1
|
Evensen C, White A, Boots M. Multispecies interactions and the community context of the evolution of virulence. Proc Biol Sci 2024; 291:20240991. [PMID: 39317313 PMCID: PMC11421928 DOI: 10.1098/rspb.2024.0991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Pairwise host-parasite relationships are typically embedded in broader networks of ecological interactions, which have the potential to shape parasite evolutionary trajectories. Understanding this 'community context' of pathogen evolution is vital for wildlife, agricultural and human systems alike, as pathogens typically infect more than one host-and these hosts may have independent ecological relationships. Here, we introduce an eco-evolutionary model examining ecological feedback across a range of host-host interactions. Specifically, we analyse a model of the evolution of virulence of a parasite infecting two hosts exhibiting competitive, mutualistic or exploitative relationships. We first find that parasite specialism is necessary for inter-host interactions to impact parasite evolution. Furthermore, we find generally that increasing competition between hosts leads to higher shared parasite virulence while increasing mutualism leads to lower virulence. In exploitative host-host interactions, the particular form of parasite specialization is critical-for instance, specialization in terms of onward transmission, host tolerance or intra-host pathogen growth rate lead to distinct evolutionary outcomes under the same host-host interactions. Our work provides testable hypotheses for multi-host disease systems, predicts how changing interaction networks may impact virulence evolution and broadly demonstrates the importance of looking beyond pairwise relationships to understand evolution in realistic community contexts.
Collapse
Affiliation(s)
- Claire Evensen
- Department of Integrative Biology, University of California Berkeley, CA, USA
| | - Andrew White
- Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK
- Department of Mathematics, Heriot-Watt University, Edinburgh, UK
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, CA, USA
| |
Collapse
|
2
|
Shaw CL, Bilich R, Duffy MA. A common multi-host parasite shows genetic structuring at the host species and population levels. Parasitology 2024; 151:557-566. [PMID: 38616414 PMCID: PMC11427981 DOI: 10.1017/s0031182024000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Although individual parasite species commonly infect many populations across physical space as well as multiple host species, the extent to which parasites traverse physical and phylogenetic distances is unclear. Population genetic analyses of parasite populations can reveal how parasites move across space or between host species, including helping assess whether a parasite is more likely to infect a different host species in the same location or the same host species in a different location. Identifying these transmission barriers could be exploited for effective disease control. Here, we analysed population genetic structuring of the parasite Pasteuria ramosa in daphniid host species from different lakes. Outbreaks occurred most often in the common host species Daphnia dentifera and Daphnia retrocurva. The genetic distance between parasite samples tended to be smaller when samples were collected from the same lake, the same host species and closer in time. Within lakes, the parasite showed structure by host species and sampling date; within a host species, the parasite showed structure by lake and sampling date. However, despite this structuring, we found the same parasite genotype infecting closely related host species, and we sometimes found the same genotype in nearby lakes. Thus, P. ramosa experiences challenges infecting different host species and moving between populations, but doing so is possible. In addition, the structuring by sampling date indicates potential adaptation to or coevolution with host populations and supports prior findings that parasite population structure is dynamic during outbreaks.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | - Rebecca Bilich
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Wang M, Jiang W. Virulence evolution of
Toxoplasma gondii
within a multi‐host system. Evol Appl 2023; 16:721-737. [PMID: 36969145 PMCID: PMC10033858 DOI: 10.1111/eva.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023] Open
Abstract
Current research on the virulence evolution of Toxoplasma gondii is mainly conducted via experiments, and studies using mathematical models are still limited. Here, we constructed a complex cycle model of T. gondii in a multi-host system considering multiple transmission routes and cat-mouse interaction. Based on this model, we studied how the virulence of T. gondii evolves with the factors related to transmission routes and the regulation of infection on host behavior under an adaptive dynamics framework. The study shows that all factors that enhance the role of mice favored decreased virulence of T. gondii, except the decay rate of oocysts that led to different evolutionary trajectories under different vertical transmission. The same was true of the environmental infection rate of cats, whose effect was different under different vertical transmission. The effect of the regulation factor on the virulence evolution of T. gondii was the same as that of the inherent predation rate depending on its net effect on direct and vertical transmissions. The global sensitivity analysis on the evolutionary outcome suggests that changing the vertical infection rate and decay rate was most effective in regulating the virulence of T. gondii. Furthermore, the presence of coinfection would favor virulent T. gondii and make evolutionary bifurcation easy to occur. The results reveal that the virulence evolution of T. gondii had a compromise between adapting to different transmission routes and maintaining the cat-mouse interaction thereby leading to different evolutionary scenarios. This highlights the significance of evolutionary ecological feedback to evolution. In addition, the qualitative verification of T. gondii virulence evolution in different areas by the present framework will provide a new perspective for the study of evolution.
