1
|
Magiera A, Kucharska K, Kalwarczyk T, Haniewicz P, Kwapiszewska K, Hołyst R. Measurement of large ribosomal subunit size in cytoplasm and nucleus of living human cells. NANOSCALE HORIZONS 2024. [PMID: 39687942 DOI: 10.1039/d4nh00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Ribosomes are the most essential macromolecules in cells, as they serve as production lines for every single protein. Here, we address the demand to study ribosomes in living human cells by applying time-resolved microscopy. We show that oxazole yellow iodide (YO-PRO-1 dye) intercalates tRNA and rRNA with a determined equilibrium constant of 3.01 ± 1.43 × 105 M-1. Fluorescence correlation spectroscopy (FCS) is used to measure both the rotational (∼14 ms-1) and translational (∼4 μm2 s-1) diffusion coefficients of the 60S ribosomes directly within living human cells. Furthermore, we apply the empirical length-scale dependent viscosity model to calculate the hydrodynamic radius of 60S ribosomes, equal to ∼15 nm, for the first time determined inside living cells. The FCS in YO-PRO-1 stained cells is used to assess ribosome abundance changes, exemplified in rapamycin-treated HeLa cells, highlighting its potential for dynamic ribosome characterization within the cellular environment.
Collapse
Affiliation(s)
- Aneta Magiera
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Poland.
| | - Karolina Kucharska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Poland.
| | - Tomasz Kalwarczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Poland.
| | - Patrycja Haniewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Poland.
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Poland.
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Poland.
| |
Collapse
|
2
|
De S, Zhou M, Brown ZP, Burton-Smith RN, Hashem Y, Pestova T, Hellen CUT, Frank J. Inconsistencies in the published rabbit ribosomal rRNAs: a proposal for uniformity in sequence and site numbering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617640. [PMID: 39416079 PMCID: PMC11482936 DOI: 10.1101/2024.10.11.617640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Examination of all publicly available Oryctolagus cuniculus (rabbit) ribosome cryo-EM structures reveals numerous confusing inconsistencies. First, there are a plethora of single nucleotide differences among the various rabbit 28S and 18S rRNA structures. Second, two nucleotides are absent from the NCBI Reference Sequence for the 18S rRNA gene. Moving forward, we propose using the Broad Institute's rabbit whole genome shotgun sequence and numbering to reduce modeling ambiguity and improve consistency between ribosome models.
Collapse
|
3
|
Ting MKY, Gao Y, Barahimipour R, Ghandour R, Liu J, Martinez-Seidel F, Smirnova J, Gotsmann VL, Fischer A, Haydon MJ, Willmund F, Zoschke R. Optimization of ribosome profiling in plants including structural analysis of rRNA fragments. PLANT METHODS 2024; 20:143. [PMID: 39285473 PMCID: PMC11406806 DOI: 10.1186/s13007-024-01267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Ribosome profiling (or Ribo-seq) is a technique that provides genome-wide information on the translational landscape (translatome). Across different plant studies, variable methodological setups have been described which raises questions about the general comparability of data that were generated from diverging methodologies. Furthermore, a common problem when performing Ribo-seq are abundant rRNA fragments that are wastefully incorporated into the libraries and dramatically reduce sequencing depth. To remove these rRNA contaminants, it is common to perform preliminary trials to identify these fragments because they are thought to vary depending on nuclease treatment, tissue source, and plant species. RESULTS Here, we compile valuable insights gathered over years of generating Ribo-seq datasets from different species and experimental setups. We highlight which technical steps are important for maintaining cross experiment comparability and describe a highly efficient approach for rRNA removal. Furthermore, we provide evidence that many rRNA fragments are structurally preserved over diverse nuclease regimes, as well as across plant species. Using a recently published cryo-electron microscopy (cryo-EM) structure of the tobacco 80S ribosome, we show that the most abundant rRNA fragments are spatially derived from the solvent-exposed surface of the ribosome. CONCLUSION The guidelines presented here shall aid newcomers in establishing ribosome profiling in new plant species and provide insights that will help in customizing the methodology for individual research goals.
