1
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Kleijn IT, Martínez-Segura A, Bertaux F, Saint M, Kramer H, Shahrezaei V, Marguerat S. Growth-rate-dependent and nutrient-specific gene expression resource allocation in fission yeast. Life Sci Alliance 2022; 5:e202101223. [PMID: 35228260 PMCID: PMC8886410 DOI: 10.26508/lsa.202101223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Cellular resources are limited and their relative allocation to gene expression programmes determines physiological states and global properties such as the growth rate. Here, we determined the importance of the growth rate in explaining relative changes in protein and mRNA levels in the simple eukaryote Schizosaccharomyces pombe grown on non-limiting nitrogen sources. Although expression of half of fission yeast genes was significantly correlated with the growth rate, this came alongside wide-spread nutrient-specific regulation. Proteome and transcriptome often showed coordinated regulation but with notable exceptions, such as metabolic enzymes. Genes positively correlated with growth rate participated in every level of protein production apart from RNA polymerase II-dependent transcription. Negatively correlated genes belonged mainly to the environmental stress response programme. Critically, metabolic enzymes, which represent ∼55-70% of the proteome by mass, showed mostly condition-specific regulation. In summary, we provide a rich account of resource allocation to gene expression in a simple eukaryote, advancing our basic understanding of the interplay between growth-rate-dependent and nutrient-specific gene expression.
Collapse
Affiliation(s)
- Istvan T Kleijn
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Amalia Martínez-Segura
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - François Bertaux
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Malika Saint
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Holger Kramer
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Samuel Marguerat
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
3
|
Functional characterization of 5' UTR cis-acting sequence elements that modulate translational efficiency in Plasmodium falciparum and humans. Malar J 2022; 21:15. [PMID: 34991611 PMCID: PMC8739713 DOI: 10.1186/s12936-021-04024-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background The eukaryotic parasite Plasmodium falciparum causes millions of malarial infections annually while drug resistance to common anti-malarials is further confounding eradication efforts. Translation is an attractive therapeutic target that will benefit from a deeper mechanistic understanding. As the rate limiting step of translation, initiation is a primary driver of translational efficiency. It is a complex process regulated by both cis and trans acting factors, providing numerous potential targets. Relative to model organisms and humans, P. falciparum mRNAs feature unusual 5′ untranslated regions suggesting cis-acting sequence complexity in this parasite may act to tune levels of protein synthesis through their effects on translational efficiency. Methods Here, in vitro translation is deployed to compare the role of cis-acting regulatory sequences in P. falciparum and humans. Using parasite mRNAs with high or low translational efficiency, the presence, position, and termination status of upstream “AUG”s, in addition to the base composition of the 5′ untranslated regions, were characterized. Results The density of upstream “AUG”s differed significantly among the most and least efficiently translated genes in P. falciparum, as did the average “GC” content of the 5′ untranslated regions. Using exemplars from highly translated and poorly translated mRNAs, multiple putative upstream elements were interrogated for impact on translational efficiency. Upstream “AUG”s were found to repress translation to varying degrees, depending on their position and context, while combinations of upstream “AUG”s had non-additive effects. The base composition of the 5′ untranslated regions also impacted translation, but to a lesser degree. Surprisingly, the effects of cis-acting sequences were remarkably conserved between P. falciparum and humans. Conclusions While translational regulation is inherently complex, this work contributes toward a more comprehensive understanding of parasite and human translational regulation by examining the impact of discrete cis-acting features, acting alone or in context. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04024-2.