Collapse
Affiliation(s)
- Mengyue Wang
- Department of Mechanics Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory for Engineering Structural Analysis and Safety Assessment Wuhan China
| | - Wen Jiang
- Department of Mechanics Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory for Engineering Structural Analysis and Safety Assessment Wuhan China
| |
Collapse
|
4
|
Mendes PB, Boeger WA. Game dynamics as a driver for pathogen spillover pulses. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Ortiz-Baez AS, Holmes EC, Charon J, Pettersson JHO, Hesson JC. Meta-transcriptomics reveals potential virus transfer between Aedes communis mosquitoes and their parasitic water mites. Virus Evol 2022; 8:veac090. [PMID: 36320615 PMCID: PMC9604308 DOI: 10.1093/ve/veac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
Arthropods harbor a largely undocumented diversity of RNA viruses. Some arthropods, like mosquitoes, can transmit viruses to vertebrates but are themselves parasitized by other arthropod species, such as mites. Very little is known about the viruses of these ectoparasites and how they move through the host-parasite relationship. To address this, we determined the virome of both mosquitoes and the mites that feed on them. The mosquito Aedes communis is an abundant and widely distributed species in Sweden, in northern Europe. These dipterans are commonly parasitized by water mite larvae (Trombidiformes: Mideopsidae) that are hypothesized to impose negative selection pressures on the mosquito by reducing fitness. In turn, viruses are dual-host agents in the mosquito-mite interaction. We determined the RNA virus diversity of mite-free and mite-detached mosquitoes, as well as their parasitic mites, using meta-transcriptomic sequencing. Our results revealed an extensive RNA virus diversity in both mites and mosquitoes, including thirty-seven putative novel RNA viruses that cover a wide taxonomic range. Notably, a high proportion of viruses (20/37) were shared between mites and mosquitoes, while a limited number of viruses were present in a single host. Comparisons of virus composition and abundance suggest potential virus transfer between mosquitoes and mites during their symbiotic interaction. These findings shed light on virome diversity and ecology in the context of arthropod host-parasite-virus relationships.
