1
|
Peng Y, Yang S, Xi H, Hu J, Jia Z, Pang J, Liu J, Yu W, Tang C, Wang H. Whole genome sequencing reveals translocation breakpoints disrupting TP63 gene underlying split hand/foot malformation in a Chinese family. Mol Genet Genomic Med 2021; 9:e1604. [PMID: 33471964 PMCID: PMC8104154 DOI: 10.1002/mgg3.1604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Background Split hand/foot malformation (SHFM) is a congenital limb developmental disorder, which impairs the fine activities of hand/foot in the affected individuals seriously. SHFM is commonly inherited as an autosomal dominant disease with incomplete penetrance. Chromosomal aberrations such as copy number variations and translocations have been linked to SHFM. This study aimed to identify the genetic cause for three patients with bilateral hand and foot malformation in a Chinese family. Methods Karyotyping, single‐nucleotide polymorphism (SNP) array, whole exome sequencing, whole genome sequencing, and Sanger sequencing were applied to identify the pathogenic variant. Results Karyotyping revealed that the three patients had balanced reciprocal translocation, 46, XX, t(3;15) (q29;q22). SNP array identified no pathogenic copy number variation in the proband. Trio‐WES (fetus–mother–father) sequencing results revealed no pathogenic variants in the genes related to SHFM. Whole‐genome low‐coverage mate‐pair sequencing (WGL‐MPS), breakpoint PCR, and Sanger sequencing identified the breakpoints disrupting TP63 in the patients, but not in healthy family members. Conclusion This study firstly reports that a translocation breakpoint disrupting TP63 contributes to the SHFM in a Chinese family, which expands our knowledge of genetic risk and counseling underlying SHFM. It provides a basis for genetic counseling and prenatal diagnosis (preimplantation genetic diagnosis) for this family.
Collapse
Affiliation(s)
- Ying Peng
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Shuting Yang
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Hui Xi
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jiancheng Hu
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhengjun Jia
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jialun Pang
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jing Liu
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Wenxian Yu
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hua Wang
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| |
Collapse
|
2
|
Khan A, Wang R, Han S, Umair M, Alshabeeb MA, Ansar M, Ahmad W, Alaamery M, Zhang X. A Novel Homozygous Nonsense Mutation p.Cys366* in the WNT10B Gene Underlying Split-Hand/Split Foot Malformation in a Consanguineous Pakistani Family. Front Pediatr 2020; 7:526. [PMID: 31998667 PMCID: PMC6970189 DOI: 10.3389/fped.2019.00526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023] Open
Abstract
Split hand/split foot malformation (SHFM) or ectrodactyly is characterized by a deep median cleft of the hand or foot, hypoplasia or aplasia of the metacarpals, metatarsals, and phalanges. It is a clinically and genetically heterogeneous group of limb malformations. This study aimed to identify the pathogenic variant in a consanguineous Pakistani family with autosomal recessive SHFM. Peripheral blood samples were obtained, DNA was extracted, WNT10B coding and noncoding regions were PCR amplified and Sanger sequencing was performed using workflow suggested by Thermo Fisher Scientific. A novel homozygous nonsense variant (c.1098C>A; p.Cys366*) was identified in the WNT10B gene in the index patients, which probably explains SHFM type 6 in this family in comparison with similar data from the literature.
Collapse
Affiliation(s)
- Amjad Khan
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- The Research Center for Medical Genomics, China Medical University, Shenyang, China
- Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shirui Han
- The Research Center for Medical Genomics, China Medical University, Shenyang, China
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Science, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Mohammad A. Alshabeeb
- Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- The Research Center for Medical Genomics, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Jin JY, Zeng L, Li K, He JQ, Pang X, Huang H, Xiang R, Tang JY. A novel mutation (c.1010G>T; p.R337L) in TP63 as a cause of split-hand/foot malformation with hypodontia. J Gene Med 2019; 21:e3122. [PMID: 31420900 DOI: 10.1002/jgm.3122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Tumor protein p63 (TP63)-related disorders can be divided into at least six categories, including ectrodactyly-ectodermal dysplasia-cleft lip/palate syndrome 3 (EEC syndrome 3), ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC syndrome), acro-dermo-ungual-lacrimal-tooth syndrome (ADULT syndrome), limb-mammary syndrome (LMS), Rapp-Hodgkin syndrome (RHS) and split-hand/foot malformation 4 (SHFM4), and are all a result of heterozygous mutations of TP63. The phenotypes of TP63-related disorders broadly involve ectodermal dysplasias, acromelic malformation and orofacial cleft. SHFM and hypodontia are prominent clinical manifestations of TP63-related disorders. METHODS The present study investigated a family with SHFM and hypodontia; determined the sequences of DLX5, WNT8B, WNT10B, BHLHA9, CDH3, DYNC1I1 and FGFR1; and performed single nucleotide polymorphism-array analysis. We detected the mutation by multiple sequence alignments and a bioinformatic prediction. RESULTS We identified a novel missense mutation of TP63 (c.1010G>T; R337L) in the family without mutations of DLX5, WNT8B, WNT10B, BHLHA9, CDH3, DYNC1I1, FGFR1 and copy number variants causing SHFM. CONCLUSIONS A mutation of TP63 (c.1010G>T; R337L) leads to SHFM with hypodontia. The identification of this mutation expands the spectrum of known TP63 mutations and also may contribute to novel approaches for the genetic diagnosis and counseling of families with TP63-related disorders.