Collapse
Affiliation(s)
- Michael K Y Ting
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- School of BioSciences, University of Melbourne, VIC, Melbourne, 3010, Australia.
| | - Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rouhollah Barahimipour
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jinghan Liu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Federico Martinez-Seidel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Julia Smirnova
- Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Vincent Leon Gotsmann
- Technical University Kaiserslautern, Paul-Ehrlich-Str. 23, 67663, Kaiserslautern, Germany
| | - Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Michael J Haydon
- School of BioSciences, University of Melbourne, VIC, Melbourne, 3010, Australia
| | - Felix Willmund
- Technical University Kaiserslautern, Paul-Ehrlich-Str. 23, 67663, Kaiserslautern, Germany
- Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
4
|
Mishra RK, Sharma P, Khaja FT, Uday AB, Hussain T. Cryo-EM structure of wheat ribosome reveals unique features of the plant ribosomes. Structure 2024; 32:562-574.e3. [PMID: 38458197 PMCID: PMC7616111 DOI: 10.1016/j.str.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Plants being sessile organisms exhibit unique features in ribosomes, which might aid in rapid gene expression and regulation in response to varying environmental conditions. Here, we present high-resolution structures of the 60S and 80S ribosomes from wheat, a monocot staple crop plant (Triticum aestivum). While plant ribosomes have unique plant-specific rRNA modification (Cm1847) in the peptide exit tunnel (PET), the zinc-finger motif in eL34 is absent, and uL4 is extended, making an exclusive interaction network. We note differences in the eL15-helix 11 (25S) interaction, eL6-ES7 assembly, and certain rRNA chemical modifications between monocot and dicot ribosomes. In eukaryotes, we observe highly conserved rRNA modification (Gm75) in 5.8S rRNA and a flipped base (G1506) in PET. These features are likely involved in sensing or stabilizing nascent chain. Finally, we discuss the importance of the universal conservation of three consecutive rRNA modifications in all ribosomes for their interaction with A-site aminoacyl-tRNA.
Collapse
Affiliation(s)
- Rishi Kumar Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Prafful Sharma
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Faisal Tarique Khaja
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Adwaith B Uday
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru PIN-560012, India.
| |
Collapse
|
5
|
Rauscher R, Eggers C, Dimitrova-Paternoga L, Shankar V, Rosina A, Cristodero M, Paternoga H, Wilson DN, Leidel SA, Polacek N. Evolving precision: rRNA expansion segment 7S modulates translation velocity and accuracy in eukaryal ribosomes. Nucleic Acids Res 2024; 52:4021-4036. [PMID: 38324474 DOI: 10.1093/nar/gkae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Ribosome-enhanced translational miscoding of the genetic code causes protein dysfunction and loss of cellular fitness. During evolution, open reading frame length increased, necessitating mechanisms for enhanced translation fidelity. Indeed, eukaryal ribosomes are more accurate than bacterial counterparts, despite their virtually identical, conserved active centers. During the evolution of eukaryotic organisms ribosome expansions at the rRNA and protein level occurred, which potentially increases the options for translation regulation and cotranslational events. Here we tested the hypothesis that ribosomal RNA expansions can modulate the core function of the ribosome, faithful protein synthesis. We demonstrate that a short expansion segment present in all eukaryotes' small subunit, ES7S, is crucial for accurate protein synthesis as its presence adjusts codon-specific velocities and guarantees high levels of cognate tRNA selection. Deletion of ES7S in yeast enhances mistranslation and causes protein destabilization and aggregation, dramatically reducing cellular fitness. Removal of ES7S did not alter ribosome architecture but altered the structural dynamics of inter-subunit bridges thus affecting A-tRNA selection. Exchanging the yeast ES7S sequence with the human ES7S increases accuracy whereas shortening causes the opposite effect. Our study demonstrates that ES7S provided eukaryal ribosomes with higher accuracy without perturbing the structurally conserved decoding center.
Collapse
Affiliation(s)
- Robert Rauscher
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Cristian Eggers
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lyudmila Dimitrova-Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vaishnavi Shankar
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Alessia Rosina
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marina Cristodero
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Sebastian A Leidel
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Norbert Polacek
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
6
|
Yang J, Wang Y, Huang Z, Jiang Y, Pan X, Dong X, Yang G. Roles of rRNA N-methyladenosine modification in the function of ribosomes. Cell Biochem Funct 2023; 41:1106-1114. [PMID: 38041420 DOI: 10.1002/cbf.3891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/19/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
The N-methyladenosine (m6A) modification of ribosomal RNA (rRNA) plays critical roles in regulating the function of ribosomes, the essential molecular machines that translate genetic information from mRNA into proteins. Specifically, m6A modification affects ribosome biogenesis, stability, and function by regulating the processing and maturation of rRNA, the assembly and composition of ribosomes, and the accuracy and efficiency of translation. Furthermore, m6A modification allows for dynamic regulation of translation in response to environmental and cellular signals. Therefore, a deeper understanding of the mechanisms and functions of m6A modification in rRNA will advance our knowledge of ribosome-mediated gene expression and facilitate the development of new therapeutic strategies for ribosome-related diseases.
