1
|
Gardner C, Chen J, Hadfield C, Lu Z, Debruin D, Zhan Y, Donlin MJ, Ahn TH, Lin Z. Chromosome-level subgenome-aware de novo assembly provides insight into Saccharomyces bayanus genome divergence after hybridization. Genome Res 2024; 34:2133-2146. [PMID: 39288995 DOI: 10.1101/gr.279364.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Interspecies hybridization is prevalent in various eukaryotic lineages and plays important roles in phenotypic diversification, adaptation, and speciation. To better understand the changes that occurred in the different subgenomes of a hybrid species and how they facilitate adaptation, we have completed chromosome-level de novo assemblies of all chromosomes for a recently formed hybrid yeast, Saccharomyces bayanus strain CBS380, using Oxford Nanopore Technologies' MinION long-read sequencing. We characterize the S. bayanus genome and compare it with its parent species, Saccharomyces uvarum and Saccharomyces eubayanus, and other S. bayanus genomes to better understand genome evolution after a relatively recent hybridization event. We observe multiple recombination events between the subgenomes in each chromosome, followed by loss of heterozygosity (LOH) in nine chromosome pairs. In addition to maintaining nearly all gene content and synteny from its parental genomes, S. bayanus has acquired many genes from other yeast species, primarily through the introgression of Saccharomyces cerevisiae, such as those involved in the maltose metabolism. Finally, the patterns of recombination and LOH suggest an allotetraploid origin of S. bayanus The gene acquisition and rapid LOH in the hybrid genome probably facilitated its adaptation to maltose brewing environments and mitigated the maladaptive effect of hybridization. This paper describes the first in-depth study using long-read sequencing technology of an S. bayanus hybrid genome, which may serve as an excellent reference for future studies of this important yeast and other yeast strains.
Collapse
Affiliation(s)
- Cory Gardner
- Department of Computer Science, Saint Louis University, St. Louis, Missouri 63103, USA
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Junhao Chen
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Christina Hadfield
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| | - David Debruin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Yu Zhan
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Maureen J Donlin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Tae-Hyuk Ahn
- Department of Computer Science, Saint Louis University, St. Louis, Missouri 63103, USA;
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Zhenguo Lin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA;
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| |
Collapse
|
2
|
Aktar K, Davies T, Leontiou I, Clark I, Spanos C, Wallace E, Tuck L, Jeyaprakash AA, Hardwick KG. Conserved signalling functions for Mps1, Mad1 and Mad2 in the Cryptococcus neoformans spindle checkpoint. PLoS Genet 2024; 20:e1011302. [PMID: 38829899 PMCID: PMC11175454 DOI: 10.1371/journal.pgen.1011302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/13/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.
Collapse
Affiliation(s)
- Koly Aktar
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Davies
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioanna Leontiou
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ivan Clark
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Christos Spanos
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Edward Wallace
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Tuck
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - A. Arockia Jeyaprakash
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universitat, Munich, Germany
| | - Kevin G. Hardwick
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Gardner C, Chen J, Hadfield C, Lu Z, Debruin D, Zhan Y, Donlin MJ, Lin Z, Ahn TH. Chromosome-level Subgenome-aware de novo Assembly of Saccharomyces bayanus Provides Insight into Genome Divergence after Hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585453. [PMID: 38562692 PMCID: PMC10983925 DOI: 10.1101/2024.03.17.585453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Interspecies hybridization is prevalent in various eukaryotic lineages and plays important roles in phenotypic diversification, adaption, and speciation. To better understand the changes that occurred in the different subgenomes of a hybrid species and how they facilitated adaptation, we completed chromosome-level de novo assemblies of all 16 pairs chromosomes for a recently formed hybrid yeast, Saccharomyces bayanus strain CBS380 (IFO11022), using Nanopore MinION long-read sequencing. Characterization of S. bayanus subgenomes and comparative analysis with the genomes of its parent species, S. uvarum and S. eubayanus, provide several new insights into understanding genome evolution after a relatively recent hybridization. For instance, multiple recombination events between the two subgenomes have been observed in each chromosome, followed by loss of heterozygosity (LOH) in most chromosomes in nine chromosome pairs. In addition to maintaining nearly all gene content and synteny from its parental genomes, S. bayanus has acquired many genes from other yeast species, primarily through the introgression of S. cerevisiae, such as those involved in the maltose metabolism. In addition, the patterns of recombination and LOH suggest an allotetraploid origin of S. bayanus. The gene acquisition and rapid LOH in the hybrid genome probably facilitated its adaption to maltose brewing environments and mitigated the maladaptive effect of hybridization.
Collapse
Affiliation(s)
- Cory Gardner
- Department of Computer Science, Saint Louis University, St. Louis, MO, USA
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA
| | - Junhao Chen
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Christina Hadfield
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - David Debruin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA
| | - Yu Zhan
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Maureen J. Donlin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO, USA
| | - Zhenguo Lin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Tae-Hyuk Ahn
- Department of Computer Science, Saint Louis University, St. Louis, MO, USA
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
4
|
Del Olmo V, Mixão V, Fotedar R, Saus E, Al Malki A, Księżopolska E, Nunez-Rodriguez JC, Boekhout T, Gabaldón T. Origin of fungal hybrids with pathogenic potential from warm seawater environments. Nat Commun 2023; 14:6919. [PMID: 37903766 PMCID: PMC10616089 DOI: 10.1038/s41467-023-42679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Hybridisation is a common event in yeasts often leading to genomic variability and adaptation. The yeast Candida orthopsilosis is a human-associated opportunistic pathogen belonging to the Candida parapsilosis species complex. Most C. orthopsilosis clinical isolates are hybrids resulting from at least four independent crosses between two parental lineages, of which only one has been identified. The rare presence or total absence of parentals amongst clinical isolates is hypothesised to be a consequence of a reduced pathogenicity with respect to their hybrids. Here, we sequence and analyse the genomes of environmental C. orthopsilosis strains isolated from warm marine ecosystems. We find that a majority of environmental isolates are hybrids, phylogenetically closely related to hybrid clinical isolates. Furthermore, we identify the missing parental lineage, thus providing a more complete overview of the genomic evolution of this species. Additionally, we discover phenotypic differences between the two parental lineages, as well as between parents and hybrids, under conditions relevant for pathogenesis. Our results suggest a marine origin of C. orthopsilosis hybrids, with intrinsic pathogenic potential, and pave the way to identify pre-existing environmental adaptations that rendered hybrids more prone than parental lineages to colonise and infect the mammalian host.
Collapse
Affiliation(s)
- Valentina Del Olmo
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Verónica Mixão
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Bioinformatics Unit, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Rashmi Fotedar
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Municipality and Environment, P.O Box 20022, Doha, Qatar
| | - Ester Saus
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Amina Al Malki
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Municipality and Environment, P.O Box 20022, Doha, Qatar
| | - Ewa Księżopolska
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan Carlos Nunez-Rodriguez
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teun Boekhout
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Toni Gabaldón
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain.
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.
- , Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
5
|
Dumeaux V, Massahi S, Bettauer V, Mottola A, Dukovny A, Khurdia SS, Costa ACBP, Omran RP, Simpson S, Xie JL, Whiteway M, Berman J, Hallett MT. Candida albicans exhibits heterogeneous and adaptive cytoprotective responses to antifungal compounds. eLife 2023; 12:e81406. [PMID: 37888959 PMCID: PMC10699808 DOI: 10.7554/elife.81406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/26/2023] [Indexed: 10/28/2023] Open
Abstract
Candida albicans, an opportunistic human pathogen, poses a significant threat to human health and is associated with significant socio-economic burden. Current antifungal treatments fail, at least in part, because C. albicans can initiate a strong drug tolerance response that allows some cells to grow at drug concentrations above their minimal inhibitory concentration. To better characterize this cytoprotective tolerance program at the molecular single-cell level, we used a nanoliter droplet-based transcriptomics platform to profile thousands of individual fungal cells and establish their subpopulation characteristics in the absence and presence of antifungal drugs. Profiles of untreated cells exhibit heterogeneous expression that correlates with cell cycle stage with distinct metabolic and stress responses. At 2 days post-fluconazole exposure (a time when tolerance is measurable), surviving cells bifurcate into two major subpopulations: one characterized by the upregulation of genes encoding ribosomal proteins, rRNA processing machinery, and mitochondrial cellular respiration capacity, termed the Ribo-dominant (Rd) state; and the other enriched for genes encoding stress responses and related processes, termed the Stress-dominant (Sd) state. This bifurcation persists at 3 and 6 days post-treatment. We provide evidence that the ribosome assembly stress response (RASTR) is activated in these subpopulations and may facilitate cell survival.