Collapse
Affiliation(s)
- Jie-Yuan Jin
- School of Life Sciences, Central South University, Changsha, China.,Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Lei Zeng
- School of Life Sciences, Central South University, Changsha, China
| | - Ke Li
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Ji-Qiang He
- School of Life Sciences, Central South University, Changsha, China
| | - Xiaoyang Pang
- School of Life Sciences, Central South University, Changsha, China
| | - Hao Huang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Rong Xiang
- School of Life Sciences, Central South University, Changsha, China.,Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ju-Yu Tang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Yang X, Lin X, Zhu Y, Luo J, Lin G. Genetic analysis of a congenital split‑hand/split‑foot malformation 4 pedigree. Mol Med Rep 2018; 17:7553-7558. [PMID: 29620206 PMCID: PMC5983954 DOI: 10.3892/mmr.2018.8838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/22/2018] [Indexed: 11/29/2022] Open
Abstract
In the present study whole-exome sequencing using the Complete Genomics platform was employed to scan a proband from a split-hand/split-foot malformation (SHFM) 4 family. The missense mutation c.728G>A (p.Arg243Gln) in the TP63 gene was revealed to be associated with SHFM. Sanger sequencing confirmed the sequences of the proband and his father. The father was diagnosed with SHFM and harbored a CGG-to-CAG mutation in exon 5, which produced a R243Q substitution in the zinc binding site and dimerization site of TP63. The R243Q mutation was predicted to be pathogenic by PolyPhen-2. The proband, who was diagnosed with four digit SHFM, exhibited a more severe phenotype. X-ray analysis returned the following results: Absence of third phalange bilaterally and third metacarpus of the left hand; absence of the second toes bilaterally and partial third toes; and partial fusion of the second, third and metatarsal bones of the right side with deformity of the second metatarsal of the right side. Osteochondroma was present in the fourth proximal radial metacarpal of the left hand and the basal and proximal parts of the second metatarsal of the right side. The proband's father had five digits in both feet. These results indicate that the R243Q mutation produces a novel phenotype named SHFM4. The present study revealed that the R243Q mutation in the TP63 gene produced a novel phenotype named SHFM4, thereby demonstrating the mutational overlap between ectrodactyly-ectodermal dysplasia-cleft syndrome and SHFM4.
Collapse
Affiliation(s)
- Xiao Yang
- Teaching and Research Office of Medical Cosmetology, Department of Management, Fujian Health College, Fuzhou, Fujian 350001, P.R. China
| | - Xinfu Lin
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yaobin Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jiewei Luo
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Genhui Lin
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
5
|
Alqadah A, Hsieh YW, Xiong R, Chuang CF. Stochastic left-right neuronal asymmetry in Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0407. [PMID: 27821536 DOI: 10.1098/rstb.2015.0407] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 12/28/2022] Open
Abstract
Left-right asymmetry in the nervous system is observed across species. Defects in left-right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing 'C' (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWCOFF (default) and AWCON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Rui Xiong
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
6
|
Molnar JL, Diaz RE, Skorka T, Dagliyan G, Diogo R. Comparative musculoskeletal anatomy of chameleon limbs, with implications for the evolution of arboreal locomotion in lizards and for teratology. J Morphol 2017; 278:1241-1261. [DOI: 10.1002/jmor.20708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/10/2017] [Accepted: 05/01/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Julia L. Molnar
- Department of Anatomy; Howard University College of Medicine; 520 W Street NW Washington DC 20059
| | - Raul E. Diaz
- Department of Biology; La Sierra University; 4500 Riverwalk Parkway Riverside California 92505
| | - Tautis Skorka
- Keck School of Medicine, Molecular Imaging Center, University of Southern California; 2250 Alcazar Street Los Angeles California 90033
| | - Grant Dagliyan
- Keck School of Medicine, Molecular Imaging Center, University of Southern California; 2250 Alcazar Street Los Angeles California 90033
| | - Rui Diogo
- Department of Anatomy; Howard University College of Medicine; 520 W Street NW Washington DC 20059
| |
Collapse
|
7
|
Levin M, Klar AJS, Ramsdell AF. Introduction to provocative questions in left-right asymmetry. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150399. [PMID: 27821529 PMCID: PMC5104499 DOI: 10.1098/rstb.2015.0399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
Left-right asymmetry is a phenomenon that has a broad appeal-to anatomists, developmental biologists and evolutionary biologists-because it is a morphological feature of organisms that spans scales of size and levels of organization, from unicellular protists, to vertebrate organs, to social behaviour. Here, we highlight a number of important aspects of asymmetry that encompass several areas of biology-cell-level, physiological, genetic, anatomical and evolutionary components-and that are based on research conducted in diverse model systems, ranging from single cells to invertebrates to human developmental disorders. Together, the contributions in this issue reveal a heretofore-unsuspected variety in asymmetry mechanisms, including ancient chirality elements that could underlie a much more universal basis to asymmetry development, and provide much fodder for thought with far reaching implications in biomedical, developmental, evolutionary and synthetic biology. The new emerging theme of binary cell-fate choice, promoted by asymmetric cell division of a deterministic cell, has focused on investigating asymmetry mechanisms functioning at the single cell level. These include cytoskeleton and DNA chain asymmetry-mechanisms that are amplified and coordinated with those employed for the determination of the anterior-posterior and dorsal-ventral axes of the embryo.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Amar J S Klar
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD 21702, USA
| | - Ann F Ramsdell
- Department of Cell Biology and Anatomy, School of Medicine and Program in Women's and Gender Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|