Collapse
Affiliation(s)
- Jingyi Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yameng Wang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zekai Huang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yashuang Jiang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xiaolei Pan
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xiaowei Dong
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Geng Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
7
|
Li Q, Kang C. Targeting RNA-binding proteins with small molecules: Perspectives, pitfalls and bifunctional molecules. FEBS Lett 2023; 597:2031-2047. [PMID: 37519019 DOI: 10.1002/1873-3468.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
RNA-binding proteins (RBPs) play vital roles in organisms through binding with RNAs to regulate their functions. Small molecules affecting the function of RBPs have been developed, providing new avenues for drug discovery. Herein, we describe the perspectives on developing small molecule regulators of RBPs. The following types of small molecule modulators are of great interest in drug discovery: small molecules binding to RBPs to affect interactions with RNA molecules, bifunctional molecules binding to RNA or RBP to influence their interactions, and other types of molecules that affect the stability of RNA or RBPs. Moreover, we emphasize that the bifunctional molecules may play important roles in small molecule development to overcome the challenges encountered in the process of drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
8
|
Park D, Yu Y, Kim JH, Lee J, Park J, Hong K, Seo JK, Lim C, Min KT. Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability. Mol Cells 2023; 46:374-386. [PMID: 37077029 PMCID: PMC10258458 DOI: 10.14348/molcells.2023.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 04/21/2023] Open
Abstract
Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.
Collapse
Affiliation(s)
- Dongkeun Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Youngim Yu
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Ji-hyung Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jongbin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jongmin Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Kido Hong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jeong-Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Kyung-Tai Min
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
9
|
Grimes KM, Prasad V, Huo J, Kuwabara Y, Vanhoutte D, Baldwin TA, Bowers SLK, Johansen AKZ, Sargent MA, Lin SCJ, Molkentin JD. Rpl3l gene deletion in mice reduces heart weight over time. Front Physiol 2023; 14:1054169. [PMID: 36733907 PMCID: PMC9886673 DOI: 10.3389/fphys.2023.1054169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Introduction: The ribosomal protein L3-like (RPL3L) is a heart and skeletal muscle-specific ribosomal protein and paralogue of the more ubiquitously expressed RPL3 protein. Mutations in the human RPL3L gene are linked to childhood cardiomyopathy and age-related atrial fibrillation, yet the function of RPL3L in the mammalian heart remains unknown. Methods and Results: Here, we observed that mouse cardiac ventricles express RPL3 at birth, where it is gradually replaced by RPL3L in adulthood but re-expressed with induction of hypertrophy in adults. Rpl3l gene-deleted mice were generated to examine the role of this gene in the heart, although Rpl3l -/- mice showed no overt changes in cardiac structure or function at baseline or after pressure overload hypertrophy, likely because RPL3 expression was upregulated and maintained in adulthood. mRNA expression analysis and ribosome profiling failed to show differences between the hearts of Rpl3l null and wild type mice in adulthood. Moreover, ribosomes lacking RPL3L showed no differences in localization within cardiomyocytes compared to wild type controls, nor was there an alteration in cardiac tissue ultrastructure or mitochondrial function in adult Rpl3l -/- mice. Similarly, overexpression of either RPL3 or RPL3L with adeno-associated virus -9 in the hearts of mice did not cause discernable pathology. However, by 18 months of age Rpl3l -/- null mice had significantly smaller hearts compared to wild type littermates. Conclusion: Thus, deletion of Rpl3l forces maintenance of RPL3 expression within the heart that appears to fully compensate for the loss of RPL3L, although older Rpl3l -/- mice showed a mild but significant reduction in heart weight.