Collapse
Affiliation(s)
- Ayda Susana Ortiz-Baez
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Justine Charon
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - John H-O Pettersson
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, Dag Hammarskjölds väg 38, Uppsala SE-751 85, Sweden
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, University of Uppsala, Husargatan 3, C8:3, Uppsala SE-751 23, Sweden
| | - Jenny C Hesson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, University of Uppsala, Husargatan 3, C8:3, Uppsala SE-751 23, Sweden
- Biologisk Myggkontroll, Nedre Dalälven Utvecklings AB, Vårdsätravägen 5, Uppsala SE 75646, Sweden
| |
Collapse
|
6
|
Sallinen S, Susi H, Halliday F, Laine AL. Altered within- and between-host transmission under coinfection underpin parasite co-occurrence patterns in the wild. Evol Ecol 2022; 37:131-151. [PMID: 36785621 PMCID: PMC9911512 DOI: 10.1007/s10682-022-10182-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Interactions among parasite species coinfecting the same host individual can have far reaching consequences for parasite ecology and evolution. How these within-host interactions affect epidemics may depend on two non-exclusive mechanisms: parasite growth and reproduction within hosts, and parasite transmission between hosts. Yet, how these two mechanisms operate under coinfection, and how sensitive they are to the composition of the coinfecting parasite community, remains poorly understood. Here, we test the hypothesis that the relationship between within- and between-host transmission of the fungal pathogen, Phomopsis subordinaria, is affected by co-occurring parasites infecting the host plant, Plantago lanceolata. We conducted a field experiment manipulating the parasite community of transmission source plants, then tracked P. subordinaria within-host transmission, as well as between-host transmission to naïve recipient plants. We find that coinfection with the powdery mildew pathogen, Podosphaera plantaginis, causes increased between-host transmission of P. subordinaria by affecting the number of infected flower stalks in the source plants, resulting from altered auto-infection. In contrast, coinfection with viruses did not have an effect on either within- or between-host transmission. We then analyzed data on the occurrence of P. subordinaria in 2018 and the powdery mildew in a multi-year survey data set from natural host populations to test whether the positive association predicted by our experimental results is evident in field epidemiological data. Consistent with our experimental findings, we observed a positive association in the occurrence of P. subordinaria and historical powdery mildew persistence. Jointly, our experimental and epidemiological results suggest that within- and between-host transmission of P. subordinaria depends on the identity of coinfecting parasites, with potentially far-reaching effects on disease dynamics and parasite co-occurrence patterns in wild populations. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10182-9.
Collapse
Affiliation(s)
- Suvi Sallinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Hanna Susi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Fletcher Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| |
Collapse
|
7
|
Tate AT, Schulz NK. The within-host ecology of insects and their parasites: integrating experiments and mathematical models. CURRENT OPINION IN INSECT SCIENCE 2022; 49:37-41. [PMID: 34793990 DOI: 10.1016/j.cois.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The within-host ecology of hosts and their microbes involves complex feedbacks between the host immune system, energetic resources, and microbial growth and virulence, which in turn affect the probability of transmission to new hosts. This complexity can be challenging to address with experiments alone, and mathematical models have traditionally played an essential role in disentangling these processes, making new predictions, and bridging gaps across biological scales. Insect hosts serve as uniquely powerful systems for the integration of experiments and theory in disease biology. In this review, we highlight recent studies in fruit flies, moths, beetles and other invertebrates that have inspired important mathematical models, and present open questions arising from recent modeling efforts that are ripe for testing in insects.
Collapse
Affiliation(s)
- Ann T Tate
- Department of Biological Sciences, Vanderbilt University, 465 21(st) Ave S., Nashville, TN, USA.
| | - Nora Ke Schulz
- Department of Biological Sciences, Vanderbilt University, 465 21(st) Ave S., Nashville, TN, USA
| |
Collapse
|
8
|
Cao G, Bao J, Feng C, Li X, Lang Y, Xing Y, Jiang H. First report of Metschnikowia bicuspidata infection in Chinese grass shrimp (Palaemonetes sinensis) in China. Transbound Emerg Dis 2022; 69:3133-3141. [PMID: 35076183 DOI: 10.1111/tbed.14460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
Abstract