Collapse
Affiliation(s)
- Vanessa Dumeaux
- Department of Anatomy and Cell Biology, Western University, London, Canada
| | - Samira Massahi
- Department of Biology, Concordia University, Montreal, Canada
| | - Van Bettauer
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Austin Mottola
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Anna Dukovny
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | | | | | - Shawn Simpson
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Jinglin Lucy Xie
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | | | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | |
Collapse
|
6
|
Mixão V, Nunez-Rodriguez JC, Del Olmo V, Ksiezopolska E, Saus E, Boekhout T, Gacser A, Gabaldón T. Evolution of loss of heterozygosity patterns in hybrid genomes of Candida yeast pathogens. BMC Biol 2023; 21:105. [PMID: 37170256 PMCID: PMC10173528 DOI: 10.1186/s12915-023-01608-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Hybrids are chimeric organisms with highly plastic heterozygous genomes that may confer unique traits enabling the adaptation to new environments. However, most evolutionary theory frameworks predict that the high levels of genetic heterozygosity present in hybrids from divergent parents are likely to result in numerous deleterious epistatic interactions. Under this scenario, selection is expected to favor recombination events resulting in loss of heterozygosity (LOH) affecting genes involved in such negative interactions. Nevertheless, it is so far unknown whether this phenomenon actually drives genomic evolution in natural populations of hybrids. To determine the balance between selection and drift in the evolution of LOH patterns in natural yeast hybrids, we analyzed the genomic sequences from fifty-five hybrid strains of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis, which derived from at least six distinct natural hybridization events. RESULTS We found that, although LOH patterns in independent hybrid clades share some level of convergence that would not be expected from random occurrence, there is an apparent lack of strong functional selection. Moreover, while mitosis is associated with a limited number of inter-homeologous chromosome recombinations in these genomes, induced DNA breaks seem to increase the LOH rate. We also found that LOH does not accumulate linearly with time in these hybrids. Furthermore, some C. orthopsilosis hybrids present LOH patterns compatible with footprints of meiotic recombination. These meiotic-like patterns are at odds with a lack of evidence of sexual recombination and with our inability to experimentally induce sporulation in these hybrids. CONCLUSIONS Our results suggest that genetic drift is the prevailing force shaping LOH patterns in these hybrid genomes. Moreover, the observed LOH patterns suggest that these are likely not the result of continuous accumulation of sporadic events-as expected by mitotic repair of rare chromosomal breaks-but rather of acute episodes involving many LOH events in a short period of time.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Present address: Genomics and Bioinformatics Unit, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Juan Carlos Nunez-Rodriguez
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Valentina Del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Attila Gacser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain.
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
7
|
Kakade P, Sircaik S, Maufrais C, Ene IV, Bennett RJ. Aneuploidy and gene dosage regulate filamentation and host colonization by Candida albicans. Proc Natl Acad Sci U S A 2023; 120:e2218163120. [PMID: 36893271 PMCID: PMC10089209 DOI: 10.1073/pnas.2218163120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/02/2023] [Indexed: 03/11/2023] Open
Abstract
Aneuploidy is a frequent occurrence in fungal species where it can alter gene expression and promote adaptation to a variety of environmental cues. Multiple forms of aneuploidy have been observed in the opportunistic fungal pathogen Candida albicans, which is a common component of the human gut mycobiome but can escape this niche and cause life-threatening systemic disease. Using a barcode sequencing (Bar-seq) approach, we evaluated a set of diploid C. albicans strains and found that a strain carrying a third copy of chromosome (Chr) 7 was associated with increased fitness during both gastrointestinal (GI) colonization and systemic infection. Our analysis revealed that the presence of a Chr 7 trisomy resulted in decreased filamentation, both in vitro and during GI colonization, relative to isogenic euploid controls. A target gene approach demonstrated that NRG1, encoding a negative regulator of filamentation located on Chr 7, contributes to increased fitness of the aneuploid strain due to inhibition of filamentation in a gene dosage-dependent fashion. Together, these experiments establish how aneuploidy enables the reversible adaptation of C. albicans to its host via gene dosage-dependent regulation of morphology.
Collapse
Affiliation(s)
- Pallavi Kakade
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI02912
| | - Shabnam Sircaik
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI02912
| | - Corinne Maufrais
- Institut Pasteur Bioinformatic Hub, Université Paris Cité, Paris75015, France
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Lab, Paris75015, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Lab, Paris75015, France
| | - Richard J. Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI02912
| |
Collapse
|
8
|
Description and Genome Characterization of Three Novel Fungal Strains Isolated from Mars 2020 Mission-Associated Spacecraft Assembly Facility Surfaces-Recommendations for Two New Genera and One Species. J Fungi (Basel) 2022; 9:jof9010031. [PMID: 36675851 PMCID: PMC9864340 DOI: 10.3390/jof9010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022] Open
Abstract
National Aeronautics and Space Administration’s (NASA) spacecraft assembly facilities are monitored for the presence of any bacteria or fungi that might conceivably survive a transfer to an extraterrestrial environment. Fungi present a broad and diverse range of phenotypic and functional traits to adapt to extreme conditions, hence the detection of fungi and subsequent eradication of them are needed to prevent forward contamination for future NASA missions. During the construction and assembly for the Mars 2020 mission, three fungal strains with unique morphological and phylogenetic properties were isolated from spacecraft assembly facilities. The reconstruction of phylogenetic trees based on several gene loci (ITS, LSU, SSU, RPB, TUB, TEF1) using multi-locus sequence typing (MLST) and whole genome sequencing (WGS) analyses supported the hypothesis that these were novel species. Here we report the genus or species-level classification of these three novel strains via a polyphasic approach using phylogenetic analysis, colony and cell morphology, and comparative analysis of WGS. The strain FJI-L9-BK-P1 isolated from the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) exhibited a putative phylogenetic relationship with the strain Aaosphaeria arxii CBS175.79 but showed distinct morphology and microscopic features. Another JPL-SAF strain, FJII-L3-CM-DR1, was phylogenetically distinct from members of the family Trichomeriaceae and exhibited morphologically different features from the genera Lithohypha and Strelitziana. The strain FKI-L1-BK-DR1 isolated from the Kennedy Space Center facility was identified as a member of Dothideomycetes incertae sedis and is closely related to the family Kirschsteiniotheliaceae according to a phylogenetic analysis. The polyphasic taxonomic approach supported the recommendation for establishing two novel genera and one novel species. The names Aaosphaeria pasadenensis (FJI-L9-BK-P1 = NRRL 64424 = DSM 114621), Pasadenomyces melaninifex (FJII-L3-CM-DR1 = NRRL 64433 = DSM 114623), and Floridaphiala radiotolerans (FKI-L1-BK-DR1 = NRRL 64434 = DSM 114624) are proposed as type species. Furthermore, resistance to ultraviolet-C and presence of specific biosynthetic gene cluster(s) coding for metabolically active compounds are unique to these strains.
Collapse
|
9
|
Avramovska O, Smith AC, Rego E, Hickman MA. Tetraploidy accelerates adaptation under drug selection in a fungal pathogen. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:984377. [PMID: 37746235 PMCID: PMC10512305 DOI: 10.3389/ffunb.2022.984377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 09/26/2023]
Abstract
Baseline ploidy significantly impacts evolutionary trajectories and, specifically, tetraploidy is associated with higher rates of adaptation relative to haploidy and diploidy. While the majority of experimental evolution studies investigating ploidy use the budding yeast Saccharomyces cerivisiae, the fungal pathogen Candida albicans is a powerful system to investigate ploidy dynamics, particularly in the context of acquiring antifungal drug resistance. C. albicans laboratory and clinical strains are predominantly diploid, but have been isolated as haploid and polyploid. Here, we evolved diploid and tetraploid C. albicans for ~60 days in the antifungal drug caspofungin. Tetraploid-evolved lines adapted faster than diploid-evolved lines and reached higher levels of caspofungin resistance. While diploid-evolved lines generally maintained their initial genome size, tetraploid-evolved lines rapidly underwent genome-size reductions and did so prior to caspofungin adaptation. While clinical resistance was largely due to mutations in FKS1, these mutations were caused by substitutions in diploid, and indels in tetraploid isolates. Furthermore, fitness costs in the absence of drug selection were significantly less in tetraploid-evolved lines compared to the diploid-evolved lines. Taken together, this work supports a model of adaptation in which the tetraploid state is transient but its ability to rapidly transition ploidy states improves adaptive outcomes and may drive drug resistance in fungal pathogens.
