and metacarpal bone. MATERIALS AND METHODS The sample comprised 96 adult individuals, both female and male, from Euro-American, Afro-American, and European populations. We collected 10 linear measurements from the 19 metacarpals and proximal, middle, and distal phalanges that constitute the five digits of the hand. Using these data, we constructed variance/covariance matrices to quantify the degree of integration and assess the hand ability to respond to selective pressures. RESULTS Distal phalanges are the most evolvable and flexible elements, while being the least integrated and constrained. The thumb is similarly integrated as the second and third rays, while medial rays (fourth and fifth digits) are more integrated. However, the thumb presents different integration and response to selection patterns. No significant relationship was found between functionality and the indices of selection and integration. Finally, the correlation between hand and foot indices yielded significant results for conditional evolvability and flexibility. DISCUSSION The findings suggest different evolutionary trajectories for the metacarpal and distal phalanx in the modern human thumb, likely reflecting varying functional and developmental pressures. The first metacarpal, characterized by high flexibility and low evolvability, appears to have reached a stable, optimal morphology, under stabilizing selection. In contrast, the distal phalanx seems to have undergone directional evolution, suggesting specialization for a specific function. Comparisons between hands and feet suggest that these structures evolve differently under directional selection but similarly under stabilizing selection.
Collapse
Affiliation(s)
- Mikel Arlegi
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Carlos Lorenzo
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, Spain
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
| |
Collapse
|
4
|
Troyer EM, Evans KM, Goatley CHR, Friedman M, Carnevale G, Nicholas B, Kolmann M, Bemis KE, Arcila D. Evolutionary innovation accelerates morphological diversification in pufferfishes and their relatives. Evolution 2024; 78:1869-1882. [PMID: 39258573 DOI: 10.1093/evolut/qpae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Evolutionary innovations have played an important role in shaping the diversity of life on Earth. However, how these innovations arise and their downstream effects on patterns of morphological diversification remain poorly understood. Here, we examine the impact of evolutionary innovation on trait diversification in tetraodontiform fishes (pufferfishes, boxfishes, ocean sunfishes, and allies). This order provides an ideal model system for studying morphological diversification owing to their range of habitats and divergent morphologies, including the fusion of the teeth into a beak in several families. Using three-dimensional geometric morphometric data for 176 extant and fossil species, we examine the effect of skull integration and novel habitat association on the evolution of innovation. Strong integration may be a requirement for rapid trait evolution and facilitating the evolution of innovative structures, like the tetraodontiform beak. Our results show that the beak arose in the presence of highly conserved patterns of integration across the skull, suggesting that integration did not limit the range of available phenotypes to tetraodontiforms. Furthermore, we find that beaks have allowed tetraodontiforms to diversify into novel ecological niches, irrespective of habitat. Our results suggest that general rules pertaining to evolutionary innovation may be more nuanced than previously thought.
Collapse
Affiliation(s)
- Emily M Troyer
- Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, United States
| | - Kory M Evans
- Biosciences Department, Rice University, Houston, TX, United States
| | - Christopher H R Goatley
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, Hampshire, United Kingdom
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
- Function, Evolution and Anatomy Research (FEAR) Lab, School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Matt Friedman
- Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Turin, Italy
| | - Benjamin Nicholas
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Matthew Kolmann
- Department of Biology, University of Louisville, Louisville, KY, United States
| | - Katherine E Bemis
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
- National Systematics Laboratory, Office of Science and Technology, NOAA Fisheries, Washington, DC, United States
| | - Dahiana Arcila
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Fratani J, Fontanarrosa G, Duport-Bru AS, Russell A. Exploring the Influence of Neomorphic Gekkotan Paraphalanges on Limb Modularity and Integration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024. [PMID: 39221754 DOI: 10.1002/jez.b.23275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Digital specializations of geckos are widely associated with their climbing abilities. A recurring feature that has independently emerged within the sister families Gekkonidae and Phyllodactylidae is the presence of neomorphic paraphalanges (PPEs), usually paired, paraxial skeletal structures lying adjacent to interphalangeal and metapodial-phalangeal joints. The incorporation of PPEs into gekkotan autopodia has the potential to modify the modularity and integration of the ancestral limb pattern by affecting information flow among skeletal limb parts. Here we explore the influence of PPEs on limb organization using anatomical networks. We modeled the fore- and hindlimbs in species ancestrally devoid of PPEs (Iguana iguana and Gekko gecko) and paraphalanx-bearing species (Hemidactylus mabouia and Uroplatus fimbriatus). To further clarify the impact of PPEs we also expunged PPEs from paraphalanx-bearing network models. We found that PPEs significantly increase modularity, giving rise to tightly integrated sub-modules along the digits, suggesting functional specialization. Species-specific singularities also emerged, such as the trade-off between the presence of PPEs favoring modularity (along the proximodistal axis) and the interdigital webbing favoring integration (across the lateromedial axis) in the limbs of U. fimbriatus. The PPEs are characterized by low connectivity compared with other skeletal elements; nevertheless, this varies based on their specific location and seemingly reflects developmental constraints. Our results also highlight the importance of the fifth metatarsal in generating a shift in lepidosaurian hindlimb polarity that contrasts with the more symmetrical bauplan of tetrapods. Our findings support extensive modification of the autopodial system in association with the addition of the neomorphic and intriguing PPEs.
Collapse
Affiliation(s)
- Jessica Fratani
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel, Tucumán, Argentina
| | - Gabriela Fontanarrosa
- Instituto de Biodiversidad Neotropical (IBN), CONICET-UNT, Yerba Buena, Tucumán, Argentina
| | - Ana Sofía Duport-Bru
- Instituto de Biodiversidad Neotropical (IBN), CONICET-UNT, Yerba Buena, Tucumán, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Anthony Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Spear JK. Reduced limb integration characterizes primate clades with diverse locomotor adaptations. J Hum Evol 2024; 194:103567. [PMID: 39068699 DOI: 10.1016/j.jhevol.2024.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
Hominoids exhibit a strikingly diverse set of locomotor adaptations-including knuckle-walking, brachiation, quadrumanuous suspension, and striding bipedalism-while also possessing morphologies associated with forelimb suspension. It has been suggested that changes in limb element integration facilitated the evolution of diverse locomotor modes by reducing covariation between serial homologs and allowing the evolution of a greater diversity of limb lengths. Here, I compare limb element integration in hominoids with that of other primate taxa, including two that have converged with them in forelimb morphology, Ateles and Pygathrix. Ateles is part of a clade that, such as hominoids, exhibits diverse locomotor adaptations, whereas Pygathrix is an anomaly in a much more homogeneous (in terms of locomotor adaptations) clade. I find that all atelines (and possibly all atelids), not just Ateles, share reduced limb element integration with hominoids. Pygathrix does not, however, instead resembling other members of its own family. Indriids also seem to have higher limb integration than apes, despite using their forelimbs and hindlimbs in divergent ways, although there is more uncertainty in this group due to poor sample size. These results suggest that reduced limb integration is characteristic of certain taxonomic groups with high locomotor diversity rather than taxa with specific, specialized locomotor adaptations. This is consistent with the hypothesis that reduced integration serves to open new areas of morphospace to those clades while suggesting that derived locomotion with divergent demands on limbs is not necessarily associated with reduced limb integration.
Collapse
Affiliation(s)
- Jeffrey K Spear
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th Street, Chicago, 60637, USA; Center for the Study of Human Origins and Department of Anthropology, New York University, 25 Waverly Place, New York, 10003, USA; New York Consortium in Evolutionary Primatology, New York, USA.
| |
Collapse
|
7
|
Barrett PZ, Hopkins SSB. Mosaic evolution underlies feliform morphological disparity. Proc Biol Sci 2024; 291:20240756. [PMID: 39137889 PMCID: PMC11321862 DOI: 10.1098/rspb.2024.0756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 08/15/2024] Open
Abstract
Constraint is a fundamental concept in evolutionary theory. Morphology and ecology both are limited by functional, historical and developmental factors to a subset of the theoretical range species could occupy. Cat-like carnivorans (Feliformia) offer a unique opportunity to investigate phenotypic constraint, as several feliform clades are purported to be limited to generalized ecomorphological roles, while others possess extremely specialized durophagous (bone-crushing) and sabretooth morphology. We investigated the evolutionary history of feliforms by considering their phylogeny, morphological disparity and rates of evolution. We recover results that show a mosaic pattern exists in the degree of morphological disparity per anatomical region per clade and ecology. Non-hypercarnivores, such as viverrids (civets and genets), Malagasy euplerids and lophocyonids (extinct hypocarnivores), have the greatest dental disparity, while hypercarnivores (felids, nimravids, many hyaenids) have the lowest dental disparity but highest cranial and mandibular disparity (excluding dentition). However, high disparity is not necessarily associated with high rates of evolution, but instead with ecological radiations. We reveal that relationships between specialization and disparity are not as simple as past research has concluded. Instead, morphological disparity results from an anatomical mosaic of evolution, where different ecologies correlate with and likely channel unique patterns/combinations of disparity per anatomical partition.
Collapse
Affiliation(s)
- Paul Z. Barrett
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
- Museum of Natural and Cultural History, University of Oregon, Eugene, OR 97403, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA
| | - Samantha S. B. Hopkins
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
- Museum of Natural and Cultural History, University of Oregon, Eugene, OR 97403, USA
- Clark Honors College, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
8
|
Somjee U, Marting P, Anzaldo S, Simmons LW, Painting CJ. Extreme range in adult body size reveals hidden trade-offs among sexually selected traits. Evolution 2024; 78:1382-1395. [PMID: 38900629 DOI: 10.1093/evolut/qpae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Sexually selected weapons used to monopolize mating opportunities are predicted to trade-off with traits used in competition for fertilization. Yet, the limited size range typically found among adults of a species often precludes clear comparisons between population-level and individual-level relative trait investment. The jousting weevil, Brentus anchorago (Coleoptera: Brentidae), varies more than 26-fold in body mass, which is among the most extreme adult body size ranges of any solitary terrestrial species. We reveal a trade-off at a population level: hypermetric scaling in male weapons (slope = 1.59) and a closely mirrored reversal in allocation to postcopulatory traits (slope = 0.54). Yet, at the individual level, we find the opposite pattern; males that invest relatively more in weapons for their size class also invest more in postcopulatory traits. Across 36 dung beetle and 41 brentine weevil species, we find the allometric slope explains more trait variation at larger body size ranges; in brentines, population-level scaling patterns become more detectable in species with a larger range in adult body size. Our findings reveal that population-level allometries and individual-level trade-offs can both be important in shaping relative trait allocation; we highlight that the adult body size range is rarely examined but may be integral to gaining a deeper understanding of trade-offs in reproductive allocation.
