1
|
Ponzi D, Palanza P. Sex is a biologically coherent concept: A response to. Horm Behav 2024; 166:105636. [PMID: 39277911 DOI: 10.1016/j.yhbeh.2024.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Affiliation(s)
- Davide Ponzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Siljestam M, Martinossi-Allibert I. Anisogamy Does Not Always Promote the Evolution of Mating Competition Traits in Males. Am Nat 2024; 203:230-253. [PMID: 38306281 DOI: 10.1086/727968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractAnisogamy has evolved in most sexually reproducing multicellular organisms allowing the definition of male and female sexes, producing small and large gametes. Anisogamy, as the initial sexual dimorphism, is a good starting point to understand the evolution of further sexual dimorphisms. For instance, it is generally accepted that anisogamy sets the stage for more intense mating competition in males than in females. We argue that this idea stems from a restrictive assumption on the conditions under which anisogamy evolved in the first place: the absence of sperm limitation (assuming that all female gametes are fertilized). Here, we relax this assumption and present a model that considers the coevolution of gamete size with a mating competition trait, starting in a population without dimorphism. We vary gamete density to produce different scenarios of gamete limitation. We show that while at high gamete density the evolution of anisogamy always results in male investment in competition, gamete limitation at intermediate gamete densities allows for either females or males to invest more into mating competition. Our results thus suggest that anisogamy does not always promote mating competition among males. The conditions under which anisogamy evolves matter, as does the competition trait.
Collapse
|
3
|
Haghighatnia M, Machac A, Schmickl R, Lafon Placette C. Darwin's 'mystery of mysteries': the role of sexual selection in plant speciation. Biol Rev Camb Philos Soc 2023; 98:1928-1944. [PMID: 37337476 DOI: 10.1111/brv.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual selection is considered one of the key processes that contribute to the emergence of new species. While the connection between sexual selection and speciation has been supported by comparative studies, the mechanisms that mediate this connection remain unresolved, especially in plants. Similarly, it is not clear how speciation processes within plant populations translate into large-scale speciation dynamics. Here, we review the mechanisms through which sexual selection, pollination, and mate choice unfold and interact, and how they may ultimately produce reproductive isolation in plants. We also overview reproductive strategies that might influence sexual selection in plants and illustrate how functional traits might connect speciation at the population level (population differentiation, evolution of reproductive barriers; i.e. microevolution) with evolution above the species level (macroevolution). We also identify outstanding questions in the field, and suitable data and tools for their resolution. Altogether, this effort motivates further research focused on plants, which might potentially broaden our general understanding of speciation by sexual selection, a major concept in evolutionary biology.
Collapse
Affiliation(s)
- Mohammadjavad Haghighatnia
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Antonin Machac
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
| |
Collapse
|
4
|
Buchinger TJ, Li W. Chemical communication and its role in sexual selection across Animalia. Commun Biol 2023; 6:1178. [PMID: 37985853 PMCID: PMC10662023 DOI: 10.1038/s42003-023-05572-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
Sexual selection has been studied as a major evolutionary driver of animal diversity for roughly 50 years. Much evidence indicates that competition for mates favors elaborate signaling traits. However, this evidence comes primarily from a few taxa, leaving sexual selection as a salient evolutionary force across Animalia largely untested. Here, we reviewed the evidence for sexual selection on communication across all animal phyla, classes, and orders with emphasis on chemoreception, the only sense shared across lifeforms. An exhaustive literature review documented evidence for sexual selection on chemosensory traits in 10 of 34 animal phyla and indications of sexual selection on chemosensory traits in an additional 13 phyla. Potential targets of sexual selection include structures and processes involved in production, delivery, and detection of chemical signals. Our review suggests sexual selection plays a widespread role in the evolution of communication and highlights the need for research that better reflects animal diversity.
Collapse
Affiliation(s)
- Tyler J Buchinger
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
- Biology Department, Albion College, Albion, MI, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Lavaut E, Valero M, Mauger S, Guillemin ML, Destombe C, Dufay M. Sexual selection in seaweed? Testing Bateman's principles in the red alga Gracilaria gracilis. Proc Biol Sci 2023; 290:20231668. [PMID: 37700657 PMCID: PMC10498045 DOI: 10.1098/rspb.2023.1668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
In anisogamous species, sexual selection is expected to be stronger in males. Bateman's principles state that the variance in (i) reproductive and (ii) mating success is greater for males, and (iii) the relationship between reproductive success and mating success (the Bateman gradient) is also stronger for males than for females. Sexual selection, based on Bateman's principles, has been demonstrated in animals and some angiosperms, but never in a seaweed. Here we focus on the oogamous haploid-diploid rhodophyte Gracilaria gracilis in which previous studies have shown evidence for non-random mating, suggesting the existence of male-male competition and female choice. We estimated mating and reproductive success using paternity analyses in a natural population where up to 92% of fertilizations occurred between partners of that population. The results show that the variance in mating success is significantly greater in males than in females and that the Bateman gradient is positive only in males. Distance to female partners also explains a minor part of the variance in male mating success. Although there is no evidence for sexual dimorphism, our study supports the hypothesis that sexual selection occurs in G. gracilis, probably on male traits, even if we cannot observe, characterize or quantify them yet.