Collapse
Affiliation(s)
- Ognenka Avramovska
- Department of Biology, Emory University, Atlanta, GA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Amanda C. Smith
- Department of Biology, Emory University, Atlanta, GA, United States
- Division of Viral Disease, CDC Foundation, Atlanta, GA, United States
| | - Emily Rego
- Department of Biology, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
10
|
Naranjo-Ortiz MA, Molina M, Fuentes D, Mixão V, Gabaldón T. Karyon: a computational framework for the diagnosis of hybrids, aneuploids, and other nonstandard architectures in genome assemblies. Gigascience 2022; 11:giac088. [PMID: 36205401 PMCID: PMC9540331 DOI: 10.1093/gigascience/giac088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/23/2021] [Accepted: 08/24/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent technological developments have made genome sequencing and assembly highly accessible and widely used. However, the presence in sequenced organisms of certain genomic features such as high heterozygosity, polyploidy, aneuploidy, heterokaryosis, or extreme compositional biases can challenge current standard assembly procedures and result in highly fragmented assemblies. Hence, we hypothesized that genome databases must contain a nonnegligible fraction of low-quality assemblies that result from such type of intrinsic genomic factors. FINDINGS Here we present Karyon, a Python-based toolkit that uses raw sequencing data and de novo genome assembly to assess several parameters and generate informative plots to assist in the identification of nonchanonical genomic traits. Karyon includes automated de novo genome assembly and variant calling pipelines. We tested Karyon by diagnosing 35 highly fragmented publicly available assemblies from 19 different Mucorales (Fungi) species. CONCLUSIONS Our results show that 10 (28.57%) of the assemblies presented signs of unusual genomic configurations, suggesting that these are common, at least for some lineages within the Fungi.
Collapse
Affiliation(s)
- Miguel A Naranjo-Ortiz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Biology Department, Clark University, Worcester, MA 01610, USA
- Naturhistoriskmuseum, University of Oslo, Oslo 0562, Norway
| | - Manu Molina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
| | - Diego Fuentes
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Verónica Mixão
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Barcelona 28029, Spain
| |
Collapse
|
11
|
Cruz-Saavedra L, Schwabl P, Vallejo GA, Carranza JC, Muñoz M, Patino LH, Paniz-Mondolfi A, Llewellyn MS, Ramírez JD. Genome plasticity driven by aneuploidy and loss of heterozygosity in Trypanosoma cruzi. Microb Genom 2022; 8. [PMID: 35748878 PMCID: PMC9455712 DOI: 10.1099/mgen.0.000843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi the causative agent of Chagas disease shows a marked genetic diversity and divided into at least six Discrete Typing Units (DTUs). High intra genetic variability has been observed in the TcI DTU, the most widely distributed DTU, where patterns of genomic diversity can provide information on ecological and evolutionary processes driving parasite population structure and genome organization. Chromosomal aneuploidies and rearrangements across multigene families represent an evidence of T. cruzi genome plasticity. We explored genomic diversity among 18 Colombian T. cruzi I clones and 15 T. cruzi I South American strains. Our results confirm high genomic variability, heterozygosity and presence of a clade compatible with the TcIdom genotype, described for strains from humans in Colombia and Venezuela. TcI showed high structural plasticity across the geographical region studied. Differential events of whole and segmental aneuploidy (SA) along chromosomes even between clones from the same strain were found and corroborated by the depth and allelic frequency. We detected loss of heterozygosity (LOH) events in different chromosomes, however, the size and location of segments under LOH varied between clones. Genes adjacent to breakpoints were evaluated, and retrotransposon hot spot genes flanked the beginning of segmental aneuploidies. Our results suggest that T. cruzi genomes, like those of Leishmania, may have a highly unstable structure and there is now an urgent need to design experiments to explore any potential adaptive role for the plasticity observed.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Philipp Schwabl
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gustavo A Vallejo
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Julio C Carranza
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patino
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin S Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
13
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|
14
|
de Albuquerque GE, Moda BS, Serpa MS, Branco GP, Defelicibus A, Takenaka IKTM, de Amorim MG, Miola EC, Martins VCA, Torres KL, Bezerra SM, Claro LCL, Pelosof AG, Sztokfisz CZ, Abrantes LLS, Coimbra FJF, Kowalski LP, Alves FA, Zequi SC, Udekwu KI, Silva IT, Nunes DN, Bartelli TF, Dias-Neto E. Evaluation of Bacteria and Fungi DNA Abundance in Human Tissues. Genes (Basel) 2022; 13:genes13020237. [PMID: 35205282 PMCID: PMC8872151 DOI: 10.3390/genes13020237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Whereas targeted and shotgun sequencing approaches are both powerful in allowing the study of tissue-associated microbiota, the human: microorganism abundance ratios in tissues of interest will ultimately determine the most suitable sequencing approach. In addition, it is possible that the knowledge of the relative abundance of bacteria and fungi during a treatment course or in pathological conditions can be relevant in many medical conditions. Here, we present a qPCR-targeted approach to determine the absolute and relative amounts of bacteria and fungi and demonstrate their relative DNA abundance in nine different human tissue types for a total of 87 samples. In these tissues, fungi genomes are more abundant in stool and skin samples but have much lower levels in other tissues. Bacteria genomes prevail in stool, skin, oral swabs, saliva, and gastric fluids. These findings were confirmed by shotgun sequencing for stool and gastric fluids. This approach may contribute to a more comprehensive view of the human microbiota in targeted studies for assessing the abundance levels of microorganisms during disease treatment/progression and to indicate the most informative methods for studying microbial composition (shotgun versus targeted sequencing) for various samples types.
Collapse
Affiliation(s)
- Gabriela E. de Albuquerque
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (G.E.d.A.); (M.S.S.); (G.P.B.); (I.K.T.M.T.); (M.G.d.A.); (E.C.M.); (D.N.N.)
| | - Bruno S. Moda
- Laboratory of Computational Biology and Bioinformatics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (B.S.M.); (A.D.); (I.T.S.)
| | - Marianna S. Serpa
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (G.E.d.A.); (M.S.S.); (G.P.B.); (I.K.T.M.T.); (M.G.d.A.); (E.C.M.); (D.N.N.)
| | - Gabriela P. Branco
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (G.E.d.A.); (M.S.S.); (G.P.B.); (I.K.T.M.T.); (M.G.d.A.); (E.C.M.); (D.N.N.)
| | - Alexandre Defelicibus
- Laboratory of Computational Biology and Bioinformatics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (B.S.M.); (A.D.); (I.T.S.)
| | - Isabella K. T. M. Takenaka
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (G.E.d.A.); (M.S.S.); (G.P.B.); (I.K.T.M.T.); (M.G.d.A.); (E.C.M.); (D.N.N.)
| | - Maria G. de Amorim
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (G.E.d.A.); (M.S.S.); (G.P.B.); (I.K.T.M.T.); (M.G.d.A.); (E.C.M.); (D.N.N.)
| | - Elizabeth C. Miola
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (G.E.d.A.); (M.S.S.); (G.P.B.); (I.K.T.M.T.); (M.G.d.A.); (E.C.M.); (D.N.N.)
| | - Valquiria C. A. Martins
- Department of Education and Research, Fundação Centro de Controle de Oncologia do Estado do Amazonas, Manaus 69040-010, AM, Brazil; (V.C.A.M.); (K.L.T.)
| | - Katia L. Torres
- Department of Education and Research, Fundação Centro de Controle de Oncologia do Estado do Amazonas, Manaus 69040-010, AM, Brazil; (V.C.A.M.); (K.L.T.)
| | - Stephania M. Bezerra
- Department of Pathology, A.C.Camargo Cancer Center, Sao Paulo 01509-001, SP, Brazil; (S.M.B.); (L.C.L.C.)
| | - Laura C. L. Claro
- Department of Pathology, A.C.Camargo Cancer Center, Sao Paulo 01509-001, SP, Brazil; (S.M.B.); (L.C.L.C.)