Collapse
Affiliation(s)
- Ummat Somjee
- Department of Integrative Biology, University of Texas, Austin, TX, United States
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Peter Marting
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Salvatore Anzaldo
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Leigh W Simmons
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | | |
Collapse
|
9
|
Baker RL, Brock GL, Newsome EL, Zhao M. Polyploidy and the evolution of phenotypic integration: Network analysis reveals relationships among anatomy, morphology, and physiology. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11605. [PMID: 39184197 PMCID: PMC11342231 DOI: 10.1002/aps3.11605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 08/27/2024]
Abstract
Premise Most traits are polygenic and most genes are pleiotropic, resulting in complex, integrated phenotypes. Polyploidy presents an excellent opportunity to explore the evolution of phenotypic integration as entire genomes are duplicated, allowing for new associations among traits and potentially leading to enhanced or reduced phenotypic integration. Despite the multivariate nature of phenotypic evolution, studies often rely on simplistic bivariate correlations that cannot accurately represent complex phenotypes or data reduction techniques that can obscure specific trait relationships. Methods We apply network modeling, a common gene co-expression analysis, to the study of phenotypic integration to identify multivariate patterns of phenotypic evolution, including anatomy and morphology (structural) and physiology (functional) traits in response to whole genome duplication in the genus Brassica. Results We identify four key structural traits that are overrepresented in the evolution of phenotypic integration. Seeding networks with key traits allowed us to identify structure-function relationships not apparent from bivariate analyses. In general, allopolyploids exhibited larger, more robust networks indicative of increased phenotypic integration compared to diploids. Discussion Phenotypic network analysis may provide important insights into the effects of selection on non-target traits, even when they lack direct correlations with the target traits. Network analysis may allow for more nuanced predictions of both natural and artificial selection.
Collapse
Affiliation(s)
- Robert L. Baker
- Inventory and Monitoring DivisionNational Park ServiceFort Collins80525ColoradoUSA
| | | | - Eastyn L. Newsome
- Department of Botany and Plant PathologyPurdue UniversityWest Lafayette47907IndianaUSA
| | - Meixia Zhao
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesville32611FloridaUSA
| |
Collapse
|
10
|
Cosnefroy Q, Berillon G, Gilissen E, Brige P, Chaumoître K, Lamberton F, Marchal F. New insights into patterns of integration in the femur and pelvis among catarrhines. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24931. [PMID: 38491922 DOI: 10.1002/ajpa.24931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES Integration reflects the level of coordinated variation of the phenotype. The integration of postcranial elements can be studied from a functional perspective, especially with regards to locomotion. This study investigates the link between locomotion, femoral structural properties, and femur-pelvis complex morphology. MATERIALS AND METHODS We measured (1) morphological integration between femoral and pelvic morphologies using geometric morphometrics, and (2) covariation between femoral/pelvic morphologies and femoral diaphyseal cross-sectional properties, which we defined as morpho-structural integration. Morphological and morpho-structural integration patterns were measured among humans (n = 19), chimpanzees and bonobos (n = 16), and baboons (n = 14), whose locomotion are distinct. RESULTS Baboons show the highest magnitude of morphological integration and the lowest of morpho-structural integration. Chimpanzees and bonobos show intermediate magnitude of morphological and morpho-structural integration. Yet, body size seems to have a considerable influence on both integration patterns, limiting the interpretations. Finally, humans present the lowest morphological integration and the highest morpho-structural integration between femoral morphology and structural properties but not between pelvic morphology and femur. DISCUSSION Morphological and morpho-structural integration depict distinct strategies among the samples. A strong morphological integration among baboon's femur-pelvis module might highlight evidence for long-term adaptation to quadrupedalism. In humans, it is likely that distinct selective pressures associated with the respective function of the pelvis and the femur tend to decrease morphological integration. Conversely, high mechanical loading on the hindlimbs during bipedal locomotion might result in specific combination of structural and morphological features within the femur.
Collapse
Affiliation(s)
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | - Pauline Brige
- Aix-Marseille Univ, CNRS, CERIMED, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France
| | - Kathia Chaumoître
- UMR 7268 ADES, Aix-Marseille Univ-CNRS-EFS, Marseille, France
- Assistance Publique Hôpitaux de Marseille, Hôpital Nord, Aix-Marseille Univ, Service d'Imagerie Médicale, Marseille, France
| | | | | |
Collapse
|
11
|
Orkney A, Hedrick BP. Small body size is associated with increased evolutionary lability of wing skeleton proportions in birds. Nat Commun 2024; 15:4208. [PMID: 38806471 PMCID: PMC11133451 DOI: 10.1038/s41467-024-48324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Birds are represented by 11,000 species and a great variety of body masses. Modular organisation of trait evolution across birds has facilitated simultaneous adaptation of different body regions to divergent ecological requirements. However, the role modularity has played in avian body size evolution, especially small-bodied, rapidly evolving and diverse avian subclades, such as hummingbirds and songbirds, is unknown. Modularity is influenced by the intersection of biomechanical restrictions, adaptation, and developmental controls, making it difficult to uncover the contributions of single factors such as body mass to skeletal organisation. We develop a novel framework to decompose this complexity, assessing factors underlying the modularity of skeletal proportions in fore-limb propelled birds distributed across a range of body masses. We demonstrate that differences in body size across birds triggers a modular reorganisation of flight apparatus proportions consistent with biomechanical expectations. We suggest weakened integration within the wing facilitates radiation in small birds. Our framework is generalisable to other groups and has the capacity to untangle the multi-layered complexity intrinsic to modular evolution.
Collapse
Affiliation(s)
- Andrew Orkney
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, 930 Campus Rd, Ithaca, NY, 14853, USA.
| | - Brandon P Hedrick
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, 930 Campus Rd, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Zhang R, Drummond AJ, Mendes FK. Fast Bayesian Inference of Phylogenies from Multiple Continuous Characters. Syst Biol 2024; 73:102-124. [PMID: 38085256 PMCID: PMC11129596 DOI: 10.1093/sysbio/syad067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/23/2023] [Accepted: 11/07/2023] [Indexed: 05/28/2024] Open
Abstract
Time-scaled phylogenetic trees are an ultimate goal of evolutionary biology and a necessary ingredient in comparative studies. The accumulation of genomic data has resolved the tree of life to a great extent, yet timing evolutionary events remain challenging if not impossible without external information such as fossil ages and morphological characters. Methods for incorporating morphology in tree estimation have lagged behind their molecular counterparts, especially in the case of continuous characters. Despite recent advances, such tools are still direly needed as we approach the limits of what molecules can teach us. Here, we implement a suite of state-of-the-art methods for leveraging continuous morphology in phylogenetics, and by conducting extensive simulation studies we thoroughly validate and explore our methods' properties. While retaining model generality and scalability, we make it possible to estimate absolute and relative divergence times from multiple continuous characters while accounting for uncertainty. We compile and analyze one of the most data-type diverse data sets to date, comprised of contemporaneous and ancient molecular sequences, and discrete and continuous morphological characters from living and extinct Carnivora taxa. We conclude by synthesizing lessons about our method's behavior, and suggest future research venues.
Collapse
Affiliation(s)
- Rong Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School 169857, Singapore
| | - Alexei J Drummond
- Centre for Computational Evolution, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Fábio K Mendes
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
13
|
Cooper WJ, Conith MR, Conith AJ. Surfperches versus Damselfishes: Trophic Evolution in Closely Related Pharyngognath Fishes with Highly Divergent Reproductive Strategies. Integr Org Biol 2024; 6:obae018. [PMID: 38939103 PMCID: PMC11210498 DOI: 10.1093/iob/obae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/17/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024] Open
Abstract
Surfperches and damselfishes are very closely related ovalentarians with large reproductive differences. Damselfishes are typical of most Ovalentaria in that they lay demersal eggs that hatch into small, free-feeding larvae. Surfperches are unusual among ovalentarians and most acanthomorphs in having prolonged internal development. They are born at an advanced stage, some as adults, and bypass the need to actively feed throughout an extended period of ontogeny. Damselfishes and surfperches possess the same modifications of the fifth branchial arch that allow them to perform advanced food processing within the pharynx. This condition (pharyngognathy) has large effects on the evolution of feeding mechanics and trophic ecology. Although the evolution of pharyngognaths has received considerable attention, the effects of different reproductive strategies on their diversification have not been examined. We compared head shape evolution in surfperches and damselfishes using geometric morphometrics, principal component analyses, and multiple phylogenetic-comparative techniques. We found that they have similar mean head shapes, that their primary axes of shape variation are comparable and distinguish benthic-feeding and pelagic-feeding forms in each case, and that, despite large differences in crown divergence times, their head shape disparities are not significantly different. Several lines of evidence suggest that evolution has been more constrained in damselfishes: Head shape is evolving faster in surfperches, more anatomical traits have undergone correlated evolution in damselfishes, there is significant phylogenetic signal in damselfish evolution (but not surfperches), and damselfishes exhibit significant allometry in head shape that is not present in surfperches.