Collapse
Affiliation(s)
- Kelly M Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Yasuhide Kuwabara
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Davy Vanhoutte
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Tanya A Baldwin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Stephanie L K Bowers
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Anne Katrine Z Johansen
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Suh-Chin J Lin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
10
|
Pellegrino S, Terrosu S, Yusupova G, Yusupov M. Inhibition of the Eukaryotic 80S Ribosome as a Potential Anticancer Therapy: A Structural Perspective. Cancers (Basel) 2021; 13:cancers13174392. [PMID: 34503202 PMCID: PMC8430933 DOI: 10.3390/cancers13174392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Unravelling the molecular basis of ribosomal inhibition by small molecules is crucial to characterise the function of potential anticancer drugs. After approval of the ribosome inhibitor homoharringtonine for treatment of CML, it became clear that acting on the rate of protein synthesis can be a valuable way to prevent indefinite growth of cancers. The present review discusses the state-of-the-art structural knowledge of the binding modes of inhibitors targeting the cytosolic ribosome, with the ambition of providing not only an overview of what has been achieved so far, but to stimulate further investigations to yield more potent and specific anticancer drugs. Abstract Protein biosynthesis is a vital process for all kingdoms of life. The ribosome is the massive ribonucleoprotein machinery that reads the genetic code, in the form of messenger RNA (mRNA), to produce proteins. The mechanism of translation is tightly regulated to ensure that cell growth is well sustained. Because of the central role fulfilled by the ribosome, it is not surprising that halting its function can be detrimental and incompatible with life. In bacteria, the ribosome is a major target of inhibitors, as demonstrated by the high number of small molecules identified to bind to it. In eukaryotes, the design of ribosome inhibitors may be used as a therapy to treat cancer cells, which exhibit higher proliferation rates compared to healthy ones. Exciting experimental achievements gathered during the last few years confirmed that the ribosome indeed represents a relevant platform for the development of anticancer drugs. We provide herein an overview of the latest structural data that helped to unveil the molecular bases of inhibition of the eukaryotic ribosome triggered by small molecules.
Collapse
Affiliation(s)
- Simone Pellegrino
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- Correspondence: (S.P.); (M.Y.)
| | - Salvatore Terrosu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Marat Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Correspondence: (S.P.); (M.Y.)
| |
Collapse
|
11
|
Brönstrup M, Sasse F. Natural products targeting the elongation phase of eukaryotic protein biosynthesis. Nat Prod Rep 2021; 37:752-762. [PMID: 32428051 DOI: 10.1039/d0np00011f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2020 The translation of mRNA into proteins is a precisely regulated, complex process that can be divided into three main stages, i.e. initiation, elongation, termination, and recycling. This contribution is intended to highlight how natural products interfere with the elongation phase of eukaryotic protein biosynthesis. Cycloheximide, isolated from Streptomyces griseus, has long been the prototype inhibitor of eukaryotic translation elongation. In the last three decades, a variety of natural products from different origins were discovered to also address the elongation step in different manners, including interference with the elongation factors eEF1 and eEF2 as well as binding to A-, P- or E-sites of the ribosome itself. Recent advances in the crystallization of the ribosomal machinery together with natural product inhibitors allowed characterizing similarities as well as differences in their mode of action. Since aberrations in protein synthesis are commonly observed in tumors, and malfunction or overexpression of translation factors can cause cellular transformation, the protein synthesis machinery has been realized as an attractive target for anticancer drugs. The therapeutic use of the first natural products that reached market approval, plitidepsin (Aplidin®) and homoharringtonine (Synribo®), will be introduced. In addition, we will highlight two other potential indications for translation elongation inhibitors, i.e. viral infections and genetic disorders caused by premature termination of translation.
Collapse
Affiliation(s)
- Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. and Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany and German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| |
Collapse
|
12
|
Macošek J, Simon B, Linse JB, Jagtap PKA, Winter SL, Foot J, Lapouge K, Perez K, Rettel M, Ivanović MT, Masiewicz P, Murciano B, Savitski MM, Loedige I, Hub JS, Gabel F, Hennig J. Structure and dynamics of the quaternary hunchback mRNA translation repression complex. Nucleic Acids Res 2021; 49:8866-8885. [PMID: 34329466 PMCID: PMC8421216 DOI: 10.1093/nar/gkab635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.