- Rede D’Or São Luiz S/A, Sao Paulo 04321-130, SP, Brazil
- Santa Casa de Misericórdia de São Paulo, Sao Paulo 01221-010, SP, Brazil
| | - Adriane G. Pelosof
- Endoscopy, A.C.Camargo Cancer Center, Sao Paulo 01509-001, SP, Brazil; (A.G.P.); (C.Z.S.)
| | - Claudia Z. Sztokfisz
- Endoscopy, A.C.Camargo Cancer Center, Sao Paulo 01509-001, SP, Brazil; (A.G.P.); (C.Z.S.)
| | - Lais L. S. Abrantes
- International Research Center, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil;
| | - Felipe J. F. Coimbra
- Director Department of Abdominal Surgery, Head Upper GI Oncology Reference Center, A.C.Camargo Cancer Center, Sao Paulo 01509-001, SP, Brazil;
| | - Luiz P. Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C.Camargo Cancer Center, Sao Paulo 01509-001, SP, Brazil;
- Department of Head and Neck Surgery, University of Sao Paulo Medical School, Sao Paulo 01246-903, SP, Brazil
| | - Fábio A. Alves
- Department of Stomatology, A.C.Camargo Cancer Center, Sao Paulo 01509-001, SP, Brazil;
| | - Stênio C. Zequi
- Department of Urology, A.C.Camargo Cancer Center, Sao Paulo 01509-001, SP, Brazil;
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil
| | - Klas I. Udekwu
- Department of Aquatic Sciences and Assessment, Swedish University of Agriculture, P.O. Box 7050, 75007 Uppsala, Sweden;
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University Akademiska Sjukhuset, Ingång 40, 75185 Uppsala, Sweden
| | - Israel T. Silva
- Laboratory of Computational Biology and Bioinformatics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (B.S.M.); (A.D.); (I.T.S.)
| | - Diana N. Nunes
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (G.E.d.A.); (M.S.S.); (G.P.B.); (I.K.T.M.T.); (M.G.d.A.); (E.C.M.); (D.N.N.)
| | - Thais F. Bartelli
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (G.E.d.A.); (M.S.S.); (G.P.B.); (I.K.T.M.T.); (M.G.d.A.); (E.C.M.); (D.N.N.)
- Correspondence: (T.F.B.); (E.D.-N.)
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, SP, Brazil; (G.E.d.A.); (M.S.S.); (G.P.B.); (I.K.T.M.T.); (M.G.d.A.); (E.C.M.); (D.N.N.)
- Laboratório de Neurociências Alzira Denise Hertzog Silva, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-010, SP, Brazil
- Correspondence: (T.F.B.); (E.D.-N.)
| |
Collapse
|
15
|
Dutta A, Dutreux F, Schacherer J. Loss of heterozygosity results in rapid but variable genome homogenization across yeast genetic backgrounds. eLife 2021; 10:70339. [PMID: 34159898 PMCID: PMC8245132 DOI: 10.7554/elife.70339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
The dynamics and diversity of the appearance of genetic variants play an essential role in the evolution of the genome and the shaping of biodiversity. Recent population-wide genome sequencing surveys have highlighted the importance of loss of heterozygosity (LOH) events and have shown that they are a neglected part of the genetic diversity landscape. To assess the extent, variability, and spectrum, we explored the accumulation of LOH events in 169 heterozygous diploid Saccharomyces cerevisiae mutation accumulation lines across nine genetic backgrounds. In total, we detected a large set of 22,828 LOH events across distinct genetic backgrounds with a heterozygous level ranging from 0.1% to 1%. LOH events are very frequent with a rate consistently much higher than the mutation rate, showing their importance for genome evolution. We observed that the interstitial LOH (I-LOH) events, resulting in internal short LOH tracts, were much frequent (n = 19,660) than the terminal LOH (T-LOH) events, that is, tracts extending to the end of the chromosome (n = 3168). However, the spectrum, the rate, and the fraction of the genome under LOH vary across genetic backgrounds. Interestingly, we observed that the more the ancestors were heterozygous, the more they accumulated T-LOH events. In addition, frequent short I-LOH tracts are a signature of the lines derived from hybrids with low spore fertility. Finally, we found lines showing almost complete homozygotization during vegetative progression. Overall, our results highlight that the variable dynamics of the LOH accumulation across distinct genetic backgrounds might lead to rapid differential genome evolution during vegetative growth.
Collapse
Affiliation(s)
- Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
16
|
Thomson GJ, Kakade P, Hirakawa MP, Ene IV, Bennett RJ. Adaptation to the dietary sugar D-tagatose via genome instability in polyploid Candida albicans cells. G3-GENES GENOMES GENETICS 2021; 11:6219300. [PMID: 33836061 PMCID: PMC8495922 DOI: 10.1093/g3journal/jkab110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
The opportunistic fungal pathogen Candida albicans undergoes an unusual parasexual cycle wherein diploid cells mate to form tetraploid cells that can generate genetically diverse progeny via a non-meiotic program of chromosome loss. The genetic diversity afforded by parasex impacts clinically relevant features including drug resistance and virulence, and yet the factors influencing genome instability in C. albicans are not well defined. To understand how environmental cues impact genome instability, we monitored ploidy change following tetraploid cell growth in a panel of different carbon sources. We found that growth in one carbon source, D-tagatose, led to high levels of genomic instability and chromosome loss in tetraploid cells. This sugar is a stereoisomer of L-sorbose which was previously shown to promote karyotypic changes in C. albicans. However, while expression of the SOU1 gene enabled utilization of L-sorbose, overexpression of this gene did not promote growth in D-tagatose, indicating differences in assimilation of the two sugars. In addition, genome sequencing of multiple progeny recovered from D-tagatose cultures revealed increased relative copy numbers of chromosome 4, suggestive of chromosome-level regulation of D-tagatose metabolism. Together, these studies identify a novel environmental cue that induces genome instability in C. albicans, and further implicate chromosomal changes in supporting metabolic adaptation in this species.
Collapse
Affiliation(s)
- Gregory J Thomson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Pallavi Kakade
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Matthew P Hirakawa
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.,Department of Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Iuliana V Ene
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.,Mycology Department, Pasteur Institute, Paris 75015, France
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
17
|
Saghaug CS, Klotz C, Kallio JP, Aebischer T, Langeland N, Hanevik K. Genetic Diversity of the Flavohemoprotein Gene of Giardia lamblia: Evidence for High Allelic Heterozygosity and Copy Number Variation. Infect Drug Resist 2020; 13:4531-4545. [PMID: 33376360 PMCID: PMC7755369 DOI: 10.2147/idr.s274543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The flavohemoprotein (gFlHb) in Giardia plays an important role in managing nitrosative and oxidative stress, and potentially also in virulence and nitroimidazole drug tolerance. The aim of this study was to analyze the genetic diversity of gFlHb in Giardia assemblages A and B clinical isolates. Methods gFlHb genes from 20 cultured clinical Giardia isolates were subjected to PCR amplification and cloning, followed by Sanger sequencing. Sequences of all cloned PCR fragments from each isolate were analyzed for single nucleotide variants (SNVs) and compared to genomic Illumina sequence data. Identical clone sequences were sorted into alleles, and diversity was further analyzed. The number of gFlHb gene copies was assessed by mining PacBio de novo assembled genomes in eight isolates. Homology models for assessment of SNV's potential impact on protein function were created using Phyre2. Results A variable copy number of the gFlHb gene, between two and six copies, depending on isolate, was found. A total of 37 distinct sequences, representing different alleles of the gFlHb gene, were identified in AII isolates, and 41 were identified in B isolates. In some isolates, up to 12 different alleles were found. The total allelic diversity was high for both assemblages (>0.9) and was coupled with a nucleotide diversity of <0.01. The genetic variation (SNVs per CDS length) was 4.8% in sub-assemblage AII and 5.4% in assemblage B. The number of non-synonymous (ns) SNVs was high in gFIHb of both assemblages, 1.6% in A and 3.0% in B, respectively. Some of the identified nsSNV are predicted to alter protein structure and possibly function. Conclusion In this study, we present evidence that gFlHb, a putative protective enzyme against oxidative and nitrosative stress in Giardia, is a variable copy number gene with high allelic diversity. The genetic variability of gFlHb may contribute metabolic adaptability against metronidazole toxicity.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Patino LH, Muñoz M, Cruz-Saavedra L, Muskus C, Ramírez JD. Genomic Diversification, Structural Plasticity, and Hybridization in Leishmania (Viannia) braziliensis. Front Cell Infect Microbiol 2020; 10:582192. [PMID: 33178631 PMCID: PMC7596589 DOI: 10.3389/fcimb.2020.582192] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
Leishmania (Viannia) braziliensis is an important Leishmania species circulating in several Central and South American countries. Among Leishmania species circulating in Brazil, Argentina and Colombia, L. braziliensis has the highest genomic variability. However, genomic variability at the whole genome level has been only studied in Brazilian and Peruvian isolates; to date, no Colombian isolates have been studied. Considering that in Colombia, L. braziliensis is a species with great clinical and therapeutic relevance, as well as the role of genetic variability in the epidemiology of leishmaniasis, we analyzed and evaluated intraspecific genomic variability of L. braziliensis from Colombian and Bolivian isolates and compared them with Brazilian isolates. Twenty-one genomes were analyzed, six from Colombian patients, one from a Bolivian patient, and 14 Brazilian isolates downloaded from public databases. The results obtained of Phylogenomic analysis showed the existence of four well-supported clades, which evidenced intraspecific variability. The whole-genome analysis revealed structural variations in the somy, mainly in the Brazilian genomes (clade 1 and clade 3), low copy number variations, and a moderate number of single-nucleotide polymorphisms (SNPs) in all genomes analyzed. Interestingly, the genomes belonging to clades 2 and 3 from Colombia and Brazil, respectively, were characterized by low heterozygosity (~90% of SNP loci were homozygous) and regions suggestive of loss of heterozygosity (LOH). Additionally, we observed the drastic whole genome loss of heterozygosity and possible hybridization events in one genome belonging to clade 4. Unique/shared SNPs between and within the four clades were identified, revealing the importance of some of them in biological processes of L. braziliensis. Our analyses demonstrate high genomic variability of L. braziliensis in different regions of South America, mainly in Colombia and suggest that this species exhibits striking genomic diversity and a capacity of genomic hybridization; additionally, this is the first study to report whole-genome sequences of Colombian L. braziliensis isolates.