Collapse
Affiliation(s)
- W J Cooper
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA 98225, USA
- Marine and Coastal Science, Western Washington University, Bellingham, WA 98225, USA
| | - M R Conith
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA 98225, USA
| | - A J Conith
- Department of Biology, DePaul University, Chicago, IL 60604, USA
| |
Collapse
|
14
|
Villamil CI, Middleton ER. Conserved patterns and locomotor-related evolutionary constraints in the hominoid vertebral column. J Hum Evol 2024; 190:103528. [PMID: 38579429 DOI: 10.1016/j.jhevol.2024.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
The evolution of the hominoid lineage is characterized by pervasive homoplasy, notably in regions such as the vertebral column, which plays a central role in body support and locomotion. Few isolated and fewer associated vertebrae are known for most fossil hominoid taxa, but identified specimens indicate potentially high levels of convergence in terms of both form and number. Homoplasy thus complicates attempts to identify the anatomy of the last common ancestor of hominins and other taxa and stymies reconstructions of evolutionary scenarios. One way to clarify the role of homoplasy is by investigating constraints via phenotypic integration, which assesses covariation among traits, shapes evolutionary pathways, and itself evolves in response to selection. We assessed phenotypic integration and evolvability across the subaxial (cervical, thoracic, lumbar, sacral) vertebral column of macaques (n = 96), gibbons (n = 77), chimpanzees (n = 92), and modern humans (n = 151). We found a mid-cervical cluster that may have shifted cranially in hominoids, a persistent thoracic cluster that is most marked in chimpanzees, and an expanded lumbosacral cluster in hominoids that is most expanded in gibbons. Our results highlight the highly conserved nature of the vertebral column. Taxa appear to exploit existing patterns of integration and ontogenetic processes to shift, expand, or reduce cluster boundaries. Gibbons appear to be the most highly derived taxon in our sample, possibly in response to their highly specialized locomotion.
Collapse
Affiliation(s)
- Catalina I Villamil
- School of Chiropractic, Universidad Central del Caribe, Puerto Rico, PO Box 60327, Bayamón, USA.
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, 3413 N. Downer Ave., Sabin Hall 390, Milwaukee, WI, USA
| |
Collapse
|
15
|
Sansalone G, Wroe S, Coates G, Attard MRG, Fruciano C. Unexpectedly uneven distribution of functional trade-offs explains cranial morphological diversity in carnivores. Nat Commun 2024; 15:3275. [PMID: 38627430 PMCID: PMC11021405 DOI: 10.1038/s41467-024-47620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Functional trade-offs can affect patterns of morphological and ecological evolution as well as the magnitude of morphological changes through evolutionary time. Using morpho-functional landscape modelling on the cranium of 132 carnivore species, we focused on the macroevolutionary effects of the trade-off between bite force and bite velocity. Here, we show that rates of evolution in form (morphology) are decoupled from rates of evolution in function. Further, we found theoretical morphologies optimising for velocity to be more diverse, while a much smaller phenotypic space was occupied by shapes optimising force. This pattern of differential representation of different functions in theoretical morphological space was highly correlated with patterns of actual morphological disparity. We hypothesise that many-to-one mapping of cranium shape on function may prevent the detection of direct relationships between form and function. As comparatively only few morphologies optimise bite force, species optimising this function may be less abundant because they are less likely to evolve. This, in turn, may explain why certain clades are less variable than others. Given the ubiquity of functional trade-offs in biological systems, these patterns may be general and may help to explain the unevenness of morphological and functional diversity across the tree of life.
Collapse
Affiliation(s)
- Gabriele Sansalone
- Institute for Marine Biological Resources and Biotechnology (CNR-IRBIM), National Research Council, Via S. Raineri 4, 98122, Messina, Italy.
- Function, Evolution and Anatomy Research Lab, Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia.
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213D, 41125, Modena, Italy.
| | - Stephen Wroe
- Function, Evolution and Anatomy Research Lab, Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Geoffrey Coates
- Function, Evolution and Anatomy Research Lab, Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Marie R G Attard
- Function, Evolution and Anatomy Research Lab, Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
- British Antarctic Survey, High Cross, Madingley Road, CB3 0ET, Cambridge, UK
| | - Carmelo Fruciano
- Institute for Marine Biological Resources and Biotechnology (CNR-IRBIM), National Research Council, Via S. Raineri 4, 98122, Messina, Italy.
- National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124, Catania, Italy.
| |
Collapse
|
16
|
Grossnickle DM, Sadier A, Patterson E, Cortés-Viruet NN, Jiménez-Rivera SM, Sears KE, Santana SE. The hierarchical radiation of phyllostomid bats as revealed by adaptive molar morphology. Curr Biol 2024; 34:1284-1294.e3. [PMID: 38447572 DOI: 10.1016/j.cub.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/11/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Adaptive radiations are bursts in biodiversity that generate new evolutionary lineages and phenotypes. However, because they typically occur over millions of years, it is unclear how their macroevolutionary dynamics vary through time and among groups of organisms. Phyllostomid bats radiated extensively for diverse diets-from insects to vertebrates, fruit, nectar, and blood-and we use their molars as a model system to examine the dynamics of adaptive radiations. Three-dimensional shape analyses of lower molars of Noctilionoidea (Phyllostomidae and close relatives) indicate that different diet groups exhibit distinct morphotypes. Comparative analyses further reveal that phyllostomids are a striking example of a hierarchical radiation; phyllostomids' initial, higher-level diversification involved an "early burst" in molar morphological disparity as lineages invaded new diet-affiliated adaptive zones, followed by subsequent lower-level diversifications within adaptive zones involving less dramatic morphological changes. We posit that strong selective pressures related to initial shifts to derived diets may have freed molars from morpho-functional constraints associated with the ancestral molar morphotype. Then, lineages with derived diets (frugivores and nectarivores) diversified within broad adaptive zones, likely reflecting finer-scale niche partitioning. Importantly, the observed early burst pattern is only evident when examining molar traits that are strongly linked to diet, highlighting the value of ecomorphological traits in comparative studies. Our results support the hypothesis that adaptive radiations are commonly hierarchical and involve different tempos and modes at different phylogenetic levels, with early bursts being more common at higher levels.
Collapse
Affiliation(s)
- David M Grossnickle
- Natural Sciences Department, Oregon Institute of Technology, Campus Drive, Klamath Falls, OR 97601, USA.
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Charles E. Young Drive East, Los Angeles, CA 90095, USA; Institut des Sciences de l'Evolution de Montpellier, Universite de Montpellier, Place Eugene Bataillon, Montpellier 34095, France
| | - Edward Patterson
- Department of Biology, University of Washington, Stevens Way NE, Seattle, WA 98195, USA
| | - Nashaly N Cortés-Viruet
- Department of Animal Science, University of Puerto Rico at Mayagüez, Calle Post, Mayagüez, PR 00681, USA
| | - Stephanie M Jiménez-Rivera
- Caribbean Manatee Conservation Center, Inter American University of Puerto Rico, 500 Dr. John Will Harris Street, Bayamón, PR 00957, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Charles E. Young Drive East, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Sharlene E Santana
- Department of Biology, University of Washington, Stevens Way NE, Seattle, WA 98195, USA; Burke Museum of Natural History and Culture, University of Washington, Memorial Way NE, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Bergmann PJ, Tonelli-Sippel I. Many-to-many mapping: A simulation study of how the number of traits and tasks affect the evolution of form and function. J Theor Biol 2024; 581:111744. [PMID: 38281541 DOI: 10.1016/j.jtbi.2024.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
Many-to-many mapping of form-to-function posits that multiple morphological and physiological traits affect the performance of multiple tasks in an organism, and that redundancy and multitasking occur simultaneously to shape the evolution of an organism's phenotype. Many-to-many mapping is expected to be ubiquitous in nature, yet little is known about how it influences the evolution of organismal phenotype. The F-matrix is a powerful tool to study these issues because it describes how multiple traits affect multiple tasks. We undertook a simulation study using the F-matrix to test how the number of traits and the number of tasks affect trait integration and evolvability, as well as the relationships among tasks. We found that as the number of traits and/or tasks increases, the relationships between the tasks and the integration between the traits become weaker, and that the evolvability of the traits increases, all resulting in a system that is freer to evolve. We also found that as the number of traits increases, performance tradeoffs tend to become weaker, but only to a point. Our work shows that it is important to consider not only multiple traits, but also the multitude of tasks that those traits carry out when studying form-function relationships. We suggest that evolution of these relationships follows functional lines of least resistance, which are less defined in more complex systems, resulting in a mechanism for diversification.
Collapse
Affiliation(s)
- Philip J Bergmann
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01602, United States.
| | - Isabel Tonelli-Sippel
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01602, United States
| |
Collapse
|
18
|
Ollonen J, Khannoon ER, Macrì S, Vergilov V, Kuurne J, Saarikivi J, Soukainen A, Aalto IM, Werneburg I, Diaz RE, Di-Poï N. Dynamic evolutionary interplay between ontogenetic skull patterning and whole-head integration. Nat Ecol Evol 2024; 8:536-551. [PMID: 38200368 DOI: 10.1038/s41559-023-02295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The arrangement and morphology of the vertebrate skull reflect functional and ecological demands, making it a highly adaptable structure. However, the fundamental developmental and macroevolutionary mechanisms leading to different vertebrate skull phenotypes remain unclear. Here we exploit the morphological diversity of squamate reptiles to assess the developmental and evolutionary patterns of skull variation and covariation in the whole head. Our geometric morphometric analysis of a complex squamate ontogenetic dataset (209 specimens, 169 embryos, 44 species), covering stages from craniofacial primordia to fully ossified bones, reveals that morphological differences between snake and lizard skulls arose gradually through changes in spatial relationships (heterotopy) followed by alterations in developmental timing or rate (heterochrony). Along with dynamic spatiotemporal changes in the integration pattern of skull bone shape and topology with surrounding brain tissues and sensory organs, we identify a relatively higher phenotypic integration of the developing snake head compared with lizards. The eye, nasal cavity and Jacobson's organ are pivotal in skull morphogenesis, highlighting the importance of sensory rearrangements in snake evolution. Furthermore, our findings demonstrate the importance of early embryonic, ontogenetic and tissue interactions in shaping craniofacial evolution and ecological diversification in squamates, with implications for the nature of cranio-cerebral relations across vertebrates.