The Chinese grass shrimp (Palaemonetes sinensis) was found with white turbidity appearance in the Panjin area. After dissection, typical symptoms of milky disease with hemolymph emulsification and noncoagulation were observed; however, the pathogen was unknown. In this study, we aimed to isolate the pathogen of the diseased P. sinensis. We found that the pathogen could grow on the fungal medium Bengal red, and microscopic examination showed that it reproduced by budding. Molecular identification of the isolated and purified yeast strain LNMB2021 based on 26S rDNA sequence showed that the pathogenic pathogen was Metschnikowia bicuspidata (GenBank OK094821), with 98.74% homology with M. bicuspidata strain LNES0119 (GenBank OK073903) and 98.56% with M. bicuspidata strain Liao (GenBank MT856369). The results of an artificial infection test showed that M. bicuspidata caused the same clinical symptoms in P. sinensis, and the isolated pathogen was still the same, which proved that P. sinensis was a new host of M. bicuspidata. Histopathological analysis showed that there were obvious pathological changes in the hepatopancreas and muscle tissue of the diseased P. sinensis. Identification of the pathogen is essential for the prevention and control of the disease and the healthy culture of P. sinensis. Furthermore, considering the transmissibility and cross-host transmission of M. bicuspidata, its risk of infecting other aquatic animals deserves high attention. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gangnan Cao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Jie Bao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Chengcheng Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Xiaodong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Yuxi Lang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Yuenan Xing
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| | - Hongbo Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, P R China
| |
Collapse
|
9
|
Rovenolt FH, Tate AT. The Impact of Coinfection Dynamics on Host Competition and Coexistence. Am Nat 2022; 199:91-107. [DOI: 10.1086/717180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Shaw CL, Bilich R, O'Brien B, Cáceres CE, Hall SR, James TY, Duffy MA. Genotypic variation in an ecologically important parasite is associated with host species, lake and spore size. Parasitology 2021; 148:1303-1312. [PMID: 34103104 PMCID: PMC8383271 DOI: 10.1017/s0031182021000949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022]
Abstract
Genetic variation in parasites has important consequences for host–parasite interactions. Prior studies of the ecologically important parasite Metschnikowia bicuspidata have suggested low genetic variation in the species. Here, we collected M. bicuspidata from two host species (Daphnia dentifera and Ceriodaphnia dubia) and two regions (Michigan and Indiana, USA). Within a lake, outbreaks tended to occur in one host species but not the other. Using microsatellite markers, we identified six parasite genotypes grouped within three distinct clades, one of which was rare. Of the two main clades, one was generally associated with D. dentifera, with lakes in both regions containing a single genotype. The other M. bicuspidata clade was mainly associated with C. dubia, with a different genotype dominating in each region. Despite these associations, both D. dentifera- and C. dubia-associated genotypes were found infecting both hosts in lakes. However, in lab experiments, the D. dentifera-associated genotype infected both D. dentifera and C. dubia, but the C. dubia-associated genotype, which had spores that were approximately 30% smaller, did not infect D. dentifera. We hypothesize that variation in spore size might help explain patterns of cross-species transmission. Future studies exploring the causes and consequences of variation in spore size may help explain patterns of infection and the maintenance of genotypic diversity in this ecologically important system.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Rebecca Bilich
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Bruce O'Brien
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Carla E. Cáceres
- Department of Evolution, Ecology, & Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801, USA
| | - Spencer R. Hall
- Department of Biology, Indiana University, Bloomington, IN47405, USA
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| |
Collapse
|
11
|
Bass D, Rueckert S, Stern R, Cleary AC, Taylor JD, Ward GM, Huys R. Parasites, pathogens, and other symbionts of copepods. Trends Parasitol 2021; 37:875-889. [PMID: 34158247 DOI: 10.1016/j.pt.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
There is a large diversity of eukaryotic symbionts of copepods, dominated by epizootic protists such as ciliates, and metazoan parasites. Eukaryotic endoparasites, copepod-associated bacteria, and viruses are less well known, partly due to technical limitations. However, new molecular techniques, combined with a range of other approaches, provide a complementary toolkit for understanding the complete symbiome of copepods and how the symbiome relates to their ecological roles, relationships with other biota, and responses to environmental change. In this review we provide the most complete overview of the copepod symbiome to date, including microeukaryotes, metazoan parasites, bacteria, and viruses, and provide extensive literature databases to inform future studies.