Collapse
Affiliation(s)
- E. Lavaut
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff cedex, France
| | - M. Valero
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff cedex, France
| | - S. Mauger
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff cedex, France
| | - M. L. Guillemin
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff cedex, France
- Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - C. Destombe
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff cedex, France
| | - M. Dufay
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
6
|
Martinossi-Allibert I, Ament-Velásquez SL, Saupe SJ, Johannesson H. To self or not to self? Absence of mate choice despite costly outcrossing in the fungus Podospora anserina. J Evol Biol 2023; 36:238-250. [PMID: 36263943 PMCID: PMC10092876 DOI: 10.1111/jeb.14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Fungi have a large potential for flexibility in their mode of sexual reproduction, resulting in mating systems ranging from haploid selfing to outcrossing. However, we know little about which mating strategies are used in nature, and why, even in well-studied model organisms. Here, we explored the fitness consequences of alternative mating strategies in the ascomycete fungus Podospora anserina. We measured and compared fitness proxies of nine genotypes in either diploid selfing or outcrossing events, over two generations, and with or without environmental stress. We showed that fitness was consistently lower in outcrossing events, irrespective of the environment. The cost of outcrossing was partly attributed to non-self recognition genes with pleiotropic effects on fertility. We then predicted that when presented with options to either self or outcross, individuals would perform mate choice in favour of the reproductive strategy that yields higher fitness. Contrary to our prediction, individuals did not seem to avoid outcrossing when a choice was offered, in spite of the fitness cost incurred. Our results suggest that, although functionally diploid, P. anserina does not benefit from outcrossing in most cases. We outline different explanations for the apparent lack of mate choice in face of high fitness costs associated with outcrossing, including a new perspective on the pleiotropic effect of non-self recognition genes.
Collapse
Affiliation(s)
- Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux CEDEX, France.,Department of Biology, Realfagbygget, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux CEDEX, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Hadlow JH, Lymbery RA, Evans JP. Density-dependent patterns of multivariate selection on sperm motility and morphology in a broadcast spawning mussel. Ecol Evol 2022; 12:e8514. [PMID: 35154644 PMCID: PMC8829106 DOI: 10.1002/ece3.8514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Abstract
Sperm cells exhibit extraordinary phenotypic variation, both among taxa and within individual species, yet our understanding of the adaptive value of sperm trait variation across multiple contexts is incomplete. For species without the opportunity to choose mating partners, such as sessile broadcast spawning invertebrates, fertilization depends on gamete interactions, which in turn can be strongly influenced by local environmental conditions that alter the concentration of sperm and eggs. However, the way in which such environmental factors impact phenotypic selection on functional gamete traits remains unclear in most systems. Here, we analyze patterns of linear and nonlinear multivariate selection under experimentally altered local sperm densities (densities within the capture zone of eggs) on a range of functionally important sperm traits in the broadcast spawning marine mussel, Mytilus galloprovincialis. Specifically, we assay components of sperm motility and morphology across two fertilization environments that simulate either sperm limitation (when there are too few sperm to fertilize all available eggs), or sperm saturation (when there are many more sperm than required for fertilization, and the risk of polyspermy and embryonic failure is heightened). Our findings reveal that the strength, form, and targets of selection on sperm depend on the prevailing fertilization environment. In particular, our analyses revealed multiple significant axes of nonlinear selection on sperm motility traits under sperm limitation, but only significant negative directional selection on flagellum length under sperm saturation. These findings highlight the importance of local sperm densities in driving the adaptation of sperm phenotypes, particularly those related to sperm motility, in broadcast spawning invertebrates.
Collapse
Affiliation(s)
- Jessica H. Hadlow
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Rowan A. Lymbery
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Jonathan P. Evans
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
8
|
Rosenthal GG, Ryan MJ. Sexual selection and the ascent of women: Mate choice research since Darwin. Science 2022; 375:eabi6308. [PMID: 35050648 DOI: 10.1126/science.abi6308] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Darwin's theory of sexual selection fundamentally changed how we think about sex and evolution. The struggle over mating and fertilization is a powerful driver of diversification within and among species. Contemporaries dismissed Darwin's conjecture of a "taste for the beautiful" as favoring particular mates over others, but there is now overwhelming evidence for a primary role of both male and female mate choice in sexual selection. Darwin's misogyny precluded much analysis of the "taste"; an increasing focus on mate choice mechanisms before, during, and after mating reveals that these often evolve in response to selection pressures that have little to do with sexual selection on chosen traits. Where traits and preferences do coevolve, they can do so whether fitness effects on choosers are positive, neutral, or negative. The spectrum of selection on traits and preferences, and how traits and preferences respond to social effects, determine how sexual selection and mate choice influence broader-scale processes like reproductive isolation and population responses to environmental change.
Collapse
Affiliation(s)
- Gil G Rosenthal
- Department of Biology, University of Padova, Padova, Italy.,Centro de Investigaciones Científicas de las Huastecas "Aguazarca," Calnali, Hidalgo, Mexico
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas, Austin, TX, USA.,Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
9
|
Fertilization mode drives sperm length evolution across the animal tree of life. Nat Ecol Evol 2021; 5:1153-1164. [PMID: 34155385 DOI: 10.1038/s41559-021-01488-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/12/2021] [Indexed: 01/08/2023]
Abstract
Evolutionary biologists have endeavoured to explain the extraordinary diversity of sperm morphology across animals for more than a century. One hypothesis to explain sperm diversity is that sperm length is shaped by the environment where fertilization takes place (that is, fertilization mode). Evolutionary transitions in fertilization modes may transform how selection acts on sperm length, probably by affecting postcopulatory mechanisms of sperm competition and the scope for cryptic female choice. Here, we address this hypothesis by generating a macro-evolutionary view of how fertilization mode (including external fertilizers, internal fertilizers and spermcasters) influences sperm length diversification among 3,233 species from 21 animal phyla. We show that sperm are shorter in species whose sperm are diluted in aquatic environments (that is, external fertilizers and spermcasters) and longer in species where sperm are directly transferred to females (that is, internal fertilizers). We also show that sperm length evolves faster and with a greater number of adaptive shifts in species where sperm operate within females (for example, spermcasters and internal fertilizers). Our results demonstrate that fertilization mode is a key driver in the evolution of sperm length across animals, and we argue that a complex combination of postcopulatory forces has shaped sperm length diversification throughout animal evolution.