Collapse
Affiliation(s)
- Joni Ollonen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eraqi R Khannoon
- Biology Department, College of Science, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vladislav Vergilov
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jaakko Kuurne
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jarmo Saarikivi
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Arttu Soukainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ida-Maria Aalto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls Universität, Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
| | - Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, CA, USA
- Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
19
|
Jung H, Strait D, Rolian C, Baab KL. Evaluating modularity in the hominine skull related to feeding biomechanics. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:39-59. [PMID: 37982349 DOI: 10.1002/ajpa.24875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Modular architecture of traits in complex organisms can be important for morphological evolution at micro- and sometimes macroevolutionary scales as it may influence the tempo and direction of changes to groups of traits that are essential for particular functions, including food acquisition and processing. We tested several distinct hypotheses about craniofacial modularity in the hominine skull in relation to feeding biomechanics. MATERIALS AND METHODS First, we formulated hypothesized functional modules for craniofacial traits reflecting specific demands of feeding biomechanics (e.g., masseter leverage/gape or tooth crown mechanics) in Homo sapiens, Pan troglodytes, and Gorilla gorilla. Then, the pattern and strength of modular signal was quantified by the covariance ratio coefficient and compared across groups using covariance ratio effect size. Hierarchical clustering analysis was then conducted to examine whether a priori-defined functional modules correspond to empirically recovered clusters. RESULTS There was statistical support for most a priori-defined functional modules in the cranium and half of the functional modules in the mandible. Modularity signal was similar in the cranium and mandible, and across the three taxa. Despite a similar strength of modularity, the empirically recovered clusters do not map perfectly onto our priori functional modules, indicating that further work is needed to refine our hypothesized functional modules. CONCLUSION The results suggest that modular structure of traits in association with feeding biomechanics were mostly shared with humans and the two African apes. Thus, conserved patterns of functional modularity may have facilitated evolutionary changes to the skull during human evolution.
Collapse
Affiliation(s)
- Hyunwoo Jung
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - David Strait
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", University of Tübingen, Tübingen, Germany
| | - Campbell Rolian
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Karen L Baab
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
20
|
Law CJ, Hlusko LJ, Tseng ZJ. Uncovering the mosaic evolution of the carnivoran skeletal system. Biol Lett 2024; 20:20230526. [PMID: 38263882 PMCID: PMC10806395 DOI: 10.1098/rsbl.2023.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
The diversity of vertebrate skeletons is often attributed to adaptations to distinct ecological factors such as diet, locomotion, and sensory environment. Although the adaptive evolution of skull, appendicular skeleton, and vertebral column is well studied in vertebrates, comprehensive investigations of all skeletal components simultaneously are rarely performed. Consequently, we know little of how modes of evolution differ among skeletal components. Here, we tested if ecological and phylogenetic effects led to distinct modes of evolution among the cranial, appendicular and vertebral regions in extant carnivoran skeletons. Using multivariate evolutionary models, we found mosaic evolution in which only the mandible, hindlimb and posterior (i.e. last thoracic and lumbar) vertebrae showed evidence of adaptation towards ecological regimes whereas the remaining skeletal components reflect clade-specific evolutionary shifts. We hypothesize that the decoupled evolution of individual skeletal components may have led to the origination of distinct adaptive zones and morphologies among extant carnivoran families that reflect phylogenetic hierarchies. Overall, our work highlights the importance of examining multiple skeletal components simultaneously in ecomorphological analyses. Ongoing work integrating the fossil and palaeoenvironmental record will further clarify deep-time drivers that govern the carnivoran diversity we see today and reveal the complexity of evolutionary processes in multicomponent systems.
Collapse
Affiliation(s)
- Chris J. Law
- Department of Integrative Biology, University of Texas, Austin, TX, USA
- Burke Museum and Department of Biology, University of Washington, Seattle, WA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Leslea J. Hlusko
- National Research Center on Human Evolution (CENIEH), Burgos, Spain
| | - Z. Jack Tseng
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
21
|
Esteban JM, Martín-Serra A, Pérez-Ramos A, Mulot B, Jones K, Figueirido B. The impact of the land-to-sea transition on evolutionary integration and modularity of the pinniped backbone. Commun Biol 2023; 6:1141. [PMID: 37949962 PMCID: PMC10638317 DOI: 10.1038/s42003-023-05512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
In this study, we investigate how the terrestrial-aquatic transition influenced patterns of axial integration and modularity in response to the secondary adaptation to a marine lifestyle. We use 3D geometric morphometrics to quantify shape covariation among presacral vertebrae in pinnipeds (Carnivora; Pinnipedia) and to compare with patterns of axial integration and modularity in their close terrestrial relatives. Our results indicate that the vertebral column of pinnipeds has experienced a decrease in the strength of integration among all presacral vertebrae when compared to terrestrial carnivores (=fissipeds). However, separate integration analyses among the speciose Otariidae (i.e., sea lions and fur seals) and Phocidae (i.e., true seals) also suggests the presence of different axial organizations in these two groups of crown pinnipeds. While phocids present a set of integrated "thoracic" vertebrae, the presacral vertebrae of otariids are characterized by the absence of any set of vertebrae with high integration. We hypothesize that these differences could be linked to their specific modes of aquatic locomotion -i.e., pelvic vs pectoral oscillation. Our results provide evidence that the vertebral column of pinnipeds has been reorganized from the pattern observed in fissipeds but is more complex than a simple "homogenization" of the modular pattern of their close terrestrial relatives.
Collapse
Affiliation(s)
- Juan Miguel Esteban
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain.
| | - Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Baptiste Mulot
- ZooParc de Beauval & Beauval Nature, 41110, Saint-Aignan, France
| | - Katrina Jones
- Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
22
|
Leslie AB, Mander L. Quantifying the complexity of plant reproductive structures reveals a history of morphological and functional integration. Proc Biol Sci 2023; 290:20231810. [PMID: 37909082 PMCID: PMC10618862 DOI: 10.1098/rspb.2023.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Vascular plant reproductive structures have undoubtedly become more complex through time, evolving highly differentiated parts that interact in specialized ways. But quantifying these patterns at broad scales is challenging because lineages produce disparate reproductive structures that are often difficult to compare and homologize. We develop a novel approach for analysing interactions within reproductive structures using networks, treating component parts as nodes and a suite of physical and functional interactions among parts as edges. We apply this approach to the plant fossil record, showing that interactions have generally increased through time and that the concentration of these interactions has shifted towards differentiated surrounding organs, resulting in more compact, functionally integrated structures. These processes are widespread across plant lineages, but their extent and timing vary with reproductive biology; in particular, seed-producing structures show them more strongly than spore or pollen-producing structures. Our results demonstrate that major reproductive innovations like the origin of seeds and angiospermy were associated with increased integration through greater interactions among parts. But they also reveal that for certain groups, particularly Mesozoic gymnosperms, millions of years elapsed between the origin of reproductive innovations and increased interactions among parts within their reproductive structures.
Collapse
Affiliation(s)
- Andrew B. Leslie
- Department of Geological Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Room 118, Stanford, CA 94305, USA
| | - Luke Mander
- School of Environment, Earth and Ecosystem Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| |
Collapse
|
23
|
Marek RD, Felice RN. The neck as a keystone structure in avian macroevolution and mosaicism. BMC Biol 2023; 21:216. [PMID: 37833771 PMCID: PMC10576348 DOI: 10.1186/s12915-023-01715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The origin of birds from non-avian theropod dinosaur ancestors required a comprehensive restructuring of the body plan to enable the evolution of powered flight. One of the proposed key mechanisms that allowed birds to acquire flight and modify the associated anatomical structures into diverse forms is mosaic evolution, which describes the parcelization of phenotypic traits into separate modules that evolve with heterogeneous tempo and mode. Avian mosaicism has been investigated with a focus on the cranial and appendicular skeleton, and as such, we do not understand the role of the axial column in avian macroevolution. The long, flexible neck of extant birds lies between the cranial and pectoral modules and represents an opportunity to study the contribution of the axial skeleton to avian mosaicism. RESULTS Here, we use 3D geometric morphometrics in tandem with phylogenetic comparative methods to provide, to our knowledge, the first integrative analysis of avian neck evolution in context with the head and wing and to interrogate how the interactions between these anatomical systems have influenced macroevolutionary trends across a broad sample of extant birds. We find that the neck is integrated with both the head and the forelimb. These patterns of integration are variable across clades, and only specific ecological groups exhibit either head-neck or neck-forelimb integration. Finally, we find that ecological groups that display head-neck and neck-forelimb integration tend to display significant shifts in the rate of neck morphological evolution. CONCLUSIONS Combined, these results suggest that the interaction between trophic ecology and head-neck-forelimb mosaicism influences the evolutionary variance of the avian neck. By linking together the biomechanical functions of these distinct anatomical systems, the cervical vertebral column serves as a keystone structure in avian mosaicism and macroevolution.
Collapse
Affiliation(s)
- Ryan D Marek
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK.
| | - Ryan N Felice
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
24
|
Marek RD. A surrogate forelimb: Evolution, function and development of the avian cervical spine. J Morphol 2023; 284:e21638. [PMID: 37708511 DOI: 10.1002/jmor.21638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
The neck is a critical portion of the avian spine, one that works in tandem with the beak to act as a surrogate forelimb and allows birds to manipulate their surroundings despite the lack of a grasping capable hand. Birds display an incredible amount of diversity in neck morphology across multiple anatomical scales-from varying cervical counts down to intricate adaptations of individual vertebrae. Despite this morphofunctional disparity, little is known about the drivers of this enormous variation, nor how neck evolution has shaped avian macroevolution. To promote interest in this system, I review the development, function and evolution of the avian cervical spine. The musculoskeletal anatomy, basic kinematics and development of the avian neck are all documented, but focus primarily upon commercially available taxa. In addition, recent work has quantified the drivers of extant morphological variation across the avian neck, as well as patterns of integration between the neck and other skeletal elements. However, the evolutionary history of the avian cervical spine, and its contribution to the diversification and success of modern birds is currently unknown. Future work should aim to broaden our understanding of the cervical anatomy, development and kinematics to include a more diverse selection of extant birds, while also considering the macroevolutionary drivers and consequences of this important section of the avian spine.