Collapse
Affiliation(s)
- David Bass
- International Centre of Excellence in Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh EH11 4BN, UK
| | - Rowena Stern
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Alison C Cleary
- Department of Natural Sciences, University of Agder, Universitetsveien 25, Kristiansand, 4630, Norway
| | - Joe D Taylor
- School of Chemistry and Bioscience, University of Bradford, Richmond Rd, Bradford BD7 1DP, UK
| | - Georgia M Ward
- International Centre of Excellence in Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Rony Huys
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
12
|
Schomaker RA, Dudycha JL. De novo transcriptome assembly of the green alga Ankistrodesmus falcatus. PLoS One 2021; 16:e0251668. [PMID: 33989339 PMCID: PMC8121315 DOI: 10.1371/journal.pone.0251668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Ankistrodesmus falcatus is a globally distributed freshwater chlorophyte that is a candidate for biofuel production, is used to study the effects of toxins on aquatic communities, and is used as food in zooplankton research. Each of these research fields is transitioning to genomic tools. We created a reference transcriptome for of A. falcatus using NextGen sequencing and de novo assembly methods including Trinity, Velvet-Oases, and EvidentialGene. The assembled transcriptome has a total of 17,997 contigs, an N50 value of 2,462, and a GC content of 64.8%. BUSCO analysis recovered 83.3% of total chlorophyte BUSCOs and 82.5% of the eukaryotic BUSCOs. A portion (7.9%) of these supposedly single-copy genes were found to have transcriptionally active, distinct duplicates. We annotated the assembly using the dammit annotation pipeline, resulting in putative functional annotation for 68.89% of the assembly. Using available rbcL sequences from 16 strains (10 species) of Ankistrodesmus, we constructed a neighbor-joining phylogeny to illustrate genetic distances of our A. falcatus strain to other members of the genus. This assembly will be valuable for researchers seeking to identify Ankistrodesmus sequences in metatranscriptomic and metagenomic field studies and in experiments where separating expression responses of zooplankton and their algal food sources through bioinformatics is important.
Collapse
Affiliation(s)
- Rachel A Schomaker
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States of America
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
13
|
Manzoli DE, Saravia-Pietropaolo MJ, Arce SI, Percara A, Antoniazzi LR, Beldomenico PM. Specialist by preference, generalist by need: availability of quality hosts drives parasite choice in a natural multihost-parasite system. Int J Parasitol 2021; 51:527-534. [PMID: 33713648 DOI: 10.1016/j.ijpara.2020.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022]
Abstract
Encountering suitable hosts is key for parasite success. A general assumption for disease transmission is that the contact of a parasite with a potential host is driven by the density or relative frequency of hosts. That assumption ignores the potential role of differential host attractiveness for parasites that can drive the encounter of hosts. It has been posited that hosts may be chosen by parasites as a function of their suitability, but the existing literature addressing that hypothesis is still very scarce. In a natural system involving a parasitic Philornis botfly and its multiple bird hosts, there are profound differences in host quality. The Great Kiskadee tolerates and does not invest in resisting the infection, which makes it an optimal host. Alternative hosts are frequently used, but whilst some of them may be good options, others are bad alternatives. Here we examined the host selection processes that drive parasite dynamics in this system with 8 years of data from a longitudinal study under natural conditions. We found that the use of an alternative host was not driven by its density or relative frequency, but instead selection of these hosts was strongly dependent on availability of more suitable hosts. When optimal hosts are plentiful, the parasite tends to ignore alternative ones. As broods of optimal hosts become limited, good alternative hosts are targeted. The parasite chooses bad alternative hosts only when better alternatives are not sufficiently available. These results add evidence from a natural system that some parasites choose their hosts as a function of their profitability, and show that host selection by this parasite is plastic and context-dependent. Such findings could have important implications for the epidemiology of some parasitic and vector-borne infections which should be considered when modelling and managing those diseases. The facultative host selection observed here can be of high relevance for public health, animal husbandry, and biodiversity conservation, because reductions in the richness of hosts might cause humans, domestic animals, or endangered species to become increasingly targeted by parasites that can drive the encounter of hosts.