Collapse
|
10
|
Harder LD, Richards SA, Ågren J, Johnson SD. Mechanisms of Male-Male Interference during Dispersal of Orchid Pollen. Am Nat 2021; 197:250-265. [PMID: 33523780 DOI: 10.1086/712378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSiring success of flowering plants depends on the fates of male gametophytes, which compete for access to stigmas, stylar resources, and ovules. Although rarely considered, pollen may often compete during dispersal, affecting the processes required for export to stigmas: pollen pickup, transport, and deposition. We quantified dispersal interference by tracking bee-mediated dispersal of stained Anacamptis morio (Orchidaceae) pollen from individual donor flowers and inferred the affected dispersal mechanisms on the basis of the fit of a process-based model. During individual trials, all recipient flowers were either emasculated, precluding interference with donor pollen, or intact, adding potentially interfering pollen to the pollinator. The presence of competing pollinaria on bees reduced pickup of additional pollinaria, doubled the overall proportion of lost donor pollen, and reduced total pollen export by 27%. Interference specifically increased loss of donor pollen between successive flower visits and variation in deposition among trials, and it likely also reduced pollen contact with stigmas and pollen deposition when contact occurred. Thus, by altering pollen removal, transport, and deposition, male-male interference during pollen dispersal can significantly-and perhaps commonly-limit plant-siring success.
Collapse
|
11
|
Lymbery RA, Berson JD, Evans JP. Indirect parental effects on offspring viability by egg-derived fluids in an external fertilizer. Proc Biol Sci 2020; 287:20202538. [PMID: 33290674 DOI: 10.1098/rspb.2020.2538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The capacity for parents to influence offspring phenotypes via nongenetic inheritance is currently a major area of focus in evolutionary biology. Intriguing recent evidence suggests that sexual interactions among males and females, both before and during mating, are important mediators of such effects. Sexual interactions typically extend beyond gamete release, involving both sperm and eggs, and their associated fluids. However, the potential for gamete-level interactions to induce nongenetic parental effects remains under-investigated. Here, we test for such effects using an emerging model system for studying gamete interactions, the external fertilizer Mytilus galloprovincialis. We employed a split-ejaculate design to test whether exposing sperm to egg-derived chemicals (ECs) from a female would affect fertilization rate and offspring viability when those sperm were used to fertilize a different female's eggs. We found separate, significant effects of ECs from non-fertilizing females on both fertilization rate and offspring viability. The offspring viability effect indicates that EC-driven interactions can have nongenetic implications for offspring fitness independent of the genotypes inherited by those offspring. These findings provide a rare test of indirect parental effects driven exclusively by gamete-level interactions, and to our knowledge the first evidence that such effects occur via the gametic fluids of females.
Collapse
Affiliation(s)
- Rowan A Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Jacob D Berson
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
12
|
Gasparini C, Pilastro A, Evans JP. The role of female reproductive fluid in sperm competition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200077. [PMID: 33070736 DOI: 10.1098/rstb.2020.0077] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of non-gametic components of the ejaculate (seminal fluid) in fertility and sperm competitiveness is now well established. Surprisingly, however, we know far less about female reproductive fluid (FRF) in the context of sexual selection, and insights into male-FRF interactions in the context of sperm competition have only recently emerged. Despite this limited knowledge, evidence from taxonomically diverse species has revealed insights into the effects of FRF on sperm traits that have previously been implicated in studies of sperm competition. Specifically, through the differential effects of FRF on a range of sperm traits, including chemoattraction and alterations in sperm velocity, FRF has been shown to exert positive phenotypic effects on the sperm of males that are preferred as mating partners, or those from the most compatible or genetically diverse males. Despite these tantalizing insights into the putative sexually selected functions of FRF, we largely lack a mechanistic understanding of these processes. Taken together, the evidence presented here highlights the likely ubiquity of FRF-regulated biases in fertilization success across a diverse range of taxa, thus potentially elevating the importance of FRF to other non-gametic components that have so far been studied largely in males. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Clelia Gasparini
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 WA, Australia
| |
Collapse
|
13
|
Evans JP, Lymbery RA. Sexual selection after gamete release in broadcast spawning invertebrates. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200069. [PMID: 33070722 DOI: 10.1098/rstb.2020.0069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Broadcast spawning invertebrates offer highly tractable models for evaluating sperm competition, gamete-level mate choice and sexual conflict. By displaying the ancestral mating strategy of external fertilization, where sexual selection is constrained to act after gamete release, broadcast spawners also offer potential evolutionary insights into the cascade of events that led to sexual reproduction in more 'derived' groups (including humans). Moreover, the dynamic reproductive conditions faced by these animals mean that the strength and direction of sexual selection on both males and females can vary considerably. These attributes make broadcast spawning invertebrate systems uniquely suited to testing, extending, and sometimes challenging classic and contemporary ideas in sperm competition, many of which were first captured in Parker's seminal papers on the topic. Here, we provide a synthesis outlining progress in these fields, and highlight the burgeoning potential for broadcast spawners to provide both evolutionary and mechanistic understanding into gamete-level sexual selection more broadly across the animal kingdom. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia
| | - Rowan A Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia
| |
Collapse
|
14
|
Madjidian JA, Smith HG, Andersson S, Lankinen Å. Direct and indirect selection on mate choice during pollen competition: Effects of male and female sexual traits on offspring performance following two-donor crosses. J Evol Biol 2020; 33:1452-1467. [PMID: 33463845 PMCID: PMC7589368 DOI: 10.1111/jeb.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Mate choice in plants is poorly understood, in particular its indirect genetic benefits, but also the direct benefits of avoiding harmful matings. In the herb Collinsia heterophylla, delayed stigma receptivity has been suggested to enhance pollen competition, potentially functioning as a female mate choice trait. Previous studies show that this trait can mitigate the cost of early fertilization caused by pollen, thus providing a direct benefit. We performed two-donor pollinations during successive floral stages to assess how this stigma receptivity trait and two pollen traits known to affect siring success influence indirect benefits in terms of offspring performance. We also investigated differential resource allocation by studying the influence of sibling performance in the same capsule. Offspring performance in terms of flower number was mainly affected by parental identities and differential resource allocation. Offspring seed production showed some influence of resource allocation, but was also affected by pollen donor identity and varied positively with late stigma receptivity. However, the effect of late stigma receptivity on offspring seed production was weakened in matings with pollen that advanced stigma receptivity. In conclusion, delayed stigma receptivity may be selected through both direct and indirect fitness effects in C. heterophylla, where pollen-based delay on stigma receptivity might act as a cue for mate choice. However, selection may also be counteracted by antagonistic selection on pollen to advance stigma receptivity. Our results highlight the challenges of studying indirect genetic benefits and other factors that influence mate choice in plants.