Collapse
Affiliation(s)
- Ryan D Marek
- Department of Cell and Developmental Biology, Centre for Integrative Anatomy, University College London, London, UK
| |
Collapse
|
25
|
Alfieri F, Botton-Divet L, Wölfer J, Nyakatura JA, Amson E. A macroevolutionary common-garden experiment reveals differentially evolvable bone organization levels in slow arboreal mammals. Commun Biol 2023; 6:995. [PMID: 37770611 PMCID: PMC10539518 DOI: 10.1038/s42003-023-05371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Eco-morphological convergence, i.e., similar phenotypes evolved in ecologically convergent taxa, naturally reproduces a common-garden experiment since it allows researchers to keep ecological factors constant, studying intrinsic evolutionary drivers. The latter may result in differential evolvability that, among individual anatomical parts, causes mosaic evolution. Reconstructing the evolutionary morphology of the humerus and femur of slow arboreal mammals, we addressed mosaicism at different bone anatomical spatial scales. We compared convergence strength, using it as indicator of evolvability, between bone external shape and inner structure, with the former expected to be less evolvable and less involved in convergent evolution, due to anatomical constraints. We identify several convergent inner structural traits, while external shape only loosely follows this trend, and we find confirmation for our assumption in measures of convergence magnitude. We suggest that future macroevolutionary reconstructions based on bone morphology should include structural traits to better detect ecological effects on vertebrate diversification.
Collapse
Affiliation(s)
- Fabio Alfieri
- Comparative Zoology, Institute for Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany.
- Museum Für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany.
| | - Léo Botton-Divet
- Comparative Zoology, Institute for Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
| | - Jan Wölfer
- Comparative Zoology, Institute for Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
| | - John A Nyakatura
- Comparative Zoology, Institute for Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
| | - Eli Amson
- Paleontology Department, Staatliches Museum für Naturkunde, Rosenstein 1-3, 70191, Stuttgart, Germany
| |
Collapse
|
26
|
Jiang D, Zhang J. Detecting natural selection in trait-trait coevolution. BMC Ecol Evol 2023; 23:50. [PMID: 37700252 PMCID: PMC10496359 DOI: 10.1186/s12862-023-02164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
No phenotypic trait evolves independently of all other traits, but the cause of trait-trait coevolution is poorly understood. While the coevolution could arise simply from pleiotropic mutations that simultaneously affect the traits concerned, it could also result from multivariate natural selection favoring certain trait relationships. To gain a general mechanistic understanding of trait-trait coevolution, we examine the evolution of 220 cell morphology traits across 16 natural strains of the yeast Saccharomyces cerevisiae and the evolution of 24 wing morphology traits across 110 fly species of the family Drosophilidae, along with the variations of these traits among gene deletion or mutation accumulation lines (a.k.a. mutants). For numerous trait pairs, the phenotypic correlation among evolutionary lineages differs significantly from that among mutants. Specifically, we find hundreds of cases where the evolutionary correlation between traits is strengthened or reversed relative to the mutational correlation, which, according to our population genetic simulation, is likely caused by multivariate selection. Furthermore, we detect selection for enhanced modularity of the yeast traits analyzed. Together, these results demonstrate that trait-trait coevolution is shaped by natural selection and suggest that the pleiotropic structure of mutation is not optimal. Because the morphological traits analyzed here are chosen largely because of their measurability and thereby are not expected to be biased with regard to natural selection, our conclusion is likely general.
Collapse
Affiliation(s)
- Daohan Jiang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Present address: Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
27
|
Roberts-Hugghis AS, Burress ED, Lam B, Wainwright PC. The cichlid pharyngeal jaw novelty enhances evolutionary integration in the feeding apparatus. Evolution 2023; 77:1917-1929. [PMID: 37326103 DOI: 10.1093/evolut/qpad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
The modified pharyngeal jaw system of cichlid fishes is widely viewed as a key innovation that substantially facilitated the evolutionary exuberance of this iconic evolutionary radiation. We conduct comparative phylogenetic analyses of integration, disparity, and rate of evolution among feeding-related, skeletal structures in Neotropical cichlids and North American centrarchids, which lack the specialized pharyngeal jaw. Contrasting evolutionary patterns in these two continental radiations, we test a classic decoupling hypothesis. Specifically, we ask whether the modified pharyngeal jaw in cichlids resulted in enhanced evolutionary independence of the oral and pharyngeal jaws, leading to increased diversity of trophic structures. Contrary to this prediction, we find significantly stronger evolutionary integration between the oral and pharyngeal jaws in cichlids compared to centrarchids, although the two groups do not differ in patterns of integration within each jaw system. Further, though we find no significant differences in disparity, centrarchids show faster rates of morphological evolution. Our results suggest that the modified pharyngeal jaw resulted in less evolutionary independence and slower rates of evolution within the feeding system. Thus, we raise the possibility that the cichlid novelty enhances feeding performance, but does not prompt increased morphological diversification within the feeding apparatus, as has long been thought.
Collapse
Affiliation(s)
| | - Edward D Burress
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Brian Lam
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, United States
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, United States
| |
Collapse
|
28
|
Mutumi GL, Hall RP, Hedrick BP, Yohe LR, Sadier A, Davies KTJ, Rossiter SJ, Sears KE, Dávalos LM, Dumont ER. Disentangling Mechanical and Sensory Modules in the Radiation of Noctilionoid Bats. Am Nat 2023; 202:216-230. [PMID: 37531274 DOI: 10.1086/725368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractWith diverse mechanical and sensory functions, the vertebrate cranium is a complex anatomical structure whose shifts between modularity and integration, especially in mechanical function, have been implicated in adaptive diversification. Yet how mechanical and sensory systems and their functions coevolve, as well as how their interrelationship contributes to phenotypic disparity, remain largely unexplored. To examine the modularity, integration, and evolutionary rates of sensory and mechanical structures within the head, we analyzed hard and soft tissue scans from ecologically diverse bats in the superfamily Noctilionoidea, a clade that ranges from insectivores and carnivores to frugivores and nectarivores. We identified eight regions that evolved in a coordinated fashion, thus recognizable as evolutionary modules: five associated with bite force and three linked to olfactory, visual, and auditory systems. Interrelationships among these modules differ between Neotropical leaf-nosed bats (family Phyllostomidae) and other noctilionoids. Consistent with the hypothesis that dietary transitions begin with changes in the capacity to detect novel food items followed by adaptations to process them, peak rates of sensory module evolution predate those of some mechanical modules. We propose that the coevolution of structures influencing bite force, olfaction, vision, and hearing constituted a structural opportunity that allowed the phyllostomid ancestor to take advantage of existing ecological opportunities and contributed to the clade's remarkable radiation.
Collapse
|
29
|
Goswami A, Noirault E, Coombs EJ, Clavel J, Fabre AC, Halliday TJD, Churchill M, Curtis A, Watanabe A, Simmons NB, Beatty BL, Geisler JH, Fox DL, Felice RN. Developmental origin underlies evolutionary rate variation across the placental skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220083. [PMID: 37183904 PMCID: PMC10184245 DOI: 10.1098/rstb.2022.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The placental skull has evolved into myriad forms, from longirostrine whales to globular primates, and with a diverse array of appendages from antlers to tusks. This disparity has recently been studied from the perspective of the whole skull, but the skull is composed of numerous elements that have distinct developmental origins and varied functions. Here, we assess the evolution of the skull's major skeletal elements, decomposed into 17 individual regions. Using a high-dimensional morphometric approach for a dataset of 322 living and extinct eutherians (placental mammals and their stem relatives), we quantify patterns of variation and estimate phylogenetic, allometric and ecological signal across the skull. We further compare rates of evolution across ecological categories and ordinal-level clades and reconstruct rates of evolution along lineages and through time to assess whether developmental origin or function discriminate the evolutionary trajectories of individual cranial elements. Our results demonstrate distinct macroevolutionary patterns across cranial elements that reflect the ecological adaptations of major clades. Elements derived from neural crest show the fastest rates of evolution, but ecological signal is equally pronounced in bones derived from neural crest and paraxial mesoderm, suggesting that developmental origin may influence evolutionary tempo, but not capacity for specialisation. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Anjali Goswami
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Eve Noirault
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Ellen J Coombs
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Julien Clavel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622 Villeurbanne, France
| | - Anne-Claire Fabre
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Thomas J D Halliday
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Morgan Churchill
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Abigail Curtis
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Akinobu Watanabe
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Brian L Beatty
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Jonathan H Geisler
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - David L Fox
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan N Felice
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
30
|
Weisbecker V, Beck RMD, Guillerme T, Harrington AR, Lange-Hodgson L, Lee MSY, Mardon K, Phillips MJ. Multiple modes of inference reveal less phylogenetic signal in marsupial basicranial shape compared with the rest of the cranium. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220085. [PMID: 37183893 PMCID: PMC10184248 DOI: 10.1098/rstb.2022.0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/17/2022] [Indexed: 05/16/2023] Open
Abstract
Incorporating morphological data into modern phylogenies allows integration of fossil evidence, facilitating divergence dating and macroevolutionary inferences. Improvements in the phylogenetic utility of morphological data have been sought via Procrustes-based geometric morphometrics (GMM), but with mixed success and little clarity over what anatomical areas are most suitable. Here, we assess GMM-based phylogenetic reconstructions in a heavily sampled source of discrete characters for mammalian phylogenetics-the basicranium-in 57 species of marsupial mammals, compared with the remainder of the cranium. We show less phylogenetic signal in the basicranium compared with a 'Rest of Cranium' partition, using diverse metrics of phylogenetic signal (Kmult, phylogenetically aligned principal components analysis, comparisons of UPGMA/neighbour-joining/parsimony trees and cophenetic distances to a reference phylogeny) for scaled, Procrustes-aligned landmarks and allometry-corrected residuals. Surprisingly, a similar pattern emerged from parsimony-based analyses of discrete cranial characters. The consistent results across methods suggest that easily computed metrics such as Kmult can provide good guidance on phylogenetic information in a landmarking configuration. In addition, GMM data may be less informative for intricate but conservative anatomical regions such as the basicranium, while better-but not necessarily novel-phylogenetic information can be expected for broadly characterized shapes such as entire bones. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Vera Weisbecker
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Robin M. D. Beck
- School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Thomas Guillerme
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Leonie Lange-Hodgson
- School of Biological Sciences, University of Queensland, Saint Lucia, Queensland, 4072, Australia
| | - Michael S. Y. Lee
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Earth Sciences Section, South Australian Museum, Adelaide, South Australia, 5000 Australia
| | - Karine Mardon
- Centre of Advanced Imaging, University of Queensland, Saint Lucia, Queensland, 4072, Australia
| | - Matthew J. Phillips
- School of Biology & Environmental Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
31
|
Simões TR, Vernygora OV, de Medeiros BAS, Wright AM. Handling Logical Character Dependency in Phylogenetic Inference: Extensive Performance Testing of Assumptions and Solutions Using Simulated and Empirical Data. Syst Biol 2023; 72:662-680. [PMID: 36773019 PMCID: PMC10276625 DOI: 10.1093/sysbio/syad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Logical character dependency is a major conceptual and methodological problem in phylogenetic inference of morphological data sets, as it violates the assumption of character independence that is common to all phylogenetic methods. It is more frequently observed in higher-level phylogenies or in data sets characterizing major evolutionary transitions, as these represent parts of the tree of life where (primary) anatomical characters either originate or disappear entirely. As a result, secondary traits related to these primary characters become "inapplicable" across all sampled taxa in which that character is absent. Various solutions have been explored over the last three decades to handle character dependency, such as alternative character coding schemes and, more recently, new algorithmic implementations. However, the accuracy of the proposed solutions, or the impact of character dependency across distinct optimality criteria, has never been directly tested using standard performance measures. Here, we utilize simple and complex simulated morphological data sets analyzed under different maximum parsimony optimization procedures and Bayesian inference to test the accuracy of various coding and algorithmic solutions to character dependency. This is complemented by empirical analyses using a recoded data set on palaeognathid birds. We find that in small, simulated data sets, absent coding performs better than other popular coding strategies available (contingent and multistate), whereas in more complex simulations (larger data sets controlled for different tree structure and character distribution models) contingent coding is favored more frequently. Under contingent coding, a recently proposed weighting algorithm produces the most accurate results for maximum parsimony. However, Bayesian inference outperforms all parsimony-based solutions to handle character dependency due to fundamental differences in their optimization procedures-a simple alternative that has been long overlooked. Yet, we show that the more primary characters bearing secondary (dependent) traits there are in a data set, the harder it is to estimate the true phylogenetic tree, regardless of the optimality criterion, owing to a considerable expansion of the tree parameter space. [Bayesian inference, character dependency, character coding, distance metrics, morphological phylogenetics, maximum parsimony, performance, phylogenetic accuracy.].