Collapse
Affiliation(s)
- Darío Ezequiel Manzoli
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - María José Saravia-Pietropaolo
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Sofía Irene Arce
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Alejandro Percara
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Leandro Raúl Antoniazzi
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Pablo Martín Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina.
| |
Collapse
|
14
|
Porath‐Krause A, Campbell R, Shoemaker L, Sieben A, Strauss AT, Shaw AK, Seabloom EW, Borer ET. Pliant pathogens: Estimating viral spread when confronted with new vector, host, and environmental conditions. Ecol Evol 2021; 11:1877-1887. [PMID: 33614010 PMCID: PMC7882977 DOI: 10.1002/ece3.7178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/19/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Pathogen spread rates are determined, in part, by the performance of pathogens under altered environmental conditions and their ability to persist while switching among hosts and vectors.To determine the effects of new conditions (host, vector, and nutrient) on pathogen spread rate, we introduced a vector-borne viral plant pathogen, Barley Yellow Dwarf Virus PAV (BYDV-PAV) into hosts, vectors, and host nutrient supplies that it had not encountered for thousands of viral generations. We quantified pathogen prevalence over the course of two serial inoculations under the new conditions. Using individual-level transmission rates from this experiment, we parameterized a dynamical model of disease spread and projected spread across host populations through a growing season.A change in nutrient conditions (increased supply of phosphorus) reduced viral transmission whereas shifting to a new vector or host species had no effect on infection prevalence. However, the reduction in the new nutrient environment was only temporary; infection prevalence recovered after the second inoculation. Synthesis. These results highlight how robust the pathogen, BYDV-PAV, is to changes in its biotic and abiotic environment. Our study also highlights the need to quantify longitudinal infection information beyond snapshot assessments to project disease risk for pathogens in new environments.
Collapse
Affiliation(s)
- Anita Porath‐Krause
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Ryan Campbell
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Lauren Shoemaker
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Department of BotanyUniversity of WyomingLaramieWYUSA
| | - Andrew Sieben
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Department of BotanyUniversity of WyomingLaramieWYUSA
| | - Alexander T. Strauss
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Odum School of EcologyUniversity of GeorgiaAthensGAUSA
| | - Allison K. Shaw
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| |
Collapse
|
15
|
Páez DJ, LaDeau SL, Breyta R, Kurath G, Naish KA, Ferguson PFB. Infectious hematopoietic necrosis virus specialization in a multihost salmonid system. Evol Appl 2020; 13:1841-1853. [PMID: 32908589 PMCID: PMC7463311 DOI: 10.1111/eva.12931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 01/08/2023] Open
Abstract
Many pathogens interact and evolve in communities where more than one host species is present, yet our understanding of host-pathogen specialization is mostly informed by laboratory studies with single species. Managing diseases in the wild, however, requires understanding how host-pathogen specialization affects hosts in diverse communities. Juvenile salmonid mortality in hatcheries caused by infectious hematopoietic necrosis virus (IHNV) has important implications for salmonid conservation programs. Here, we evaluate evidence for IHNV specialization on three salmonid hosts and assess how this influences intra- and interspecific transmission in hatchery-reared salmonids. We expect that while more generalist viral lineages should pose an equal risk of infection across host types, viral specialization will increase intraspecific transmission. We used Bayesian models and data from 24 hatcheries in the Columbia River Basin to reconstruct the exposure history of hatcheries with two IHNV lineages, MD and UC, allowing us to estimate the probability of juvenile infection with these lineages in three salmonid host types. Our results show that lineage MD is specialized on steelhead trout and perhaps rainbow trout (both Oncorhynchus mykiss), whereas lineage UC displayed a generalist phenotype across steelhead trout, rainbow trout, and Chinook salmon. Furthermore, our results suggest the presence of specialist-generalist trade-offs because, while lineage UC had moderate probabilities of infection across host types, lineage MD had a small probability of infection in its nonadapted host type, Chinook salmon. Thus, in addition to quantifying probabilities of infection of socially and economically important salmonid hosts with different IHNV lineages, our results provide insights into the trade-offs that viral lineages incur in multihost communities. Our results suggest that knowledge of the specialist/generalist strategies of circulating viral lineages could be useful in salmonid conservation programs to control disease.