Collapse
Affiliation(s)
- Luz H Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
19
|
What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res 2020; 242:126621. [PMID: 33096325 DOI: 10.1016/j.micres.2020.126621] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Candida auris is a worrisome fungal pathogen of humans which emerged merely about a decade ago. Ever since then the scientific community worked hard to understand clinically relevant traits, such as virulence factors, antifungal resistance mechanisms, and its ability to adhere to human skin and medical devices. Whole-genome sequencing of clinical isolates and epidemiological studies outlining the path of nosocomial outbreaks have been the focus of research into this pathogenic and multidrug-resistant yeast since its first description in 2009. More recently, work was started by several laboratories to explore the biology of C. auris. Here, we review the insights of studies characterizing the mechanisms underpinning antifungal drug resistance, biofilm formation, morphogenetic switching, cell aggregation, virulence, and pathogenicity of C. auris. We conclude that, although some progress has been made, there is still a long journey ahead of us, before we fully understand this novel pathogen. Critically important is the development of molecular tools for C. auris to make this fungus genetically tractable and traceable. This will allow an in-depth molecular dissection of the life cycle of C. auris, of its characteristics while interacting with the human host, and the mechanisms it employs to avoid being killed by antifungals and the immune system.
Collapse
|
20
|
Hose J, Escalante LE, Clowers KJ, Dutcher HA, Robinson D, Bouriakov V, Coon JJ, Shishkova E, Gasch AP. The genetic basis of aneuploidy tolerance in wild yeast. eLife 2020; 9:52063. [PMID: 31909711 PMCID: PMC6970514 DOI: 10.7554/elife.52063] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Aneuploidy is highly detrimental during development yet common in cancers and pathogenic fungi – what gives rise to differences in aneuploidy tolerance remains unclear. We previously showed that wild isolates of Saccharomyces cerevisiae tolerate chromosome amplification while laboratory strains used as a model for aneuploid syndromes do not. Here, we mapped the genetic basis to Ssd1, an RNA-binding translational regulator that is functional in wild aneuploids but defective in laboratory strain W303. Loss of SSD1 recapitulates myriad aneuploidy signatures previously taken as eukaryotic responses. We show that aneuploidy tolerance is enabled via a role for Ssd1 in mitochondrial physiology, including binding and regulating nuclear-encoded mitochondrial mRNAs, coupled with a role in mitigating proteostasis stress. Recapitulating ssd1Δ defects with combinatorial drug treatment selectively blocked proliferation of wild-type aneuploids compared to euploids. Our work adds to elegant studies in the sensitized laboratory strain to present a mechanistic understanding of eukaryotic aneuploidy tolerance.
Collapse
Affiliation(s)
- James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States
| | - Leah E Escalante
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Katie J Clowers
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States
| | - Venera Bouriakov
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Great Lakes Bioenergy Research Center, Madison, United States
| | - Joshua J Coon
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Great Lakes Bioenergy Research Center, Madison, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, Madison, United States
| | - Evgenia Shishkova
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, Madison, United States
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,Great Lakes Bioenergy Research Center, Madison, United States
| |
Collapse
|
21
|
Tsai HJ, Nelliat A. A Double-Edged Sword: Aneuploidy is a Prevalent Strategy in Fungal Adaptation. Genes (Basel) 2019; 10:E787. [PMID: 31658789 PMCID: PMC6826469 DOI: 10.3390/genes10100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Aneuploidy, a deviation from a balanced genome by either gain or loss of chromosomes, is generally associated with impaired fitness and developmental defects in eukaryotic organisms. While the general physiological impact of aneuploidy remains largely elusive, many phenotypes associated with aneuploidy link to a common theme of stress adaptation. Here, we review previously identified mechanisms and observations related to aneuploidy, focusing on the highly diverse eukaryotes, fungi. Fungi, which have conquered virtually all environments, including several hostile ecological niches, exhibit widespread aneuploidy and employ it as an adaptive strategy under severe stress. Gambling with the balance between genome plasticity and stability has its cost and in fact, most aneuploidies have fitness defects. How can this fitness defect be reconciled with the prevalence of aneuploidy in fungi? It is likely that the fitness cost of the extra chromosomes is outweighed by the advantage they confer under life-threatening stresses. In fact, once the selective pressures are withdrawn, aneuploidy is often lost and replaced by less drastic mutations that possibly incur a lower fitness cost. We discuss representative examples across hostile environments, including medically and industrially relevant cases, to highlight potential adaptive mechanisms in aneuploid yeast.
Collapse
Affiliation(s)
- Hung-Ji Tsai
- Institute of Microbiology and Infection, and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Anjali Nelliat
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Bravo Ruiz G, Ross ZK, Holmes E, Schelenz S, Gow NAR, Lorenz A. Rapid and extensive karyotype diversification in haploid clinical Candida auris isolates. Curr Genet 2019; 65:1217-1228. [PMID: 31020384 PMCID: PMC6744574 DOI: 10.1007/s00294-019-00976-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/30/2022]
Abstract
Candida auris is a newly emerged pathogenic microbe, having been identified as a medically relevant fungus as recently as 2009. It is one of the most drug-resistant yeast species known to date and its emergence and population structure are unusual. Because of its recent emergence, we are largely ignorant about fundamental aspects of its general biology, life cycle, and population dynamics. Here, we report the karyotype variability of 26 C. auris strains representing the four main clades. We demonstrate that all strains are haploid and have a highly plastic karyotype containing five to seven chromosomes, which can undergo marked alterations within a short time frame when the fungus is put under genotoxic, heat, or osmotic stress. No simple correlation was found between karyotype pattern, drug resistance, and clade affiliation indicating that karyotype heterogeneity is rapidly evolving. As with other Candida species, these marked karyotype differences between isolates are likely to have an important impact on pathogenic traits of C. auris.