Collapse
Affiliation(s)
- Jakub Macošek
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Johanna-Barbara Linse
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Sophie L Winter
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Jaelle Foot
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Kathryn Perez
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Mandy Rettel
- Proteomics Core Facility, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Miloš T Ivanović
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Pawel Masiewicz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Brice Murciano
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Mikhail M Savitski
- Proteomics Core Facility, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Inga Loedige
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Frank Gabel
- Institut Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg 69117, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
13
|
Dmitriev SE, Vladimirov DO, Lashkevich KA. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. BIOCHEMISTRY (MOSCOW) 2021; 85:1389-1421. [PMID: 33280581 PMCID: PMC7689648 DOI: 10.1134/s0006297920110097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- S E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - D O Vladimirov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
14
|
Dalhoff A. Selective toxicity of antibacterial agents-still a valid concept or do we miss chances and ignore risks? Infection 2021; 49:29-56. [PMID: 33367978 PMCID: PMC7851017 DOI: 10.1007/s15010-020-01536-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Selective toxicity antibacteribiotics is considered to be due to interactions with targets either being unique to bacteria or being characterized by a dichotomy between pro- and eukaryotic pathways with high affinities of agents to bacterial- rather than eukaryotic targets. However, the theory of selective toxicity oversimplifies the complex modes of action of antibiotics in pro- and eukaryotes. METHODS AND OBJECTIVE This review summarizes data describing multiple modes of action of antibiotics in eukaryotes. RESULTS Aminoglycosides, macrolides, oxazolidinones, chloramphenicol, clindamycin, tetracyclines, glycylcyclines, fluoroquinolones, rifampicin, bedaquillin, ß-lactams inhibited mitochondrial translation either due to binding to mitosomes, inhibition of mitochondrial RNA-polymerase-, topoisomerase 2ß-, ATP-synthesis, transporter activities. Oxazolidinones, tetracyclines, vancomycin, ß-lactams, bacitracin, isoniazid, nitroxoline inhibited matrix-metalloproteinases (MMP) due to chelation with zinc and calcium, whereas fluoroquinols fluoroquinolones and chloramphenicol chelated with these cations, too, but increased MMP activities. MMP-inhibition supported clinical efficacies of ß-lactams and daptomycin in skin-infections, and of macrolides, tetracyclines in respiratory-diseases. Chelation may have contributed to neuroprotection by ß-lactams and fluoroquinolones. Aminoglycosides, macrolides, chloramphenicol, oxazolidins oxazolidinones, tetracyclines caused read-through of premature stop codons. Several additional targets for antibiotics in human cells have been identified like interaction of fluoroquinolones with DNA damage repair in eukaryotes, or inhibition of mucin overproduction by oxazolidinones. CONCLUSION The effects of antibiotics on eukaryotes are due to identical mechanisms as their antibacterial activities because of structural and functional homologies of pro- and eukaryotic targets, so that the effects of antibiotics on mammals are integral parts of their overall mechanisms of action.
Collapse
Affiliation(s)
- Axel Dalhoff
- Christian-Albrechts-University of Kiel, Institue for Infection Medicine, Brunswiker Str. 4, D-24105, Kiel, Germany.
| |
Collapse
|
15
|
Finkelshtein A, Khamesa H, Tuan LA, Rabanim M, Chamovitz DA. Overexpression of the ribosomal S30 subunit leads to indole-3-carbinol tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:668-677. [PMID: 33128319 DOI: 10.1111/tpj.15062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Indole-3-carbinol (I3C), a hydrolysis product of indole-3-methylglucosinolate, is toxic to herbivorous insects and pathogens. In mammals, I3C is extensively studied for its properties in cancer prevention and treatment. Produced in Brassicaceae, I3C reversibly inhibits root elongation in a concentration-dependent manner. This inhibition is partially explained by the antagonistic action of I3C on auxin signaling through TIR1. To further elucidate the mode of action of I3C in plants, we have identified and characterized a novel Arabidopsis mutant tolerant to I3C, ICT1. This mutant was identified following screening of the Full-length cDNA Over-eXpression library (FOX) seed collection for root growth in the presence of exogenous I3C. ICT1 carries the AT2G19750 gene, which encodes an S30 ribosomal protein. Overexpression, but not knockout, of the S30 gene causes tolerance to I3C. The tolerance is specific to I3C, since ICT1 did not exhibit pronounced tolerance to other indole or benzoxazinoid molecules tested. ICT1 maintains I3C-induced antagonism of auxin signaling, indicating that the tolerance is due to an auxin-independent mechanism. Transcript profiling experiments revealed that ICT1 is transcriptionally primed to respond to I3C treatment.