Collapse
Affiliation(s)
- David J. Páez
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabama
| | | | - Rachel Breyta
- U.S. Geological Survey, Western Fisheries Research CenterSeattleWashington
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research CenterSeattleWashington
| | - Kerry A. Naish
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| | | |
Collapse
|
16
|
Lievens EJP, Rode NO, Landes J, Segard A, Jabbour-Zahab R, Michalakis Y, Lenormand T. Long-term prevalence data reveals spillover dynamics in a multi-host (Artemia), multi-parasite (Microsporidia) community. Int J Parasitol 2019; 49:471-480. [PMID: 30904622 DOI: 10.1016/j.ijpara.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 01/09/2023]
Abstract
In the study of multi-host parasites, it is often found that host species contribute asymmetrically to parasite transmission. Yet in natural populations, identifying which hosts contribute to parasite transmission and maintenance is a recurring challenge. Here, we approach this issue by taking advantage of natural variation in the composition of a host community. We studied the brine shrimps Artemia franciscana and Artemia parthenogenetica and their microsporidian parasites Anostracospora rigaudi and Enterocytospora artemiae. Previous laboratory experiments had shown that each host can transmit both parasites, but could not predict their actual contributions to the parasites' maintenance in the field. To resolve this, we gathered long-term prevalence data from a metacommunity of these species. Metacommunity patches could contain either or both of the Artemia host species, so that the presence of the hosts could be linked directly to the persistence of the parasites. First, we show that the microsporidian A. rigaudi is a spillover parasite: it was unable to persist in the absence of its maintenance host A. parthenogenetica. This result was particularly striking, as A. rigaudi displayed both high prevalence (in the field) and high infectivity (when tested in the laboratory) in both hosts. Moreover, the seasonal presence of A. parthenogenetica imposed seasonality on the rate of spillover, causing cyclical pseudo-endemics in the spillover host A. franciscana. Second, while our prevalence data was sufficient to identify E. artemiae as either a spillover or a facultative multi-host parasite, we could not distinguish between the two possibilities. This study supports the importance of studying the community context of multi-host parasites, and demonstrates that in appropriate multi-host systems, sampling across a range of conditions and host communities can lead to clear conclusions about the drivers of parasite persistence.
Collapse
Affiliation(s)
- Eva J P Lievens
- UMR 5175 CEFE, CNRS-Université de Montpellier-Université P. Valéry-EPHE, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France; UMR 5290 MIVEGEC, CNRS-IRD-Université de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Montpellier, Cedex 5, France.