Collapse
Affiliation(s)
- Josefin A. Madjidian
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Center for Environmental and Climate ResearchLund UniversityLundSweden
| | - Henrik G. Smith
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Center for Environmental and Climate ResearchLund UniversityLundSweden
| | | | - Åsa Lankinen
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
15
|
Karlsson Green K, Stenberg JA, Lankinen Å. Making sense of Integrated Pest Management (IPM) in the light of evolution. Evol Appl 2020; 13:1791-1805. [PMID: 32908586 PMCID: PMC7463341 DOI: 10.1111/eva.13067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
Integrated Pest Management (IPM) is a holistic approach to combat pests (including herbivores, pathogens, and weeds) using a combination of preventive and curative actions, and only applying synthetic pesticides when there is an urgent need. Just as the recent recognition that an evolutionary perspective is useful in medicine to understand and predict interactions between hosts, diseases, and medical treatments, we argue that it is crucial to integrate an evolutionary framework in IPM to develop efficient and reliable crop protection strategies that do not lead to resistance development in herbivores, pathogens, and weeds. Such a framework would not only delay resistance evolution in pests, but also optimize each element of the management and increase the synergies between them. Here, we outline key areas within IPM that would especially benefit from a thorough evolutionary understanding. In addition, we discuss the difficulties and advantages of enhancing communication among research communities rooted in different biological disciplines and between researchers and society. Furthermore, we present suggestions that could advance implementation of evolutionary principles in IPM and thus contribute to the development of sustainable agriculture that is resilient to current and emerging pests.
Collapse
Affiliation(s)
- Kristina Karlsson Green
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Johan A. Stenberg
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Åsa Lankinen
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
16
|
Hörandl E, Hadacek F. Oxygen, life forms, and the evolution of sexes in multicellular eukaryotes. Heredity (Edinb) 2020; 125:1-14. [PMID: 32415185 PMCID: PMC7413252 DOI: 10.1038/s41437-020-0317-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 12/27/2022] Open
Abstract
The evolutionary advantage of different sexual systems in multicellular eukaryotes is still not well understood, because the differentiation into male and female individuals halves offspring production compared with asexuality. Here we propose that various physiological adaptations to oxidative stress could have forged sessility versus motility, and consequently the evolution of sexual systems in multicellular animals, plants, and fungi. Photosynthesis causes substantial amounts of oxidative stress in photoautotrophic plants and, likewise, oxidative chemistry of polymer breakdown, cellulose and lignin, for saprotrophic fungi. In both cases, its extent precludes motility, an additional source of oxidative stress. Sessile life form and the lack of neuronal systems, however, limit options for mate recognition and adult sexual selection, resulting in inefficient mate-searching systems. Hence, sessility requires that all individuals can produce offspring, which is achieved by hermaphroditism in plants and/or by multiple mating types in fungi. In animals, motility requires neuronal systems, and muscle activity, both of which are highly sensitive to oxidative damage. As a consequence, motility has evolved in animals as heterotrophic organisms that (1) are not photosynthetically active, and (2) are not primary decomposers. Adaptations to motility provide prerequisites for an active mating behavior and efficient mate-searching systems. These benefits compensate for the "cost of males", and may explain the early evolution of sex chromosomes in metazoans. We conclude that different sexual systems evolved under the indirect physiological constraints of lifestyles.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Göttingen, Germany.
| | - Franz Hadacek
- Department of Plant Biochemistry, University of Goettingen, Göttingen, Germany
| |
Collapse
|
17
|
Pellmyr O, Kjellberg F, Herre EA, Kawakita A, Hembry DH, Holland JN, Terrazas T, Clement W, Segraves KA, Althoff DM. Active pollination drives selection for reduced pollen-ovule ratios. AMERICAN JOURNAL OF BOTANY 2020; 107:164-170. [PMID: 31889299 DOI: 10.1002/ajb2.1412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Variation in pollen-ovule ratios is thought to reflect the degree of pollen transfer efficiency-the more efficient the process, the fewer pollen grains needed. Few studies have directly examined the relationship between pollen-ovule ratio and pollen transfer efficiency. For active pollination in the pollination brood mutualisms of yuccas and yucca moths, figs and fig wasps, senita and senita moths, and leafflowers and leafflower moths, pollinators purposefully collect pollen and place it directly on the stigmatic surface of conspecific flowers. The tight coupling of insect reproductive interests with pollination of the flowers in which larvae develop ensures that pollination is highly efficient. METHODS We used the multiple evolutionary transitions between passive pollination and more efficient active pollination to test if increased pollen transfer efficiency leads to reduced pollen-ovule ratios. We collected pollen and ovule data from a suite of plant species from each of the pollination brood mutualisms and used phylogenetically controlled tests and sister-group comparisons to examine whether the shift to active pollination resulted in reduced pollen-ovule ratios. RESULTS Across all transitions between passive and active pollination in plants, actively pollinated plants had significantly lower pollen-ovule ratios than closely related passively pollinated taxa. Phylogenetically corrected comparisons demonstrated that actively pollinated plant species had an average 76% reduction in the pollen-ovule ratio. CONCLUSIONS The results for active pollination systems support the general utility of pollen-ovule ratios as indicators of pollination efficiency and the central importance of pollen transfer efficiency in the evolution of pollen-ovule ratio.