Collapse
Affiliation(s)
- Tiago R Simões
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Oksana V Vernygora
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | | | - April M Wright
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, USA
| |
Collapse
|
32
|
Tharakan S, Shepherd N, Gower DJ, Stanley EL, Felice RN, Goswami A, Watanabe A. High-Density Geometric Morphometric Analysis of Intraspecific Cranial Integration in the Barred Grass Snake ( Natrix helvetica) and Green Anole ( Anolis carolinensis). Integr Org Biol 2023; 5:obad022. [PMID: 37397233 PMCID: PMC10311474 DOI: 10.1093/iob/obad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
How do phenotypic associations intrinsic to an organism, such as developmental and mechanical processes, direct morphological evolution? Comparisons of intraspecific and clade-wide patterns of phenotypic covariation could inform how population-level trends ultimately dictate macroevolutionary changes. However, most studies have focused on analyzing integration and modularity either at macroevolutionary or intraspecific levels, without a shared analytical framework unifying these temporal scales. In this study, we investigate the intraspecific patterns of cranial integration in two squamate species: Natrix helvetica and Anolis carolinensis. We analyze their cranial integration patterns using the same high-density three-dimensional geometric morphometric approach used in a prior squamate-wide evolutionary study. Our results indicate that Natrix and Anolis exhibit shared intraspecific cranial integration patterns, with some differences, including a more integrated rostrum in the latter. Notably, these differences in intraspecific patterns correspond to their respective interspecific patterns in snakes and lizards, with few exceptions. These results suggest that interspecific patterns of cranial integration reflect intraspecific patterns. Hence, our study suggests that the phenotypic associations that direct morphological variation within species extend across micro- and macroevolutionary levels, bridging these two scales.
Collapse
Affiliation(s)
- S Tharakan
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, 100 Northern Boulevard, Old Westbury, NY 11568, USA
| | - N Shepherd
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - D J Gower
- Life Sciences Division, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - E L Stanley
- Digital Imaging Division, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-0001, USA
| | - R N Felice
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Life Sciences Division, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - A Goswami
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Life Sciences Division, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | | |
Collapse
|
33
|
Krishnan A. Biomechanics illuminates form-function relationships in bird bills. J Exp Biol 2023; 226:297128. [PMID: 36912385 DOI: 10.1242/jeb.245171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The field of comparative biomechanics examines how form, mechanical properties and environmental interactions shape the function of biological structures. Biomechanics has advanced by leaps and bounds as rapid technological progress opens up new research horizons. In this Review, I describe how our understanding of the avian bill, a morphologically diverse multifunctional appendage, has been transformed by employing a biomechanical perspective. Across functions from feeding to excavating hollows in trees and as a vocal apparatus, the study of the bill spans both solid and fluid biomechanics, rendering it useful to understand general principles across disciplines. The different shapes of the bill across bird species result in functional and mechanical trade-offs, thus representing a microcosm of many broader form-function questions. Using examples from diverse studies, I discuss how research into bird bills has been shaped over recent decades, and its influence on our understanding of avian ecology and evolution. Next, I examine how bill material properties and geometry influence performance in dietary and non-dietary contexts, simultaneously imposing trade-offs on other functions. Following an examination of the interactions of bills with fluids and their role as part of the vocal apparatus, I end with a discussion of the sensory biomechanics of the bill, focusing specifically on the bill-tip mechanosensory organ. With these case studies, I highlight how this burgeoning and consequential field represents a roadmap for our understanding of the function and evolution of biological structures.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri 462066, Madhya Pradesh, India
| |
Collapse
|
34
|
Figueirido B, Pérez-Ramos A, Martín-Serra A. Intravertebral vs. intervertebral integration and modularity in the vertebral column of mammalian carnivorans. J Anat 2023; 242:642-656. [PMID: 36584354 PMCID: PMC10008293 DOI: 10.1111/joa.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
The vertebral column is a multicomponent structure whose organization results from developmental and functional demands. According to their distinct somitic origins, individual vertebrae exhibit intravertebral modularity between the centrum and neural spine. However, vertebrae are also organized into larger units called intervertebral modules that result from integration between adjacent vertebrae due to locomotory demands or from common developmental origins due to resegmentation. A previous hypothesis suggested that the boundaries of intervertebral modules coincide with changes in the patterns of intravertebral integration. Here, we explicitly test whether the patterns of modularity and integration between the centrum and neural spine (i.e., intravertebral) in the boundary vertebrae among previously defined intervertebral modules change with respect to those in the vertebrae within intervertebral modules. We quantified intravertebral modularity patterns and quantified the strength of intravertebral integration for each vertebra of the presacral region in 41 species of carnivoran mammals using 3D geometric morphometrics. Our results demonstrate a significant intravertebral modular signal between the centrum and neural spine in all post-cervical vertebrae, including the boundary vertebrae among intervertebral modules. However, the strength of intravertebral integration decreases at the boundary vertebrae. We also found a significant correlation between the degree of intravertebral integration and intervertebral integration. Following our results, we hypothesize that natural selection does not override the integration between the centrum and neural spine at the boundary vertebrae, a pattern that should be influenced by their distinct somitic origins and separate ossification centers during early development. However, natural selection has probably influenced (albeit indirectly) the integration between the centrum and neural spine in the vertebrae that compose the intervertebral modules.
Collapse
Affiliation(s)
- Borja Figueirido
- Facultad de Ciencias, Departamento de Ecología y Geología, Universidad de Málaga, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Facultad de Ciencias, Departamento de Ecología y Geología, Universidad de Málaga, Málaga, Spain
| | - Alberto Martín-Serra
- Facultad de Ciencias, Departamento de Ecología y Geología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
35
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Rhoda DP, Haber A, Angielczyk KD. Diversification of the ruminant skull along an evolutionary line of least resistance. SCIENCE ADVANCES 2023; 9:eade8929. [PMID: 36857459 PMCID: PMC9977183 DOI: 10.1126/sciadv.ade8929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 05/28/2023]
Abstract
Clarifying how microevolutionary processes scale to macroevolutionary patterns is a fundamental goal in evolutionary biology, but these analyses, requiring comparative datasets of population-level variation, are limited. By analyzing a previously published dataset of 2859 ruminant crania, we find that variation within and between ruminant species is biased by a highly conserved mammalian-wide allometric pattern, CREA (craniofacial evolutionary allometry), where larger species have proportionally longer faces. Species with higher morphological integration and species more biased toward CREA have diverged farther from their ancestors, and Ruminantia as a clade diversified farther than expected in the direction of CREA. Our analyses indicate that CREA acts as an evolutionary "line of least resistance" and facilitates morphological diversification due to its alignment with the browser-grazer continuum. Together, our results demonstrate that constraints at the population level can produce highly directional patterns of phenotypic evolution at the macroevolutionary scale. Further research is needed to explore how CREA has been exploited in other mammalian clades.
Collapse
Affiliation(s)
- Daniel P. Rhoda
- Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th St., Chicago, IL 60637, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Dr., Chicago, IL 60605, USA
| | - Annat Haber
- The Jackson Laboratory, Farmington, CT 06032, USA
| | - Kenneth D. Angielczyk
- Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th St., Chicago, IL 60637, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Dr., Chicago, IL 60605, USA
| |
Collapse
|
37
|
Diversification of the shell shape and size in Baikal Candonidae ostracods inferred from molecular phylogeny. Sci Rep 2023; 13:2950. [PMID: 36806355 PMCID: PMC9941104 DOI: 10.1038/s41598-023-30003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Ostracod shells are used extensively in paleontology, but we know little about their evolution, especially in ancient lakes. Lake Baikal (LB) is the world's most important stronghold of Candonidae diversity. These crustaceans radiated here rapidly (12-5 Ma) and with an unprecedented morphological diversity. We reconstruct their molecular phylogeny with 46 species and two markers (18S and 16S rRNA), and use it to estimate the evolution of the shell shape and size with landmark-based geometric morphometrics (LBGM). High posterior probabilities support four major clades, which differ in node depth and morphospace clustering. After removing a significant allometry, the first three principal components (PCs) describe about 88% of total variability, suggesting a strong integration. Reconstructed ancestral shapes are similar for all four clades, indicating that diversification happened after colonization. Major evolutionary changes occurred from trapezoidal to elongated shapes. Sister species are separated in morphospace, by centroid size, or both, as well as by vertical and horizontal distributions in LB. Ostracod shell is a strongly integrated structure that exhibits high evolvability, with some extreme shapes, although mostly along the first PC. This is the first study that combines molecular phylogeny and LBGM for ostracods and for any LB group.