Collapse
Affiliation(s)
- Alin Finkelshtein
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Hala Khamesa
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Luu Anh Tuan
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Manely Rabanim
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Daniel A Chamovitz
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, 69978, Israel
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| |
Collapse
|
16
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JH. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:60482. [PMID: 32924932 DOI: 10.1101/2020.06.26.174334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 05/24/2023] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, United States
| | - Jamie Hd Cate
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
17
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JHD. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:e60482. [PMID: 32924932 PMCID: PMC7550191 DOI: 10.7554/elife.60482] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
| | - Omer Ad
- Department of Chemistry, Yale UniversityNew HavenUnited States
| | - Alanna Schepartz
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
- Environmental Science, Policy and Management, University of California BerkeleyBerkeleyUnited States
| | - Jamie HD Cate
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
18
|
Sakharov PA, Sogorin EA, Agalarov SC, Kolb VA. Modification of the 5' End of mRNA Leader Sequence Alters the Set of Initiation Factors Essential for Initiation of Translation. Mol Biol 2020. [DOI: 10.1134/s0026893320030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Lashkevich KA, Shlyk VI, Kushchenko AS, Gladyshev VN, Alkalaeva EZ, Dmitriev SE. CTELS: A Cell-Free System for the Analysis of Translation Termination Rate. Biomolecules 2020; 10:E911. [PMID: 32560154 PMCID: PMC7356799 DOI: 10.3390/biom10060911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
Translation termination is the final step in protein biosynthesis when the synthesized polypeptide is released from the ribosome. Understanding this complex process is important for treatment of many human disorders caused by nonsense mutations in important genes. Here, we present a new method for the analysis of translation termination rate in cell-free systems, CTELS (for C-terminally extended luciferase-based system). This approach was based on a continuously measured luciferase activity during in vitro translation reaction of two reporter mRNA, one of which encodes a C-terminally extended luciferase. This extension occupies a ribosomal polypeptide tunnel and lets the completely synthesized enzyme be active before translation termination occurs, i.e., when it is still on the ribosome. In contrast, luciferase molecule without the extension emits light only after its release. Comparing the translation dynamics of these two reporters allows visualization of a delay corresponding to the translation termination event. We demonstrated applicability of this approach for investigating the effects of cis- and trans-acting components, including small molecule inhibitors and read-through inducing sequences, on the translation termination rate. With CTELS, we systematically assessed negative effects of decreased 3' UTR length, specifically on termination. We also showed that blasticidin S implements its inhibitory effect on eukaryotic translation system, mostly by affecting elongation, and that an excess of eRF1 termination factor (both the wild-type and a non-catalytic AGQ mutant) can interfere with elongation. Analysis of read-through mechanics with CTELS revealed a transient stalling event at a "leaky" stop codon context, which likely defines the basis of nonsense suppression.
Collapse
Affiliation(s)
- Kseniya A. Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
| | - Valeriya I. Shlyk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
- Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Artem S. Kushchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Elena Z. Alkalaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (K.A.L.); (V.I.S.); (A.S.K.)
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
20
|
Waltz F, Corre N, Hashem Y, Giegé P. Specificities of the plant mitochondrial translation apparatus. Mitochondrion 2020; 53:30-37. [PMID: 32334144 DOI: 10.1016/j.mito.2020.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria are endosymbiotic organelles responsible for energy production in most eukaryotic cells. They host a genome and a fully functional gene expression machinery. In plants this machinery involves hundreds of pentatricopeptide repeat (PPR) proteins. Translation, the final step of mitochondrial gene expression is performed by mitochondrial ribosomes (mitoribosomes). The nature of these molecular machines remained elusive for a very long time. Because of their bacterial origin, it was expected that mitoribosomes would closely resemble bacterial ribosomes. However, recent advances in cryo-electron microscopy have revealed the extraordinary diversity of mitoribosome structure and composition. The plant mitoribosome was characterized for Arabidopsis. In plants, in contrast to other species such as mammals and kinetoplastids where rRNA has been largely reduced, the mitoribosome could be described as a protein/RNA-augmented bacterial ribosome. It has an oversized small subunit formed by expanded ribosomal RNAs and additional protein components when compared to bacterial ribosomes. The same holds true for the large subunit. The small subunit is characterized by a new elongated domain on the head. Among its additional proteins, several PPR proteins are core mitoribosome proteins. They mainly act at the structural level to stabilize and maintain the plant-specific ribosomal RNA expansions but could also be involved in translation initiation. Recent advances in plant mitoribosome composition and structure, its specialization for membrane protein synthesis, translation initiation, the regulation and dynamics of mitochondrial translation are reviewed here and put in perspective with the diversity of mitochondrial translation processes in the green lineage and in the wider context of eukaryote evolution.
Collapse
Affiliation(s)
- Florent Waltz
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 2 rue R. Escarpit, F 33600 Pessac, France
| | - Nicolas Corre
- Institut de biologie de moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, F 67084 Strasbourg, France
| | - Yaser Hashem
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 2 rue R. Escarpit, F 33600 Pessac, France
| | - Philippe Giegé
- Institut de biologie de moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, F 67084 Strasbourg, France.