Collapse
Affiliation(s)
- Olle Pellmyr
- Department of Biology, University of Idaho, Moscow, Idaho, 83844, USA
| | - Finn Kjellberg
- CEFE, CNRS, Université Montpellier, Université Paul Valéry Montpellier, EPHE, IRD, Montpellier, Cédex 5, France
| | - Edward Allen Herre
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Panamá, Republic of Panama
| | - Atsushi Kawakita
- The Botanical Gardens, Graduate School of Science, University of Tokyo, 3-7-1 Hakusan, Bonkyo-ku, Tokyo, Japan
| | - David H Hembry
- Department of Entomology, Cornell University, 2130 Comstock Hall, Ithaca, New York, 14853, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | - J Nathaniel Holland
- School of Dentistry, University of Texas, 7500 Cambridge Street, Houston, Texas, 77054, USA
| | - Teresa Terrazas
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Wendy Clement
- Department of Biology, The College of New Jersey, 2000 Pennington Road, Ewing, New Jersey, 08628, USA
| | - Kari A Segraves
- Department of Biology, Syracuse University, 107 College Place, Syracuse, New York, 13244, USA
| | - David M Althoff
- Department of Biology, Syracuse University, 107 College Place, Syracuse, New York, 13244, USA
| |
Collapse
|
18
|
Abstract
The perpetuation and preservation of distinct species rely on mechanisms that ensure that only interactions between gametes of the same species can give rise to viable and fertile offspring. Species-specificity can act at various stages, ranging from physical/behavioral pre-copulatory mechanisms, to pre-zygotic incompatibility during fertilization, to post-zygotic hybrid incompatibility. Herein, we focus on our current knowledge of the molecular mechanisms responsible for species-specificity during fertilization. While still poorly understood, decades of research have led to the discovery of molecules implicated in species-specific gamete interactions, starting from initial sperm-egg attraction to the binding of sperm and egg. While many of these molecules have been described as species-specific in their mode of action, relatively few have been demonstrated as such with definitive evidence. Thus, we also raise remaining questions that need to be addressed in order to characterize gamete interaction molecules as species-specific.
Collapse
|
19
|
Lymbery RA, Kennington WJ, Cornwall CE, Evans JP. Ocean acidification during prefertilization chemical communication affects sperm success. Ecol Evol 2019; 9:12302-12310. [PMID: 31832161 PMCID: PMC6854328 DOI: 10.1002/ece3.5720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/19/2019] [Accepted: 09/15/2019] [Indexed: 12/19/2022] Open
Abstract
Ocean acidification (OA) poses a major threat to marine organisms, particularly during reproduction when externally shed gametes are vulnerable to changes in seawater pH. Accordingly, several studies on OA have focused on how changes in seawater pH influence sperm behavior and/or rates of in vitro fertilization. By contrast, few studies have examined how pH influences prefertilization gamete interactions, which are crucial during natural spawning events in most externally fertilizing taxa. One mechanism of gamete interaction that forms an important component of fertilization in most taxa is communication between sperm and egg-derived chemicals. These chemical signals, along with the physiological responses in sperm they elicit, are likely to be highly sensitive to changes in seawater chemistry. In this study, we experimentally tested this possibility using the blue mussel, Mytilus galloprovincialis, a species in which females have been shown to use egg-derived chemicals to promote the success of sperm from genetically compatible males. We conducted trials in which sperm were allowed to swim in gradients of egg-derived chemicals under different seawater CO2 (and therefore pH) treatments. We found that sperm had elevated fertilization rates after swimming in the presence of egg-derived chemicals in low pH (pH 7.6) compared with ambient (pH 8.0) seawater. This observed effect could have important implications for the reproductive fitness of external fertilizers, where gamete compatibility plays a critical role in modulating reproduction in many species. For example, elevated sperm fertilization rates might disrupt the eggs' capacity to avoid fertilizations by genetically incompatible sperm. Our findings highlight the need to understand how OA affects the multiple stages of sperm-egg interactions and to develop approaches that disentangle the implications of OA for female, male, and population fitness.
Collapse
Affiliation(s)
- Rowan A. Lymbery
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - W. Jason Kennington
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | | | - Jonathan P. Evans
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
20
|
Vos M, Buckling A, Kuijper B. Sexual Selection in Bacteria? Trends Microbiol 2019; 27:972-981. [PMID: 31493990 DOI: 10.1016/j.tim.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 01/05/2023]
Abstract
A main mechanism of lateral gene transfer in bacteria is transformation, where cells take up free DNA from the environment which subsequently can be recombined into the genome. Bacteria are also known to actively release DNA into the environment through secretion or lysis, which could aid uptake via transformation. Various evolutionary benefits of DNA uptake and DNA release have been proposed but these have all been framed in the context of natural selection. Here, we interpret bacterial DNA uptake and release in the context of sexual selection theory, which has been central to our understanding of the bewildering diversity of traits associated with sexual reproduction in the eukaryote world but has never been applied to prokaryotes. Specifically, we explore potential scenarios where bacteria releasing DNA into the environment could compete for successful uptake by other cells, or where bacteria could selectively take up DNA to enhance their fitness. We conclude that there is potential for sexual selection to act in bacteria, and that this might in part explain the considerable diversity in transformation-related behaviours.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Bram Kuijper
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| |
Collapse
|
21
|
Levitan DR, Buchwalter R, Hao Y. The evolution of gametic compatibility and compatibility groups in the sea urchin
Mesocentrotus franciscanus
: An avenue for speciation in the sea. Evolution 2019; 73:1428-1442. [DOI: 10.1111/evo.13766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/02/2019] [Accepted: 05/11/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Don R. Levitan
- Department of Biological Science Florida State University Tallahassee Florida 32306
| | - Rebecca Buchwalter
- Department of Biological Science Florida State University Tallahassee Florida 32306
| | - Yueling Hao
- Department of Biological Science Florida State University Tallahassee Florida 32306
| |
Collapse
|
22
|
Lehtonen J, Dardare L. Mathematical Models of Fertilization—An Eco-Evolutionary Perspective. THE QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/703633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Minnaar C, Anderson B, de Jager ML, Karron JD. Plant-pollinator interactions along the pathway to paternity. ANNALS OF BOTANY 2019; 123:225-245. [PMID: 30535041 PMCID: PMC6344347 DOI: 10.1093/aob/mcy167] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/23/2018] [Indexed: 05/09/2023]
Abstract
Background The male fitness pathway, from pollen production to ovule fertilization, is thought to strongly influence reproductive trait evolution in animal-pollinated plants. This pathway is characterized by multiple avenues of pollen loss which may lead to reductions in male fitness. However, empirical data on the mechanistic processes leading to pollen loss during transport are limited, and we therefore lack a comprehensive understanding of how male fitness is influenced by each step in the pollination process. Scope This review assesses the history of studying male function in plants and identifies critical gaps in our understanding of the ecology and evolution of pollen transport. We explore male reproductive function along the steps of the pathway to paternity and discuss evolutionary options to overcome barriers to siring success. In particular, we present a newly emerging idea that bodies of pollinators function as a dynamic arena facilitating intense male-male competition, where pollen of rival males is constantly covered or displaced by competitors. This perspective extends the pollen-competitive arena beyond the confines of the stigma and style, and highlights the opportunity for important new breakthroughs in the study of male reproductive strategies and floral evolution.