Collapse
|
38
|
Trait variation in a successful global invader: a large-scale analysis of morphological variance and integration in the brown trout. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Rothier PS, Fabre AC, Clavel J, Benson RBJ, Herrel A. Mammalian forelimb evolution is driven by uneven proximal-to-distal morphological diversity. eLife 2023; 12:81492. [PMID: 36700542 PMCID: PMC9908075 DOI: 10.7554/elife.81492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Vertebrate limb morphology often reflects the environment due to variation in locomotor requirements. However, proximal and distal limb segments may evolve differently from one another, reflecting an anatomical gradient of functional specialization that has been suggested to be impacted by the timing of development. Here, we explore whether the temporal sequence of bone condensation predicts variation in the capacity of evolution to generate morphological diversity in proximal and distal forelimb segments across more than 600 species of mammals. Distal elements not only exhibit greater shape diversity, but also show stronger within-element integration and, on average, faster evolutionary responses than intermediate and upper limb segments. Results are consistent with the hypothesis that late developing distal bones display greater morphological variation than more proximal limb elements. However, the higher integration observed within the autopod deviates from such developmental predictions, suggesting that functional specialization plays an important role in driving within-element covariation. Proximal and distal limb segments also show different macroevolutionary patterns, albeit not showing a perfect proximo-distal gradient. The high disparity of the mammalian autopod, reported here, is consistent with the higher potential of development to generate variation in more distal limb structures, as well as functional specialization of the distal elements.
Collapse
Affiliation(s)
- Priscila S Rothier
- Département Adaptations du Vivant, Muséum National d'Histoire NaturelleParisFrance
| | - Anne-Claire Fabre
- Naturhistorisches Museum BernBernSwitzerland
- Institute of Ecology and Evolution, University of BernBernSwitzerland
- Life Sciences Department, Vertebrates Division, Natural History MuseumLondonUnited Kingdom
| | - Julien Clavel
- Life Sciences Department, Vertebrates Division, Natural History MuseumLondonUnited Kingdom
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023VilleurbanneFrance
| | - Roger BJ Benson
- Department of Earth Sciences, University of OxfordOxfordUnited Kingdom
| | - Anthony Herrel
- Département Adaptations du Vivant, Muséum National d'Histoire NaturelleParisFrance
| |
Collapse
|
40
|
Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood. Nat Ecol Evol 2023; 7:42-50. [PMID: 36604552 DOI: 10.1038/s41559-022-01933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023]
Abstract
There is controversy around the mechanisms that guided the change in brain shape during the evolution of modern humans. It has long been held that different cortical areas evolved independently from each other to develop their unique functional specializations. However, some recent studies suggest that high integration between different cortical areas could facilitate the emergence of equally extreme, highly specialized brain functions. Here, we analyse the evolution of brain shape in primates using three-dimensional geometric morphometrics of endocasts. We aim to determine, firstly, whether modern humans present unique developmental patterns of covariation between brain cortical areas; and secondly, whether hominins experienced unusually high rates of evolution in brain covariation as compared to other primates. On the basis of analyses including modern humans and other extant great apes at different developmental stages, we first demonstrate that, unlike our closest living relatives, Homo sapiens retain high levels of covariation between cortical areas into adulthood. Among the other great apes, high levels of covariation are only found in immature individuals. Secondly, at the macro-evolutionary level, our analysis of 400 endocasts, representing 148 extant primate species and 6 fossil hominins, shows that strong covariation between different areas of the brain in H. sapiens and Homo neanderthalensis evolved under distinctly higher evolutionary rates than in any other primate, suggesting that natural selection favoured a greatly integrated brain in both species. These results hold when extinct species are excluded and allometric effects are accounted for. Our findings demonstrate that high covariation in the brain may have played a critical role in the evolution of unique cognitive capacities and complex behaviours in both modern humans and Neanderthals.
Collapse
|
41
|
Wilson LAB. Developmental instability in domesticated mammals. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:484-494. [PMID: 34813170 DOI: 10.1002/jez.b.23108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Measures of fluctuating asymmetry (FA) have been adopted widely as an estimate of developmental instability. Arising from various sources of stress, developmental instability is associated with an organism's capacity to maintain fitness. The process of domestication has been framed as an environmental stress with human-specified parameters, suggesting that FA may manifest to a larger degree among domesticates compared to their wild relatives. This study used three-dimensional geometric morphometric landmark data to (a) quantify the amount of FA in the cranium of six domestic mammal species and their wild relatives and, (b) provide novel assessment of the commonalities and differences across domestic/wild pairs concerning the extent to which random variation arising from the developmental system assimilates into within-population variation. The majority of domestic mammals showed greater disparity for asymmetric shape, however, only two forms (Pig, Dog) showed significantly higher disparity as well as a higher degree of asymmetry compared to their wild counterparts (Wild Boar, Wolf). Contra to predictions, most domestic and wild forms did not show a statistically significant correspondence between symmetric shape variation and FA, however, a moderate correlation value was recorded for most pairs (r-partial least squares >0.5). Within pairs, domestic and wild forms showed similar correlation magnitudes for the relationship between the asymmetric and symmetric components. In domesticates, new variation may therefore retain a general, conserved pattern in the gross structuring of the cranium, whilst also being a source for response to selection on specific features.
Collapse
Affiliation(s)
- Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT, Australia
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
42
|
Hewes AE, Cuban D, Groom DJE, Sargent AJ, Beltrán DF, Rico-Guevara A. Variable evidence for convergence in morphology and function across avian nectarivores. J Morphol 2022; 283:1483-1504. [PMID: 36062802 DOI: 10.1002/jmor.21513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023]
Abstract
Nectar-feeding birds provide an excellent system in which to examine form-function relationships over evolutionary time. There are many independent origins of nectarivory in birds, and nectar feeding is a lifestyle with many inherent biophysical constraints. We review the morphology and function of the feeding apparatus, the locomotor apparatus, and the digestive and renal systems across avian nectarivores with the goals of synthesizing available information and identifying the extent to which different aspects of anatomy have morphologically and functionally converged. In doing so, we have systematically tabulated the occurrence of putative adaptations to nectarivory across birds and created what is, to our knowledge, the first comprehensive summary of adaptations to nectarivory across body systems and taxa. We also provide the first phylogenetically informed estimate of the number of times nectarivory has evolved within Aves. Based on this synthesis of existing knowledge, we identify current knowledge gaps and provide suggestions for future research questions and methods of data collection that will increase our understanding of the distribution of adaptations across bodily systems and taxa, and the relationship between those adaptations and ecological and evolutionary factors. We hope that this synthesis will serve as a landmark for the current state of the field, prompting investigators to begin collecting new data and addressing questions that have heretofore been impossible to answer about the ecology, evolution, and functional morphology of avian nectarivory.
Collapse
Affiliation(s)
- Amanda E Hewes
- Department of Biology, University of Washington, Seattle, Washington, USA.,Burke Museum of Natural History and Culture, Seattle, Washington, USA
| | - David Cuban
- Department of Biology, University of Washington, Seattle, Washington, USA.,Burke Museum of Natural History and Culture, Seattle, Washington, USA
| | - Derrick J E Groom
- Department of Biology, San Francisco State University, San Francisco, California, USA
| | - Alyssa J Sargent
- Department of Biology, University of Washington, Seattle, Washington, USA.,Burke Museum of Natural History and Culture, Seattle, Washington, USA
| | - Diego F Beltrán
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, Washington, USA.,Burke Museum of Natural History and Culture, Seattle, Washington, USA
| |
Collapse
|
43
|
Did some extinct South American native ungulates arise from an afrothere ancestor? A critical appraisal of Avilla and Mothé’s (2021) Sudamericungulata – Panameridiungulata hypothesis. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Bellvert A, Roca‐Cusachs M, Tonzo V, Arnedo MA, Kaliontzopoulou A. The Vitruvian spider: Segmenting and integrating over different body parts to describe ecophenotypic variation. J Morphol 2022; 283:1425-1438. [PMID: 36169046 PMCID: PMC9828460 DOI: 10.1002/jmor.21516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 01/12/2023]
Abstract
Understanding what drives the existing phenotypic variability has been a major topic of interest for biologists for generations. However, the study of the phenotype may not be straightforward. Indeed, organisms may be interpreted as composite objects, comprising different ecophenotypic traits, which are neither necessarily independent from each other nor do they respond to the same evolutionary pressures. For this reason, a deep biological understanding of the focal organism is essential for any morphological analysis. The spider genus Dysdera provides a particularly well-suited system for setting up protocols for morphological analyses that encompass a suit of morphological structures in any nonmodel system. This genus has undergone a remarkable diversification in the Canary Islands, where different species perform different ecological roles, exhibiting different levels of trophic specialization or troglomorphic adaptations, which translate into a remarkable interspecific morphological variability. Here, we seek to develop a broad guide, of which morphological characters must be considered, to study the effect of different ecological pressures in spiders and propose a general workflow that will be useful whenever researchers set out to investigate variation in the body plans of different organisms, with data sets comprising a set of morphological traits. We use geometric morphometric methods to quantify variation in different body structures, all of them with diverse phenotypic modifications in their chelicera, prosoma, and legs. We explore the effect of analyzing different combined landmark (LM) configurations of these characters and the degree of morphological integration that they exhibit. Our results suggest that different LM configurations of each of these body parts exhibit a higher degree of integration compared to LM configurations from different structures and that the analysis of each of these body parts captures different aspects of morphological variation, potentially related to different ecological factors.