| | - Nicolas O Rode
- UMR 5175 CEFE, CNRS-Université de Montpellier-Université P. Valéry-EPHE, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France
| | - Julie Landes
- UMR 5175 CEFE, CNRS-Université de Montpellier-Université P. Valéry-EPHE, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France
| | - Adeline Segard
- UMR 5175 CEFE, CNRS-Université de Montpellier-Université P. Valéry-EPHE, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France
| | - Roula Jabbour-Zahab
- UMR 5175 CEFE, CNRS-Université de Montpellier-Université P. Valéry-EPHE, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France
| | - Yannis Michalakis
- UMR 5290 MIVEGEC, CNRS-IRD-Université de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Montpellier, Cedex 5, France
| | - Thomas Lenormand
- UMR 5175 CEFE, CNRS-Université de Montpellier-Université P. Valéry-EPHE, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France
| |
Collapse
|
17
|
Lievens EJP, Perreau J, Agnew P, Michalakis Y, Lenormand T. Decomposing parasite fitness reveals the basis of specialization in a two-host, two-parasite system. Evol Lett 2018; 2:390-405. [PMID: 30283690 PMCID: PMC6121826 DOI: 10.1002/evl3.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 11/29/2022] Open
Abstract
The ecological specialization of parasites–whether they can obtain high fitness on very few or very many different host species–is a determining feature of their ecology. In order to properly assess specialization, it is imperative to measure parasite fitness across host species; to understand its origins, fitness must be decomposed into the underlying traits. Despite the omnipresence of parasites with multiple hosts, very few studies assess and decompose their specialization in this way. To bridge this gap, we quantified the infectivity, virulence, and transmission rate of two parasites, the horizontally transmitted microsporidians Anostracospora rigaudi and Enterocytospora artemiae, in their natural hosts, the brine shrimp Artemia parthenogenetica and Artemia franciscana. Our results demonstrate that each parasite performs well on one of the two host species (A. rigaudi on A. parthenogenetica, and E. artemiae on A. franciscana), and poorly on the other. This partial specialization is driven by high infectivity and transmission rates in the preferred host, and is associated with maladaptive virulence and large costs of resistance in the other. Our study represents a rare empirical contribution to the study of parasite evolution in multihost systems, highlighting the negative effects of under‐ and overexploitation when adapting to multiple hosts.
Collapse
Affiliation(s)
- Eva J P Lievens
- UMR 5175 CEFE CNRS-Université de Montpellier-Université P. Valéry-EPHE 34293 Montpellier Cedex 5 France.,UMR 5290 MIVEGEC CNRS-IRD-Université de Montpellier 34394 Montpellier Cedex 5 France
| | - Julie Perreau
- UMR 5175 CEFE CNRS-Université de Montpellier-Université P. Valéry-EPHE 34293 Montpellier Cedex 5 France
| | - Philip Agnew
- UMR 5290 MIVEGEC CNRS-IRD-Université de Montpellier 34394 Montpellier Cedex 5 France
| | - Yannis Michalakis
- UMR 5290 MIVEGEC CNRS-IRD-Université de Montpellier 34394 Montpellier Cedex 5 France
| | - Thomas Lenormand
- UMR 5175 CEFE CNRS-Université de Montpellier-Université P. Valéry-EPHE 34293 Montpellier Cedex 5 France
| |
Collapse
|
18
|
Lello J, Fenton A. Lost in transmission…? Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0082. [PMID: 28289250 DOI: 10.1098/rstb.2016.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 02/06/2023] Open
Affiliation(s)
- Joanne Lello
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK .,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
19
|
Martín-Peciña M, Osuna-Mascaró C. Digest: The Red Queen hypothesis demonstrated by the Daphnia
- Caullerya
host-parasite system†. Evolution 2018; 72:715-716. [DOI: 10.1111/evo.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/22/2018] [Indexed: 11/28/2022]
Affiliation(s)
- María Martín-Peciña
- Departamento de Genética, Facultad de Ciencias; Universidad de Granada; Granada 18071 Spain
| | - Carolina Osuna-Mascaró
- Departamento de Genética, Facultad de Ciencias; Universidad de Granada; Granada 18071 Spain
| |
Collapse
|
20
|
Antonovics J, Wilson AJ, Forbes MR, Hauffe HC, Kallio ER, Leggett HC, Longdon B, Okamura B, Sait SM, Webster JP. The evolution of transmission mode. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0083. [PMID: 28289251 PMCID: PMC5352810 DOI: 10.1098/rstb.2016.0083] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/31/2022] Open
Abstract
This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Anthony J Wilson
- Integrative Entomology group, Vector-borne Viral Diseases programme, The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Mark R Forbes
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B7
| | - Heidi C Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trentino, Italy
| | - Eva R Kallio
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland.,Department of Ecology, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - Helen C Leggett
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW5 7BD, UK
| | - Steven M Sait
- School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Joanne P Webster
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, London AL9 7TA, UK
| |
Collapse
|