Collapse
Affiliation(s)
- Corneile Minnaar
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Bruce Anderson
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Marinus L de Jager
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Jeffrey D Karron
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
24
|
Schenkel MA, Pen I, Beukeboom LW, Billeter J. Making sense of intralocus and interlocus sexual conflict. Ecol Evol 2018; 8:13035-13050. [PMID: 30619603 PMCID: PMC6309128 DOI: 10.1002/ece3.4629] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/13/2023] Open
Abstract
Sexual conflict occurs because males and females are exposed to different selection pressures. This can affect many aspects of female and male biology, such as physiology, behavior, genetics, and even population ecology. Its broad impact has caused widespread interest in sexual conflict. However, a key aspect of sexual conflict is often confused; it comprises two distinct forms: intralocus and interlocus sexual conflict (IASC and IRSC). Although both are caused by sex differences in selection, they operate via different proximate and ultimate mechanisms. Intralocus sexual conflict and IRSC are often not clearly defined as separate processes in the scientific literature, which impedes a proper understanding of each form as well as of their relative impact on sexual conflict. Furthermore, our current knowledge of the genetics of these phenomena is severely limited. This prevents us from empirically testing numerous theories regarding the role of these two forms of sexual conflict in evolution. Here, we clarify the distinction between IASC and IRSC, by discussing how male and female interests differ, how and when sex-specific adaptation occurs, and how this may lead to evolutionary change. We then describe a framework for their study, focusing on how future experiments may help identify the genetics underlying these phenomena. Through this, we hope to promote a more critical reflection on IASC and IRSC as well as underline the necessity of genetic and mechanistic studies of these two phenomena.
Collapse
Affiliation(s)
- Martijn A. Schenkel
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Ido Pen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Jean‐Christophe Billeter
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
25
|
Romero MR, Pérez-Figueroa A, Carrera M, Swanson WJ, Skibinski DOF, Diz AP. RNA-seq coupled to proteomic analysis reveals high sperm proteome variation between two closely related marine mussel species. J Proteomics 2018; 192:169-187. [PMID: 30189323 DOI: 10.1016/j.jprot.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/10/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Speciation mechanisms in marine organisms have attracted great interest because of the apparent lack of substantial barriers to genetic exchange in marine ecosystems. Marine mussels of the Mytilus edulis species complex provide a good model to study mechanisms underlying species formation. They hybridise extensively at many localities and both pre- and postzygotic isolating mechanisms may be operating. Mussels have external fertilisation and sperm cells should show specific adaptations for survival and successful fertilisation. Sperm thus represent key targets in investigations of the molecular mechanisms underlying reproductive isolation. We undertook a deep transcriptome sequencing (RNA-seq) of mature male gonads and a 2DE/MS-based proteome analysis of sperm from Mytilus edulis and M. galloprovincialis raised in a common environment. We provide evidence of extensive expression differences between the two mussel species, and general agreement between the transcriptomic and proteomic results in the direction of expression differences between species. Differential expression is marked for mitochondrial genes and for those involved in spermatogenesis, sperm motility, sperm-egg interactions, the acrosome reaction, sperm capacitation, ATP reserves and ROS production. Proteins and their corresponding genes might thus be good targets in further genomic analysis of reproductive barriers between these closely related species. SIGNIFICANCE: Model systems for the study of fertilization include marine invertebrates with external fertilisation, such as abalones, sea urchins and mussels, because of the ease with which large quantities of gametes released into seawater can be collected after induced spawning. Unlike abalones and sea urchins, hybridisation has been reported between mussels of different Mytilus spp., which thus makes them very appealing for the study of reproductive isolation at both pre- and postzygotic levels. There is a lack of empirical proteomic studies on sperm samples comparing different Mytilus species, which could help to advance this study. A comparative analysis of sperm proteomes across different taxa may provide important insights into the fundamental molecular processes and mechanisms involved in reproductive isolation. It might also contribute to a better understanding of sperm function and of the adaptive evolution of sperm proteins in different taxa. There is now growing evidence from genomics studies that multiple protein complexes and many individual proteins might have important functions in sperm biology and the fertilisation process. From an applied perspective, the identification of sperm-specific proteins could also contribute to the improved understanding of fertility problems and as targets for fertility control.