Collapse
Affiliation(s)
- Gustavo Bravo Ruiz
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Zoe K Ross
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
| | - Eilidh Holmes
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, London, UK
| | - Neil A R Gow
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
- School of Biosciences, University of Exeter, Exeter, UK
| | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
23
|
James TY, Michelotti LA, Glasco AD, Clemons RA, Powers RA, James ES, Simmons DR, Bai F, Ge S. Adaptation by Loss of Heterozygosity in Saccharomyces cerevisiae Clones Under Divergent Selection. Genetics 2019; 213:665-683. [PMID: 31371407 PMCID: PMC6781901 DOI: 10.1534/genetics.119.302411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/29/2019] [Indexed: 01/14/2023] Open
Abstract
Loss of heterozygosity (LOH) is observed during vegetative growth and reproduction of diploid genotypes through mitotic crossovers, aneuploidy caused by nondisjunction, and gene conversion. We aimed to test the role that LOH plays during adaptation of two highly heterozygous Saccharomyces cerevisiae genotypes to multiple environments over a short time span in the laboratory. We hypothesized that adaptation would be observed through parallel LOH events across replicate populations. Using genome resequencing of 70 clones, we found that LOH was widespread with 5.2 LOH events per clone after ∼500 generations. The most common mode of LOH was gene conversion (51%) followed by crossing over consistent with either break-induced replication or double Holliday junction resolution. There was no evidence that LOH involved nondisjunction of whole chromosomes. We observed parallel LOH in both an environment-specific and environment-independent manner. LOH largely involved recombining existing variation between the parental genotypes, but also was observed after de novo, presumably beneficial, mutations occurred in the presence of canavanine, a toxic analog of arginine. One highly parallel LOH event involved the ENA salt efflux pump locus on chromosome IV, which showed repeated LOH to the allele from the European parent, an allele originally derived by introgression from S. paradoxus Using CRISPR-engineered LOH we showed that the fitness advantage provided by this single LOH event was 27%. Overall, we found extensive evidence that LOH could be adaptive and is likely to be a greater source of initial variation than de novo mutation for rapid evolution of diploid genotypes.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lucas A Michelotti
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Alexander D Glasco
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Rebecca A Clemons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Robert A Powers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Ellen S James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - D Rabern Simmons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Fengyan Bai
- Institute of Microbiology, Chinese Academy of Sciences, State Key Laboratory of Mycology, Chaoyang District, Beijing 100101, China
| | - Shuhua Ge
- Technology Development and Transfer Center, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100029, China
| |
Collapse
|
24
|
Fillinger RJ, Anderson MZ. Seasons of change: Mechanisms of genome evolution in human fungal pathogens. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 70:165-174. [PMID: 30826447 DOI: 10.1016/j.meegid.2019.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Fungi are a diverse kingdom of organisms capable of thriving in various niches across the world including those in close association with multicellular eukaryotes. Fungal pathogens that contribute to human disease reside both within the host as commensal organisms of the microbiota and the environment. Their niche of origin dictates how infection initiates but also places specific selective pressures on the fungal pathogen that contributes to its genome organization and genetic repertoire. Recent efforts to catalogue genomic variation among major human fungal pathogens have unveiled evolutionary themes that shape the fungal genome. Mechanisms ranging from large scale changes such as aneuploidy and ploidy cycling as well as more targeted mutations like base substitutions and gene copy number variations contribute to the evolution of these species, which are often under multiple competing selective pressures with their host, environment, and other microbes. Here, we provide an overview of the major selective pressures and mechanisms acting to evolve the genome of clinically important fungal pathogens of humans.
Collapse
Affiliation(s)
- Robert J Fillinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Proteins that physically interact with the phosphatase Cdc14 in Candida albicans have diverse roles in the cell cycle. Sci Rep 2019; 9:6258. [PMID: 31000734 PMCID: PMC6472416 DOI: 10.1038/s41598-019-42530-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 03/29/2019] [Indexed: 01/08/2023] Open
Abstract
The chromosome complement of the human fungal pathogen Candida albicans is unusually unstable, suggesting that the process of nuclear division is error prone. The Cdc14 phosphatase plays a key role in organising the intricate choreography of mitosis and cell division. In order to understand the role of Cdc14 in C. albicans we used quantitative proteomics to identify proteins that physically interact with Cdc14. To distinguish genuine Cdc14-interactors from proteins that bound non-specifically to the affinity matrix, we used a substrate trapping mutant combined with mass spectrometry analysis using Stable Isotope Labelling with Amino Acids in Cell Culture (SILAC). The results identified 126 proteins that interact with Cdc14 of which 80% have not previously been identified as Cdc14 interactors in C. albicans or S. cerevisiae. In this set, 55 proteins are known from previous research in S. cerevisiae and S. pombe to play roles in the cell cycle, regulating the attachment of the mitotic spindle to kinetochores, mitotic exit, cytokinesis, licensing of DNA replication by re-activating pre-replication complexes, and DNA repair. Five Cdc14-interacting proteins with previously unknown functions localised to the Spindle Pole Bodies (SPBs). Thus, we have greatly increased the number of proteins that physically interact with Cdc14 in C. albicans.
Collapse
|
26
|
Stone NR, Rhodes J, Fisher MC, Mfinanga S, Kivuyo S, Rugemalila J, Segal ES, Needleman L, Molloy SF, Kwon-Chung J, Harrison TS, Hope W, Berman J, Bicanic T. Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. J Clin Invest 2019; 129:999-1014. [PMID: 30688656 PMCID: PMC6391087 DOI: 10.1172/jci124516] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/30/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cryptococcal meningitis (CM) causes an estimated 180,000 deaths annually, predominantly in sub-Saharan Africa, where most patients receive fluconazole (FLC) monotherapy. While relapse after FLC monotherapy with resistant strains is frequently observed, the mechanisms and impact of emergence of FLC resistance in human CM are poorly understood. Heteroresistance (HetR) - a resistant subpopulation within a susceptible strain - is a recently described phenomenon in Cryptococcus neoformans (Cn) and Cryptococcus gattii (Cg), the significance of which has not previously been studied in humans. METHODS A cohort of 20 patients with HIV-associated CM in Tanzania was prospectively observed during therapy with either FLC monotherapy or in combination with flucytosine (5FC). Total and resistant subpopulations of Cryptococcus spp. were quantified directly from patient cerebrospinal fluid (CSF). Stored isolates underwent whole genome sequencing and phenotypic characterization. RESULTS Heteroresistance was detectable in Cryptococcus spp. in the CSF of all patients at baseline (i.e., prior to initiation of therapy). During FLC monotherapy, the proportion of resistant colonies in the CSF increased during the first 2 weeks of treatment. In contrast, no resistant subpopulation was detectable in CSF by day 14 in those receiving a combination of FLC and 5FC. Genomic analysis revealed high rates of aneuploidy in heteroresistant colonies as well as in relapse isolates, with chromosome 1 (Chr1) disomy predominating. This is apparently due to the presence on Chr1 of ERG11, which is the FLC drug target, and AFR1, which encodes a drug efflux pump. In vitro efflux levels positively correlated with the level of heteroresistance. CONCLUSION Our findings demonstrate for what we believe is the first time the presence and emergence of aneuploidy-driven FLC heteroresistance in human CM, association of efflux levels with heteroresistance, and the successful suppression of heteroresistance with 5FC/FLC combination therapy. FUNDING This work was supported by the Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097377/Z/11/Z and the Daniel Turnberg Travel Fellowship.
Collapse
Affiliation(s)
- Neil R.H. Stone
- Centre for Global Health, Institute for Infection and Immunity, St. George’s, University of London, United Kingdom
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Sayoki Mfinanga
- National Institute of Medical Research, Dar es Salaam, Tanzania
- Liverpool School of Tropical Medicine, United Kingdom
| | - Sokoine Kivuyo
- National Institute of Medical Research, Dar es Salaam, Tanzania
| | | | - Ella Shtifman Segal
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Israel
| | - Leor Needleman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Israel
| | - Síle F. Molloy
- Centre for Global Health, Institute for Infection and Immunity, St. George’s, University of London, United Kingdom
| | | | - Thomas S. Harrison
- Centre for Global Health, Institute for Infection and Immunity, St. George’s, University of London, United Kingdom
| | - William Hope
- Institute of Translational Medicine, University of Liverpool, United Kingdom
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Israel
| | - Tihana Bicanic
- Centre for Global Health, Institute for Infection and Immunity, St. George’s, University of London, United Kingdom
| |
Collapse
|
27
|
Potocki L, Depciuch J, Kuna E, Worek M, Lewinska A, Wnuk M. FTIR and Raman Spectroscopy-Based Biochemical Profiling Reflects Genomic Diversity of Clinical Candida Isolates That May Be Useful for Diagnosis and Targeted Therapy of Candidiasis. Int J Mol Sci 2019; 20:ijms20040988. [PMID: 30823514 PMCID: PMC6412866 DOI: 10.3390/ijms20040988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Despite the fact that Candida albicans is documented to be the main cause of human candidiasis, non-C. albicans Candida (NCAC) species, such as Candida glabrata and Candida tropicalis, are also suggested to be implicated in the etiopathogenesis of opportunistic fungal infections. As biology, epidemiology, pathogenicity, and antifungal resistance of NCAC species may be affected as a result of genomic diversity and plasticity, rapid and unambiguous identification of Candida species in clinical samples is essential for proper diagnosis and therapy. In the present study, 25 clinical isolates of C. albicans, C. glabrata, and C. tropicalis species were characterized in terms of their karyotype patterns, DNA content, and biochemical features. Fourier transform infrared (FTIR) spectra- and Raman spectra-based molecular fingerprints corresponded to the diversity of chromosomal traits and DNA levels that provided correct species identification. Moreover, Raman spectroscopy was documented to be useful for the evaluation of ergosterol content that may be associated with azole resistance. Taken together, we found that vibrational spectroscopy-based biochemical profiling reflects the variability of chromosome patterns and DNA content of clinical Candida species isolates and may facilitate the diagnosis and targeted therapy of candidiasis.