| |
Collapse
|
21
|
Tomal A, Kwasniak-Owczarek M, Janska H. An Update on Mitochondrial Ribosome Biology: The Plant Mitoribosome in the Spotlight. Cells 2019; 8:E1562. [PMID: 31816993 PMCID: PMC6953067 DOI: 10.3390/cells8121562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Contrary to the widely held belief that mitochondrial ribosomes (mitoribosomes) are highly similar to bacterial ones, recent experimental evidence reveals that mitoribosomes do differ significantly from their bacterial counterparts. This review is focused on plant mitoribosomes, but we also highlight the most striking similarities and differences between the plant and non-plant mitoribosomes. An analysis of the composition and structure of mitoribosomes in trypanosomes, yeast, mammals and plants uncovers numerous organism-specific features. For the plant mitoribosome, the most striking feature is the enormous size of the small subunit compared to the large one. Apart from the new structural information, possible functional peculiarities of different types of mitoribosomes are also discussed. Studies suggest that the protein composition of mitoribosomes is dynamic, especially during development, giving rise to a heterogeneous populations of ribosomes fulfilling specific functions. Moreover, convincing data shows that mitoribosomes interact with components involved in diverse mitochondrial gene expression steps, forming large expressosome-like structures.
Collapse
Affiliation(s)
| | | | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.T.); (M.K.-O.)
| |
Collapse
|
22
|
Seligmann H, Warthi G. Chimeric Translation for Mitochondrial Peptides: Regular and Expanded Codons. Comput Struct Biotechnol J 2019; 17:1195-1202. [PMID: 31534643 PMCID: PMC6742854 DOI: 10.1016/j.csbj.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Frameshifting protein translation occasionally results from insertion of amino acids at isolated mono- or dinucleotide-expanded codons by tRNAs with expanded anticodons. Previous analyses of two different types of human mitochondrial MS proteomic data (Fisher and Waters technologies) detect peptides entirely corresponding to expanded codon translation. Here, these proteomic data are reanalyzed searching for peptides consisting of at least eight consecutive amino acids translated according to regular tricodons, and at least eight adjacent consecutive amino acids translated according to expanded codons. Both datasets include chimerically translated peptides (mono- and dinucleotide expansions, 42 and 37, respectively). The regular tricodon-encoded part of some chimeric peptides corresponds to standard human mitochondrial proteins (mono- and dinucleotide expansions, six (AT6, CytB, ND1, 2xND2, ND5) and one (ND1), respectively). Chimeric translation probably increases the diversity of mitogenome-encoded proteins, putatively producing functional proteins. These might result from translation by tRNAs with expanded anticodons, or from regular tricodon translation of RNAs where transcription/posttranscriptional edition systematically deleted mono- or dinucleotides after each trinucleotide. The pairwise matched combination of adjacent peptide parts translated from regular and expanded codons strengthens the hypothesis that translation of stretches of consecutive expanded codons occurs. Results indicate statistical translation producing distributions of alternative proteins. Genetic engineering should account for potential unexpected, unwanted secondary products.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel
| | - Ganesh Warthi
- Aix-Marseille University, IRD, VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| |
Collapse
|
23
|
Larsen KP, Choi J, Prabhakar A, Puglisi EV, Puglisi JD. Relating Structure and Dynamics in RNA Biology. Cold Spring Harb Perspect Biol 2019; 11:11/7/a032474. [PMID: 31262948 DOI: 10.1101/cshperspect.a032474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in structural biology methods have enabled a surge in the number of RNA and RNA-protein assembly structures available at atomic or near-atomic resolution. These complexes are often trapped in discrete conformational states that exist along a mechanistic pathway. Single-molecule fluorescence methods provide temporal resolution to elucidate the dynamic mechanisms of processes involving complex RNA and RNA-protein assemblies, but interpretation of such data often requires previous structural knowledge. Here we highlight how single-molecule tools can directly complement structural approaches for two processes--translation and reverse transcription-to provide a dynamic view of molecular function.
Collapse
Affiliation(s)
- Kevin P Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Biophysics Program, Stanford University, Stanford, California 94305
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Department of Applied Physics, Stanford University, Stanford, California 94305
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Biophysics Program, Stanford University, Stanford, California 94305
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
24
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
25
|
Li Z, Ge X, Zhang Y, Zheng L, Sanyal S, Gao N. Cryo-EM structure of Mycobacterium smegmatis ribosome reveals two unidentified ribosomal proteins close to the functional centers. Protein Cell 2019; 9:384-388. [PMID: 28875450 PMCID: PMC5876184 DOI: 10.1007/s13238-017-0456-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Zhifei Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box-596, Uppsala, Sweden
| | - Yixiao Zhang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lvqin Zheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box-596, Uppsala, Sweden.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
Abstract
In the past 4 years, because of the advent of new cameras, many ribosome structures have been solved by cryoelectron microscopy (cryo-EM) at high, often near-atomic resolution, bringing new mechanistic insights into the processes of translation initiation, peptide elongation, termination, and recycling. Thus, cryo-EM has joined X-ray crystallography as a powerful technique in structural studies of translation. The significance of this new development is that structures of ribosomes in complex with their functional binding partners can now be determined to high resolution in multiple states as they perform their work. The aim of this article is to provide an overview of these new studies and assess the contributions they have made toward an understanding of translation and translational control.