Collapse
Affiliation(s)
- Mónica R Romero
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain
| | - Andrés Pérez-Figueroa
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | | | - Willie J Swanson
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, USA
| | - David O F Skibinski
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain.
| |
Collapse
|
26
|
Wacker S, Larsen BM, Jakobsen P, Karlsson S. High levels of multiple paternity in a spermcast mating freshwater mussel. Ecol Evol 2018; 8:8126-8134. [PMID: 30250689 PMCID: PMC6145300 DOI: 10.1002/ece3.4201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 11/11/2022] Open
Abstract
Multiple paternity is an important characteristic of the genetic mating system and common across a wide range of taxa. Multiple paternity can increase within-population genotypic diversity, allowing selection to act on a wider spectre of genotypes, and potentially increasing effective population size. While the genetic mating system has been studied in many species with active mating behavior, little is known about multiple paternity in sessile species releasing gametes into the water. In freshwater mussels, males release sperm into the water, while eggs are retained and fertilized inside the female (spermcast mating). Mature parasitic glochidia are released into the water and attach to the gills of fish where they are encapsulated until settling in the bottom substrate. We used 15 microsatellite markers to detect multiple paternity in a wild population of the freshwater pearl mussel (Margaritifera margaritifera). We found multiple paternity in all clutches for which more than two offspring were genotyped, and numbers of sires were extremely high. Thirty-two sires had contributed to the largest clutch (43 offspring sampled). This study provides the first evidence of multiple paternity in the freshwater pearl mussel, a species that has experienced dramatic declines across Europe. Previous studies on other species of freshwater mussels have detected much lower numbers of sires. Multiple paternity in freshwater pearl mussels may be central for maintaining genetic variability in small and fragmented populations and for their potential to recover after habitat restoration and may also be important in the evolutionary arms race with their fish host with a much shorter generation time.
Collapse
Affiliation(s)
| | | | - Per Jakobsen
- Department of BiologyUniversity of BergenBergenNorway
| | - Sten Karlsson
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
| |
Collapse
|
27
|
Kekäläinen J, Evans JP. Gamete-mediated mate choice: towards a more inclusive view of sexual selection. Proc Biol Sci 2018; 285:20180836. [PMID: 30051836 PMCID: PMC6083266 DOI: 10.1098/rspb.2018.0836] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
'Sperm competition'-where ejaculates from two or more males compete for fertilization-and 'cryptic female choice'-where females bias this contest to suit their reproductive interests-are now part of the everyday lexicon of sexual selection. Yet the physiological processes that underlie these post-ejaculatory episodes of sexual selection remain largely enigmatic. In this review, we focus on a range of post-ejaculatory cellular- and molecular-level processes, known to be fundamental for fertilization across most (if not all) sexually reproducing species, and point to their putative role in facilitating sexual selection at the level of the cells and gametes, called 'gamete-mediated mate choice' (GMMC). In this way, we collate accumulated evidence for GMMC across different mating systems, and emphasize the evolutionary significance of such non-random interactions among gametes. Our overall aim in this review is to build a more inclusive view of sexual selection by showing that mate choice often acts in more nuanced ways than has traditionally been assumed. We also aim to bridge the conceptual divide between proximal mechanisms of reproduction, and adaptive explanations for patterns of non-random sperm-egg interactions that are emerging across an increasingly diverse array of taxa.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
28
|
Aanen D, Beekman M, Kokko H. Weird sex: the underappreciated diversity of sexual reproduction. Philos Trans R Soc Lond B Biol Sci 2018; 371:rstb.2016.0262. [PMID: 27619706 DOI: 10.1098/rstb.2016.0262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Duur Aanen
- Plant Sciences Group, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Madeleine Beekman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Hanna Kokko
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Nieuwenhuis BPS, James TY. The frequency of sex in fungi. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0540. [PMID: 27619703 DOI: 10.1098/rstb.2015.0540] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
Fungi are a diverse group of organisms with a huge variation in reproductive strategy. While almost all species can reproduce sexually, many reproduce asexually most of the time. When sexual reproduction does occur, large variation exists in the amount of in- and out-breeding. While budding yeast is expected to outcross only once every 10 000 generations, other fungi are obligate outcrossers with well-mixed panmictic populations. In this review, we give an overview of the costs and benefits of sexual and asexual reproduction in fungi, and the mechanisms that evolved in fungi to reduce the costs of either mode. The proximate molecular mechanisms potentiating outcrossing and meiosis appear to be present in nearly all fungi, making them of little use for predicting outcrossing rates, but also suggesting the absence of true ancient asexual lineages. We review how population genetic methods can be used to estimate the frequency of sex in fungi and provide empirical data that support a mixed mode of reproduction in many species with rare to frequent sex in between rounds of mitotic reproduction. Finally, we highlight how these estimates might be affected by the fungus-specific mechanisms that evolved to reduce the costs of sexual and asexual reproduction.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Bart P S Nieuwenhuis
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
30
|
Parker GA, Ramm SA, Lehtonen J, Henshaw JM. The evolution of gonad expenditure and gonadosomatic index (GSI) in male and female broadcast-spawning invertebrates. Biol Rev Camb Philos Soc 2017; 93:693-753. [PMID: 28921784 DOI: 10.1111/brv.12363] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/22/2017] [Accepted: 08/09/2017] [Indexed: 01/05/2023]
Abstract
Sedentary broadcast-spawning marine invertebrates, which release both eggs and sperm into the water for fertilization, are of special interest for sexual selection studies. They provide unique insight into the early stages of the evolutionary succession leading to the often-intense operation of both pre- and post-mating sexual selection in mobile gonochorists. Since they are sessile or only weakly mobile, adults can interact only to a limited extent with other adults and with their own fertilized offspring. They are consequently subject mainly to selection on gamete production and gamete success, and so high gonad expenditure is expected in both sexes. We review literature on gonadosomatic index (GSI; the proportion of body tissue devoted to gamete production) of gonochoristic broadcast spawners, which we use as a proxy for gonad expenditure. We show that such taxa most often have a high GSI that is approximately equal in both sexes. When GSI is asymmetric, female GSI usually exceeds male GSI, at least in echinoderms (the majority of species recorded). Intriguingly, though, higher male GSI also occurs in some species and appears more common than female-biased GSI in certain orders of gastropod molluscs. Our limited data also suggest that higher male GSI may be the prevalent pattern in sperm casters (where only males release gametes). We explore how selection might have shaped these patterns using game theoretic models for gonad expenditure that consider possible trade-offs with (i) somatic maintenance or (ii) growth, while also considering sperm competition, sperm limitation, and polyspermy. Our models of the trade-off between somatic tissue (which increases survival) and gonad (which increases reproductive success) predict that GSI should be equal for the two sexes when sperm competition is intense, as is probably common in broadcast spawners due to synchronous spawning in aggregations. Higher female GSI occurs under low sperm competition. Sperm limitation appears unlikely to alter these conclusions qualitatively, but can also act as a force to keep male GSI high, and close to that of females. Polyspermy can act to reduce male GSI. Higher male than female GSI is predicted to be less common (as observed in the data), but can occur when ova/ovaries are sufficiently more resource-intensive to produce than sperm/testes, for which some evidence exists. We also show that sex-specific trade-offs between gonads and growth can generate different life-history strategies for males and females, with males beginning reproduction earlier. This could lead to apparently higher male GSI in empirical studies if immature females are included in calculations of mean GSI. The existence of higher male GSI nonetheless remains somewhat problematic and requires further investigation. When sperm limitation is low, we suggest that the natural logarithm of the male/female GSI ratio may be a suitable index for sperm competition level in broadcast spawners, and that this may also be considered as an index for internally fertilizing taxa.