Collapse
Affiliation(s)
- Leszek Potocki
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland.
| | - Ewelina Kuna
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Mariusz Worek
- Department of Microbiology, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Anna Lewinska
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| |
Collapse
|
28
|
Avramova M, Grbin P, Borneman A, Albertin W, Masneuf-Pomarède I, Varela C. Competition experiments between Brettanomyces bruxellensis strains reveal specific adaptation to sulfur dioxide and complex interactions at intraspecies level. FEMS Yeast Res 2019; 19:5307081. [DOI: 10.1093/femsyr/foz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/03/2019] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT
Recent studies have suggested a strong niche adaptation for Brettanomyces bruxellensis strains according to human-related fermentation environments, including beer, wine and bioethanol. This is further supported by a correlation between B. bruxellensis genetic grouping and tolerance to SO2, the main antimicrobial used in wine. The allotriploid AWRI1499-like cluster, in particular, shows high SO2 tolerance suggesting that the genetic configuration observed for these strains may confer a selective advantage in winemaking conditions. To test this hypothesis, we evaluated the relative selective advantage of representatives of the three main B. bruxellensis genetic groups in presence of SO2. As a proof-of-concept and using recently developed transformation cassettes, we compared strains under different SO2 concentrations using pairwise competitive fitness experiments. Our results showed that AWRI1499 is specifically adapted to environments with high SO2 concentrations compared to other B. bruxellensis wine strains, indicating a potential correlation between allotriploidisation origin and environmental adaptation in this species. Additionally, our findings suggest different types of competition between strains, such as coexistence and exclusion, revealing new insights on B. bruxellensis interactions at intraspecies level.
Collapse
Affiliation(s)
- Marta Avramova
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - Paul Grbin
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - Warren Albertin
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- ENSCBP, Bordeaux INP, 33600 Pessac, France
| | - Isabelle Masneuf-Pomarède
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| |
Collapse
|
29
|
Van Dijck P, Sjollema J, Cammue BPA, Lagrou K, Berman J, d’Enfert C, Andes DR, Arendrup MC, Brakhage AA, Calderone R, Cantón E, Coenye T, Cos P, Cowen LE, Edgerton M, Espinel-Ingroff A, Filler SG, Ghannoum M, Gow NA, Haas H, Jabra-Rizk MA, Johnson EM, Lockhart SR, Lopez-Ribot JL, Maertens J, Munro CA, Nett JE, Nobile CJ, Pfaller MA, Ramage G, Sanglard D, Sanguinetti M, Spriet I, Verweij PE, Warris A, Wauters J, Yeaman MR, Zaat SA, Thevissen K. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:300-326. [PMID: 29992128 PMCID: PMC6035839 DOI: 10.15698/mic2018.07.638] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the in vivo efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the in vitro and in vivo performance of anti-infective coatings and materials to prevent fungal biofilm-based infections.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Groningen, The Netherlands
| | - Bruno P. A. Cammue
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, Belgium
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Christophe d’Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Dept. Microbiology and Molecular Biology, Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, USA
| | - Emilia Cantón
- Severe Infection Research Group: Medical Research Institute La Fe (IISLaFe), Valencia, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms, Switzerland
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY USA
| | | | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Re-serve University, Cleveland, OH, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Hubertus Haas
- Biocenter - Division of Molecular Biology, Medical University Innsbruck, Innsbruck, Austria
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, USA
| | - Elizabeth M. Johnson
- National Infection Service, Public Health England, Mycology Reference Laboratory, Bristol, UK
| | | | | | - Johan Maertens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium and Clinical Department of Haematology, UZ Leuven, Leuven, Belgium
| | - Carol A. Munro
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeniel E. Nett
- University of Wisconsin-Madison, Departments of Medicine and Medical Microbiology & Immunology, Madison, WI, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, USA
| | - Michael A. Pfaller
- Departments of Pathology and Epidemiology, University of Iowa, Iowa, USA
- JMI Laboratories, North Liberty, Iowa, USA
| | - Gordon Ramage
- ESCMID Study Group for Biofilms, Switzerland
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, IRCCS-Fondazione Policlinico "Agostino Gemelli", Rome, Italy
| | - Isabel Spriet
- Pharmacy Dpt, University Hospitals Leuven and Clinical Pharmacology and Pharmacotherapy, Dpt. of Pharmaceutical and Pharma-cological Sciences, KU Leuven, Belgium
| | - Paul E. Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, the Netherlands (omit "Nijmegen" in Radboud University Medical Center)
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Joost Wauters
- KU Leuven-University of Leuven, University Hospitals Leuven, Department of General Internal Medicine, Herestraat 49, B-3000 Leuven, Belgium
| | - Michael R. Yeaman
- Geffen School of Medicine at the University of California, Los Angeles, Divisions of Molecular Medicine & Infectious Diseases, Har-bor-UCLA Medical Center, LABioMed at Harbor-UCLA Medical Center
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Am-sterdam, Netherlands
| | - Karin Thevissen
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Elliott M, Yuzon J, C MM, Tripathy S, Bui M, Chastagner GA, Coats K, Rizzo DM, Garbelotto M, Kasuga T. Characterization of phenotypic variation and genome aberrations observed among Phytophthora ramorum isolates from diverse hosts. BMC Genomics 2018; 19:320. [PMID: 29720102 PMCID: PMC5932867 DOI: 10.1186/s12864-018-4709-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that genome plasticity allows filamentous plant pathogens to adapt to changing environments. Recently, the generalist plant pathogen Phytophthora ramorum has been documented to undergo irreversible phenotypic alterations accompanied by chromosomal aberrations when infecting trunks of mature oak trees (genus Quercus). In contrast, genomes and phenotypes of the pathogen derived from the foliage of California bay (Umbellularia californica) are usually stable. We define this phenomenon as host-induced phenotypic diversification (HIPD). P. ramorum also causes a severe foliar blight in some ornamental plants such as Rhododendron spp. and Viburnum spp., and isolates from these hosts occasionally show phenotypes resembling those from oak trunks that carry chromosomal aberrations. The aim of this study was to investigate variations in phenotypes and genomes of P. ramorum isolates from non-oak hosts and substrates to determine whether HIPD changes may be equivalent to those among isolates from oaks. RESULTS We analyzed genomes of diverse non-oak isolates including those taken from foliage of Rhododendron and other ornamental plants, as well as from natural host species, soil, and water. Isolates recovered from artificially inoculated oak logs were also examined. We identified diverse chromosomal aberrations including copy neutral loss of heterozygosity (cnLOH) and aneuploidy in isolates from non-oak hosts. Most identified aberrations in non-oak hosts were also common among oak isolates; however, trisomy, a frequent type of chromosomal aberration in oak isolates was not observed in isolates from Rhododendron. CONCLUSION This work cross-examined phenotypic variation and chromosomal aberrations in P. ramorum isolates from oak and non-oak hosts and substrates. The results suggest that HIPD comparable to that occurring in oak hosts occurs in non-oak environments such as in Rhododendron leaves. Rhododendron leaves are more easily available than mature oak stems and thus can potentially serve as a model host for the investigation of HIPD, the newly described plant-pathogen interaction.