Collapse
Affiliation(s)
- Adrià Bellvert
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | - Marcos Roca‐Cusachs
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | - Vanina Tonzo
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | - Miquel A. Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | - Antigoni Kaliontzopoulou
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| |
Collapse
|
45
|
Vargas‐Parra EE, Hopkins MJ. Modularity in the trilobite head consistent with the hypothesized segmental origin of the eyes. Evol Dev 2022; 24:177-188. [PMID: 36111749 PMCID: PMC9786538 DOI: 10.1111/ede.12418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 12/30/2022]
Abstract
The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, Calyptaulax annulata (Phacopida) and Cloacaspis senilis (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for C. annulata shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for C. senilis are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.
Collapse
Affiliation(s)
| | - Melanie J. Hopkins
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| |
Collapse
|
46
|
Conaway MA, Adams DC. An effect size for comparing the strength of morphological integration across studies. Evolution 2022; 76:2244-2259. [PMID: 35971251 DOI: 10.1111/evo.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/16/2022] [Indexed: 01/22/2023]
Abstract
Understanding how and why phenotypic traits covary is a major interest in evolutionary biology. Biologists have long sought to characterize the extent of morphological integration in organisms, but comparing levels of integration for a set of traits across taxa has been hampered by the lack of a reliable summary measure and testing procedure. Here, we propose a standardized effect size for this purpose, calculated from the relative eigenvalue variance,V r e l $V_{rel}$ . First, we evaluate several eigenvalue dispersion indices under various conditions, and show that onlyV r e l $V_{rel}$ remains stable across samples size and the number of variables. We then demonstrate thatV r e l $V_{rel}$ accurately characterizes input patterns of covariation, so long as redundant dimensions are excluded from the calculations. However, we also show that the variance of the sampling distribution ofV r e l $V_{rel}$ depends on input levels of trait covariation, makingV r e l $V_{rel}$ unsuitable for direct comparisons. As a solution, we propose transformingV r e l $V_{rel}$ to a standardized effect size (Z-score) for representing the magnitude of integration for a set of traits. We also propose a two-sample test for comparing the strength of integration between taxa, and show that this test displays appropriate statistical properties. We provide software for implementing the procedure, and an empirical example illustrates its use.
Collapse
Affiliation(s)
- Mark A Conaway
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Dean C Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
47
|
Costes P, Klein E, Delapré A, Houssin C, Nicolas V, Cornette R. Comparative morpho-functional analysis of the humerus and ulna in three Western European moles species of the genus Talpa, including the newly described T. aquitania. J Anat 2022; 242:257-276. [PMID: 36156797 PMCID: PMC9877487 DOI: 10.1111/joa.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/01/2023] Open
Abstract
The forelimb is involved in many behaviours including locomotion. Notably, the humero-ulnar articulation, implicated in the elbow joint, is of particular importance for both mobility and stability. Functional constraints, induced in part by environmental plasticity, are thought to drive an important part of the bone shape as bone directly responds and remodels in response to both muscle and external forces. In this context, the study of subterranean moles is of particular interest. These moles occupy a hard and heavy medium in comparison with air or water, requiring a powerful body structure to shear and shift the soil. Their general morphology is therefore adapted to digging and to their subterranean lifestyle. The various morpho-functional patterns, which drive diverse abilities according to the environment, are likely targets of natural selection and it is, therefore, useful to understand the relationships between the bone shape and their function. Here, we quantify, through 3D geometric morphometric methods, the interspecific variability in the morphology of the ulna and humerus of three Talpa species, including the new species Talpa aquitania, to infer their potential consequence in species digging performance. We also quantify shape covariation and morphological integration between the humerus and the ulna to test whether these bones evolve as a uniform functional unit or as more or less independent modules. Our results show that interspecific anatomical differences in the humerus and ulna exist among the three species. Shape changes are mostly located at the level of joints and muscle attachments. As the species tend to live in allopatry and the fossorial lifestyle induces strong ecological constraints, interspecific variations could be explained by the properties of the environment in which they live, such as the compactness of the soil. Our results also show that the humerus and ulna are highly integrated. The covariation between the humerus and ulna in moles is dominated by variation in the attachment areas and particularly of the attachment areas of shoulder muscles concerning the humerus, which affect the mechanical force deployed during locomotion and digging. This study also highlights that in the new species, T. aquitania, variations in anatomical structure (general shape and joints) exist and are related to the locality of collect of the individuals.
Collapse
Affiliation(s)
- Pauline Costes
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance,Mecanismes Adaptatifs et Évolution UMR 7179, CNRSMuséum National d'Histoire NaturelleParisFrance
| | - Estelle Klein
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance
| | - Arnaud Delapré
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance
| |
Collapse
|
48
|
Jung H, von Cramon-Taubadel N. Morphological modularity in the anthropoid axial skeleton. J Hum Evol 2022; 172:103256. [PMID: 36156434 DOI: 10.1016/j.jhevol.2022.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
Previous research has found that hominoids have stronger modularity between limb elements than other anthropoids, suggesting that there is less constraint on morphological diversification (e.g., limb proportions) in hominoids in terms of evolutionary independence. However, degrees of modularity in the axial skeleton have not been investigated across a broad range of anthropoid taxa. Thus, it is unknown whether hominoids also have stronger modularity in the axial skeleton than other anthropoids, which has implications for the evolution of diverse torso morphologies in Miocene apes as well as the evolution of novel characteristics in the skull and vertebrae of fossil hominins. In this study, 12 anthropoid genera were sampled to examine degrees of modularity between axial skeletal elements (i.e., cranium, mandible, vertebrae, and sacrum). Covariance ratio coefficients were calculated using variance/covariance matrices of interlandmark distances for each axial skeletal element to evaluate degrees of modularity. The results showed that Alouatta, Hylobates, Gorilla, Pan, and Homo showed generally stronger modularity than other anthropoid taxa when considering all axial skeletal elements. When only considering the vertebral elements (i.e., vertebrae and sacrum), Alouatta, Hylobates, Gorilla, and Pan showed generally stronger modularity than other anthropoid taxa. Humans showed stronger modularity between the skull and vertebrae than other hominoids. Thus, the evolution of novel characteristics in the skull and vertebral column may have been less constrained in fossil hominins due to the dissociation of trait covariation between axial skeletal elements in hominoid ancestors, thus fostering more evolutionary independence between the skull and vertebral column.
Collapse
Affiliation(s)
- Hyunwoo Jung
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, SUNY, 380 Academic Center, Ellicott Complex, Buffalo, NY 14261, USA; Department of Anatomy, College of Graduate Studies, Midwestern University, 19555 N 59th Ave, Glendale, AZ 85308, USA.
| | - Noreen von Cramon-Taubadel
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, SUNY, 380 Academic Center, Ellicott Complex, Buffalo, NY 14261, USA
| |
Collapse
|
49
|
Investigating the reliability of metapodials as taxonomic Indicators for Beringian horses. J MAMM EVOL 2022; 29:863-875. [PMID: 36438779 PMCID: PMC9684255 DOI: 10.1007/s10914-022-09626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
The metapodials of extinct horses have long been regarded as one of the most useful skeletal elements to determine taxonomic identity. However, recent research on both extant and extinct horses has revealed the possibility for plasticity in metapodial morphology, leading to notable variability within taxa. This calls into question the reliability of metapodials in species identification, particularly for species identified from fragmentary remains. Here, we use ten measurements of metapodials from 203 specimens of four Pleistocene horse species from eastern Beringia to test whether there are significant differences in metapodial morphology that support the presence of multiple species. We then reconstruct the body masses for every specimen to assess the range in body size within each species and determine whether species differ significantly from one another in mean body mass. We find that that taxonomic groups are based largely on the overall size of the metapodial, and that all metapodial measurements are highly autocorrelated. We also find that mean body mass differs significantly among most, but not all, species. We suggest that metapodial measurements are unreliable taxonomic indicators for Beringian horses given evidence for plasticity in metapodial morphology and their clear reflection of differences in body mass. We recommend future studies use more reliable indicators of taxonomy to identify Beringian horse species, particularly from localities from which fossils of several species have been recovered.
Collapse
|
50
|
Komza K, Viola B, Netten T, Schroeder L. Morphological integration in the hominid midfoot. J Hum Evol 2022; 170:103231. [PMID: 35940157 DOI: 10.1016/j.jhevol.2022.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 10/15/2022]
Abstract
The calculation of morphological integration across living apes and humans may provide important insights into the potential influence of integration on evolutionary trajectories in the hominid lineage. Here, we quantify magnitudes of morphological integration among and within elements of the midfoot in great apes and humans to examine the link between locomotor differences and trait covariance. We test the hypothesis that the medial elements of the great ape foot are less morphologically integrated with one another compared to humans based on their abducted halluces, and aim to determine how adaptations for midfoot mobility/stiffness and locomotor specialization influence magnitudes of morphological integration. The study sample is composed of all cuneiforms, the navicular, the cuboid, and metatarsals 1-5 of Homo sapiens (n = 80), Pan troglodytes (n = 63), Gorilla gorilla (n = 39), and Pongo sp. (n = 41). Morphological integration was quantified using the integration coefficient of variation of interlandmark distances organized into sets of a priori-defined modules. Magnitudes of integration across these modules were then compared against sets of random traits from the whole midfoot. Results show that all nonhuman apes have less integrated medial elements, whereas humans have highly integrated medial elements, suggesting a link between hallucal abduction and reduced levels of morphological integration. However, we find considerable variation in magnitudes of morphological integration across metatarsals 2-5, the intermediate and lateral cuneiform, the cuboid, and navicular, emphasizing the influence of functional and nonfunctional factors in magnitudes of integration. Lastly, we find that humans and orangutans show the lowest overall magnitudes of integration in the midfoot, which may be related to their highly specialized functions, and suggest a link between strong diversifying selection and reduced magnitudes of morphological integration.
Collapse
Affiliation(s)
- Klara Komza
- Department of Anthropology, University of Toronto, Toronto, ON, M5S 2S2, Canada.
| | - Bence Viola
- Department of Anthropology, University of Toronto, Toronto, ON, M5S 2S2, Canada
| | - Teagan Netten
- Department of Anthropology, University of Toronto, Toronto, ON, M5S 2S2, Canada
| | - Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Human Evolution Research Institute, Department of Anthropology, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|