Collapse
|
27
|
Sheridan CM, Garcia VE, Ahyong V, DeRisi JL. The Plasmodium falciparum cytoplasmic translation apparatus: a promising therapeutic target not yet exploited by clinically approved anti-malarials. Malar J 2018; 17:465. [PMID: 30541569 PMCID: PMC6292128 DOI: 10.1186/s12936-018-2616-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The continued spectre of resistance to existing anti-malarials necessitates the pursuit of novel targets and mechanisms of action for drug development. One class of promising targets consists of the 80S ribosome and its associated components comprising the parasite translational apparatus. Development of translation-targeting therapeutics requires a greater understanding of protein synthesis and its regulation in the malaria parasite. Research in this area has been limited by the lack of appropriate experimental methods, particularly a direct measure of parasite translation. METHODS An in vitro method directly measuring translation in whole-cell extracts from the malaria parasite Plasmodium falciparum, the PfIVT assay, and a historically-utilized indirect measure of translation, S35-radiolabel incorporation, were compared utilizing a large panel of known translation inhibitors as well as anti-malarial drugs. RESULTS Here, an extensive pharmacologic assessment of the PfIVT assay is presented, using a wide range of known inhibitors demonstrating its utility for studying activity of both ribosomal and non-ribosomal elements directly involved in translation. Further, the superiority of this assay over a historically utilized indirect measure of translation, S35-radiolabel incorporation, is demonstrated. Additionally, the PfIVT assay is utilized to investigate a panel of clinically approved anti-malarial drugs, many with unknown or unclear mechanisms of action, and show that none inhibit translation, reaffirming Plasmodium translation to be a viable alternative drug target. Within this set, mefloquine is unambiguously found to lack translation inhibition activity, despite having been recently mischaracterized as a ribosomal inhibitor. CONCLUSIONS This work exploits a direct and reproducible assay for measuring P. falciparum translation, demonstrating its value in the continued study of protein synthesis in malaria and its inhibition as a drug target.
Collapse
Affiliation(s)
- Christine Moore Sheridan
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Valentina E Garcia
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Vida Ahyong
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
28
|
Calamita P, Gatti G, Miluzio A, Scagliola A, Biffo S. Translating the Game: Ribosomes as Active Players. Front Genet 2018; 9:533. [PMID: 30498507 PMCID: PMC6249331 DOI: 10.3389/fgene.2018.00533] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Ribosomes have been long considered as executors of the translational program. The fact that ribosomes can control the translation of specific mRNAs or entire cellular programs is often neglected. Ribosomopathies, inherited diseases with mutations in ribosomal factors, show tissue specific defects and cancer predisposition. Studies of ribosomopathies have paved the way to the concept that ribosomes may control translation of specific mRNAs. Studies in Drosophila and mice support the existence of heterogeneous ribosomes that differentially translate mRNAs to coordinate cellular programs. Recent studies have now shown that ribosomal activity is not only a critical regulator of growth but also of metabolism. For instance, glycolysis and mitochondrial function have been found to be affected by ribosomal availability. Also, ATP levels drop in models of ribosomopathies. We discuss findings highlighting the relevance of ribosome heterogeneity in physiological and pathological conditions, as well as the possibility that in rate-limiting situations, ribosomes may favor some translational programs. We discuss the effects of ribosome heterogeneity on cellular metabolism, tumorigenesis and aging. We speculate a scenario in which ribosomes are not only executors of a metabolic program but act as modulators.
Collapse
Affiliation(s)
- Piera Calamita
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Guido Gatti
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Annarita Miluzio
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Alessandra Scagliola
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
29
|
Steitz TA, Moore PB. Perspectives on the ribosome. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0537. [PMID: 28138074 DOI: 10.1098/rstb.2016.0537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/18/2022] Open
Affiliation(s)
- Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Peter B Moore
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA
| |
Collapse
|
30
|
Ray S, Widom JR, Walter NG. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 2018; 118:4120-4155. [PMID: 29363314 PMCID: PMC5918467 DOI: 10.1021/acs.chemrev.7b00519] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.
Collapse
Affiliation(s)
| | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position. Molecules 2017; 22:molecules22091427. [PMID: 28850078 PMCID: PMC5753802 DOI: 10.3390/molecules22091427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5′- and 3′-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix.
Collapse
|