Collapse
Affiliation(s)
- Geoff A Parker
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Jussi Lehtonen
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Jonathan M Henshaw
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 2601, Canberra, Australia.,Institute of Zoology, University of Graz, Graz, 8010, Austria
| |
Collapse
|
31
|
Lankinen Å, Hydbom S, Strandh M. Sexually antagonistic evolution caused by male-male competition in the pistil. Evolution 2017; 71:2359-2369. [DOI: 10.1111/evo.13329] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Åsa Lankinen
- Deparment of Plant Protection Biology; Swedish University of Agricultural Sciences; S-230 53 Alnarp Sweden
| | - Sofia Hydbom
- Deparment of Plant Protection Biology; Swedish University of Agricultural Sciences; S-230 53 Alnarp Sweden
- Department of Biology; Lund University; S-223 62 Lund Sweden
| | - Maria Strandh
- Deparment of Plant Protection Biology; Swedish University of Agricultural Sciences; S-230 53 Alnarp Sweden
- Department of Biology; Lund University; S-223 62 Lund Sweden
| |
Collapse
|
32
|
Dougherty LF, Dubielzig RR, Schobert CS, Teixeira LB, Li J. Do you see what I see? Optical morphology and visual capability of 'disco' clams ( Ctenoides ales). Biol Open 2017; 6:648-653. [PMID: 28396488 PMCID: PMC5450326 DOI: 10.1242/bio.024570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
The 'disco' clam Ctenoides ales (Finlay, 1927) is a marine bivalve that has a unique, vivid flashing display that is a result of light scattering by silica nanospheres and rapid mantle movement. The eyes of C. ales were examined to determine their visual capabilities and whether the clams can see the flashing of conspecifics. Similar to the congener C. scaber, C. ales exhibits an off-response (shadow reflex) and an on-response (light reflex). In field observations, a shadow caused a significant increase in flash rate from a mean of 3.9 Hz to 4.7 Hz (P=0.0016). In laboratory trials, a looming stimulus, which increased light intensity, caused a significant increase in flash rate from a median of 1.8 Hz to 2.2 Hz (P=0.0001). Morphological analysis of the eyes of C. ales revealed coarsely-packed photoreceptors lacking sophisticated structure, resulting in visual resolution that is likely too low to detect the flashing of conspecifics. As the eyes of C. ales are incapable of perceiving conspecific flashing, it is likely that their vision is instead used to detect predators.
Collapse
Affiliation(s)
- Lindsey F Dougherty
- Department of Integrative Biology, University of California Berkeley, 3040 VLSB #3140, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, CO 80309, USA
- Museum of Natural History, University of Colorado Boulder, 265 UCB, Boulder, CO 80302, USA
| | - Richard R Dubielzig
- Pathobiological Sciences Department School of Veterinary Medicine, University of Wisconsin, Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Charles S Schobert
- Pathobiological Sciences Department School of Veterinary Medicine, University of Wisconsin, Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Leandro B Teixeira
- Pathobiological Sciences Department School of Veterinary Medicine, University of Wisconsin, Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, CO 80309, USA
- Museum of Natural History, University of Colorado Boulder, 265 UCB, Boulder, CO 80302, USA
| |
Collapse
|
33
|
Kekäläinen J, Evans JP. Female-induced remote regulation of sperm physiology may provide opportunities for gamete-level mate choice. Evolution 2016; 71:238-248. [DOI: 10.1111/evo.13141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Jukka Kekäläinen
- Centre for Evolutionary Biology, School of Animal Biology; University of Western Australia; Crawley WA 6009 Australia
- Department of Environmental and Biological Sciences; University of Eastern Finland; Joensuu Finland
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Animal Biology; University of Western Australia; Crawley WA 6009 Australia
| |
Collapse
|
34
|
Lehtonen J, Kokko H, Parker GA. What do isogamous organisms teach us about sex and the two sexes? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150532. [PMID: 27619696 PMCID: PMC5031617 DOI: 10.1098/rstb.2015.0532] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 11/12/2022] Open
Abstract
Isogamy is a reproductive system where all gametes are morphologically similar, especially in terms of size. Its importance goes beyond specific cases: to this day non-anisogamous systems are common outside of multicellular animals and plants, they can be found in all eukaryotic super-groups, and anisogamous organisms appear to have isogamous ancestors. Furthermore, because maleness is synonymous with the production of small gametes, an explanation for the initial origin of males and females is synonymous with understanding the transition from isogamy to anisogamy. As we show here, this transition may also be crucial for understanding why sex itself remains common even in taxa with high costs of male production (the twofold cost of sex). The transition to anisogamy implies the origin of male and female sexes, kickstarts the subsequent evolution of sex roles, and has a major impact on the costliness of sexual reproduction. Finally, we combine some of the consequences of isogamy and anisogamy in a thought experiment on the maintenance of sexual reproduction. We ask what happens if there is a less than twofold benefit to sex (not an unlikely scenario as large short-term benefits have proved difficult to find), and argue that this could lead to a situation where lineages that evolve anisogamy-and thus the highest costs of sex-end up being associated with constraints that make invasion by asexual reproduction unlikely (the 'anisogamy gateway' hypothesis).This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Jussi Lehtonen
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Geoff A Parker
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|