Collapse
Affiliation(s)
- Marianne Elliott
- Washington State University Puyallup Research and Extension Center, Puyallup, Washington, 98371, USA
| | - Jennifer Yuzon
- Department of Plant Pathology, University of California, Davis, California, 95616, USA
| | - Mathu Malar C
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Sucheta Tripathy
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Mai Bui
- Crops Pathology and Genetics Research Unit, USDA Agricultural Research Service, Davis, California, 95616, USA
| | - Gary A Chastagner
- Washington State University Puyallup Research and Extension Center, Puyallup, Washington, 98371, USA
| | - Katie Coats
- Washington State University Puyallup Research and Extension Center, Puyallup, Washington, 98371, USA
| | - David M Rizzo
- Department of Plant Pathology, University of California, Davis, California, 95616, USA
| | - Matteo Garbelotto
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, 94720, USA
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, USDA Agricultural Research Service, Davis, California, 95616, USA.
| |
Collapse
|
31
|
Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Sci Rep 2018. [PMID: 29515178 PMCID: PMC5841430 DOI: 10.1038/s41598-018-22580-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Brettanomyces bruxellensis is a unicellular fungus of increasing industrial and scientific interest over the past 15 years. Previous studies revealed high genotypic diversity amongst B. bruxellensis strains as well as strain-dependent phenotypic characteristics. Genomic assemblies revealed that some strains harbour triploid genomes and based upon prior genotyping it was inferred that a triploid population was widely dispersed across Australian wine regions. We performed an intraspecific diversity genotypic survey of 1488 B. bruxellensis isolates from 29 countries, 5 continents and 9 different fermentation niches. Using microsatellite analysis in combination with different statistical approaches, we demonstrate that the studied population is structured according to ploidy level, substrate of isolation and geographical origin of the strains, underlying the relative importance of each factor. We found that geographical origin has a different contribution to the population structure according to the substrate of origin, suggesting an anthropic influence on the spatial biodiversity of this microorganism of industrial interest. The observed clustering was correlated to variable stress response, as strains from different groups displayed variation in tolerance to the wine preservative sulfur dioxide (SO2). The potential contribution of the triploid state for adaptation to industrial fermentations and dissemination of the species B. bruxellensis is discussed.
Collapse
|
32
|
Fisher MC, Gow NAR, Gurr SJ. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0332. [PMID: 28080997 DOI: 10.1098/rstb.2016.0332] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 01/02/2023] Open
Abstract
Emerging infections caused by fungi have become a widely recognized global phenomenon. Their notoriety stems from their causing plagues and famines, driving species extinctions, and the difficulty in treating human mycoses alongside the increase of their resistance to antifungal drugs. This special issue comprises a collection of articles resulting from a Royal Society discussion meeting examining why pathogenic fungi are causing more disease now than they did in the past, and how we can tackle this rapidly emerging threat to the health of plants and animals worldwide.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Matthew C Fisher
- Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Neil A R Gow
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Sarah J Gurr
- University of Exeter School of Biosciences, Rothamsted at North Wyke, Okehampton EX4 4QD, UK
| |
Collapse
|
33
|
Mixão V, Gabaldón T. Hybridization and emergence of virulence in opportunistic human yeast pathogens. Yeast 2017; 35:5-20. [PMID: 28681409 PMCID: PMC5813172 DOI: 10.1002/yea.3242] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023] Open
Abstract
Hybridization between different species can result in the emergence of new lineages and adaptive phenotypes. Occasionally, hybridization in fungal organisms can drive the appearance of opportunistic lifestyles or shifts to new hosts, resulting in the emergence of novel pathogens. In recent years, an increasing number of studies have documented the existence of hybrids in diverse yeast clades, including some comprising human pathogens. Comparative and population genomics studies performed on these clades are enabling us to understand what roles hybridization may play in the evolution and emergence of a virulence potential towards humans. Here we survey recent genomic studies on several yeast pathogenic clades where hybrids have been identified, and discuss the broader implications of hybridization in the evolution and emergence of pathogenic lineages. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Verónica Mixão
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
34
|
Parasex Generates Phenotypic Diversity de Novo and Impacts Drug Resistance and Virulence in Candida albicans. Genetics 2017; 207:1195-1211. [PMID: 28912344 DOI: 10.1534/genetics.117.300295] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/05/2017] [Indexed: 01/06/2023] Open
Abstract
Candida albicans is a diploid fungus that is a frequent cause of mucosal and systemic infections in humans. This species exhibits an unusual parasexual cycle in which mating produces tetraploid cells that undergo a nonmeiotic program of concerted chromosome loss to return to a diploid or aneuploid state. In this work, we used a multipronged approach to examine the capacity of parasex to generate diversity in C. albicans First, we compared the phenotypic properties of 32 genotyped progeny and observed wide-ranging differences in fitness, filamentation, biofilm formation, and virulence. Strikingly, one parasexual isolate displayed increased virulence relative to parental strains using a Galleria mellonella model of infection, establishing that parasex has the potential to enhance pathogenic traits. Next, we examined parasexual progeny derived from homothallic, same-sex mating events, and reveal that parasex can generate diversity de novo from identical parental strains. Finally, we generated pools of parasexual progeny and examined resistance of these pools to environmental stresses. Parasexual progeny were generally less fit than control strains across most test conditions, but showed an increased ability to grow in the presence of the antifungal drug fluconazole (FL). FL-resistant progeny were aneuploid isolates, often being diploid strains trisomic for both Chr3 and Chr6. Passaging of these aneuploid strains frequently led to loss of the supernumerary chromosomes and a concomitant decrease in drug resistance. These experiments establish that parasex generates extensive phenotypic diversity de novo, and that this process has important consequences for both virulence and drug resistance in C. albicans populations.
Collapse
|
35
|
Gow NAR, Yadav B. Microbe Profile: Candida albicans: a shape-changing, opportunistic pathogenic fungus of humans. MICROBIOLOGY-SGM 2017; 163:1145-1147. [PMID: 28809155 DOI: 10.1099/mic.0.000499] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Candida albicans is normally a harmless commensal of human beings, but it can cause superficial infections of the mucosa (oral/vaginal thrush) in healthy individuals and (rarely) infections of the skin or nails. It can also become invasive, causing life-threatening systemic and bloodstream infections in immunocompromised hosts, where the mortality rate can be as high as 50 %. It is the most common cause of serious fungal infection and is a common cause of nosocomial infections in hospitals. Some strains have been recognized that are resistant to azoles or echinocandins, which are the first-line antifungals for treatment of C. albicans infections.
Collapse
Affiliation(s)
- Neil A R Gow
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Bhawna Yadav
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| |
Collapse
|
36
|
Tolerance to Caspofungin in Candida albicans Is Associated with at Least Three Distinctive Mechanisms That Govern Expression of FKS Genes and Cell Wall Remodeling. Antimicrob Agents Chemother 2017; 61:AAC.00071-17. [PMID: 28223384 DOI: 10.1128/aac.00071-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023] Open
Abstract
Expanding echinocandin use to prevent or treat invasive fungal infections has led to an increase in the number of breakthrough infections due to resistant Candida species. Although it is uncommon, echinocandin resistance is well documented for Candida albicans, which is among the most prevalent bloodstream organisms. A better understanding is needed to assess the cellular factors that promote tolerance and predispose infecting cells to clinical breakthrough. We previously showed that some mutants that were adapted to growth in the presence of toxic sorbose due to loss of one chromosome 5 (Ch5) also became more tolerant to caspofungin. We found here, following direct selection of mutants on caspofungin, that tolerance can be conferred by at least three mechanisms: (i) monosomy of Ch5, (ii) combined monosomy of the left arm and trisomy of the right arm of Ch5, and (iii) an aneuploidy-independent mechanism. Tolerant mutants possessed cell walls with elevated chitin and showed downregulation of genes involved in cell wall biosynthesis, namely, FKS, located outside Ch5, and CHT2, located on Ch5, irrespective of Ch5 ploidy. Also irrespective of Ch5 ploidy, the CNB1 and MID1 genes on Ch5, which are involved in the calcineurin signaling pathway, were expressed at the diploid level. Thus, multiple mechanisms can affect the relative expression of the aforementioned genes, controlling them in similar ways. Although breakthrough mutations in two specific regions of FKS1 have previously been associated with caspofungin resistance, we found mechanisms of caspofungin tolerance that are independent of FKS1 and thus represent an earlier event in resistance development.
Collapse
|