Collapse
|
4
|
Zhao Z, Chu W, Zheng Y, Wang C, Yang Y, Xu T, Yang X, Zhang W, Ding X, Li G, Zhang H, Zhou J, Ye J, Wu H, Song X, Wu Y. Cytoplasmic eIF6 promotes OSCC malignant behavior through AKT pathway. Cell Commun Signal 2021; 19:121. [PMID: 34922580 PMCID: PMC8684100 DOI: 10.1186/s12964-021-00800-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/30/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Eukaryotic translation initiation factor 6 (eIF6), also known as integrin β4 binding protein, is involved in ribosome formation and mRNA translation, acting as an anti-association factor. It is also essential for the growth and reproduction of cells, including tumor cells. Yet, its role in oral squamous cell carcinoma (OSCC) remains unclear. METHODS The expression characteristics of eIF6 in 233 samples were comprehensively analyzed by immunohistochemical staining (IHC). Effects of eIF6 over-expression and knockdown on cell proliferation, migration and invasion were determined by CCK-8, wound healing and Transwell assays. Western blot, immunofluorescence (IF) and co-immunoprecipitation (co-IP) were performed for mechanical verification. RESULTS We found that cytoplasmic eIF6 was abnormally highly expressed in OSCC tissues, and its expression was associated with tumor size and the clinical grade. Amplification of eIF6 promoted the growth, migration and invasion capabilities of OSCC cell lines in vitro and tumor growth in vivo. Through Western blot analysis, we further discovered that eIF6 significantly promotes epithelial-mesenchymal transformation (EMT) in OSCC cells, while depletion of eIF6 can reverse this process. Mechanistically, eIF6 promoted tumor progression by activating the AKT signaling pathway. By performing co-immunoprecipitation, we discovered a direct interaction between endogenous eIF6 and AKT protein in the cytoplasm. CONCLUSION These results demonstrated that eIF6 could be a new therapeutic target in OSCC, thus providing a new basis for the prognosis of OSCC patients in the future. Video abstract.
Collapse
Affiliation(s)
- Zechen Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Weiming Chu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Stomatology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu People’s Republic of China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai, 200011 China
| | - Chao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Yuemei Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Teng Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Xueming Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Stomatology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Gang Li
- Department of Stomatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No.1 Peoples Hospital, Xuzhou, Jiangsu People’s Republic of China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu People’s Republic of China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Heming Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| |
Collapse
|
5
|
Llácer JL, Hussain T, Dong J, Villamayor L, Gordiyenko Y, Hinnebusch AG. Large-scale movement of eIF3 domains during translation initiation modulate start codon selection. Nucleic Acids Res 2021; 49:11491-11511. [PMID: 34648019 PMCID: PMC8599844 DOI: 10.1093/nar/gkab908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic initiation factor 3 (eIF3) complex is involved in every step of translation initiation, but there is limited understanding of its molecular functions. Here, we present a single particle electron cryomicroscopy (cryo-EM) reconstruction of yeast 48S ribosomal preinitiation complex (PIC) in an open conformation conducive to scanning, with core subunit eIF3b bound on the 40S interface near the decoding center in contact with the ternary complex eIF2·GTP·initiator tRNA. eIF3b is relocated together with eIF3i from their solvent interface locations observed in other PIC structures, with eIF3i lacking 40S contacts. Re-processing of micrographs of our previous 48S PIC in a closed state also suggests relocation of the entire eIF3b-3i-3g-3a-Cter module during the course of initiation. Genetic analysis indicates that high fidelity initiation depends on eIF3b interactions at the 40S subunit interface that promote the closed PIC conformation, or facilitate the relocation of eIF3b/eIF3i to the solvent interface, on start codon selection.
Collapse
Affiliation(s)
- Jose L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain.,Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Tanweer Hussain
- Molecular Reproduction, Development and Genetics (MRDG), Biological Sciences Building, Indian Institute of Science, Bangalore 560012, India
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Villamayor
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain
| | | | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Schramm F, Borst A, Linne U, Soppa J. Elucidation of the Translation Initiation Factor Interaction Network of Haloferax volcanii Reveals Coupling of Transcription and Translation in Haloarchaea. Front Microbiol 2021; 12:742806. [PMID: 34764944 PMCID: PMC8576121 DOI: 10.3389/fmicb.2021.742806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023] Open
Abstract
Translation is an important step in gene expression. Initiation of translation is rate-limiting, and it is phylogenetically more diverse than elongation or termination. Bacteria contain only three initiation factors. In stark contrast, eukaryotes contain more than 10 (subunits of) initiation factors (eIFs). The genomes of archaea contain many genes that are annotated to encode archaeal homologs of eukaryotic initiation factors (aIFs). However, experimental characterization of aIFs is scarce and mostly restricted to very few species. To broaden the view, the protein-protein interaction network of aIFs in the halophilic archaeon Haloferax volcanii has been characterized. To this end, tagged versions of 14 aIFs were overproduced, affinity isolated, and the co-isolated binding partners were identified by peptide mass fingerprinting and MS/MS analyses. The aIF-aIF interaction network was resolved, and it was found to contain two interaction hubs, (1) the universally conserved factor aIF5B, and (2) a protein that has been annotated as the enzyme ribose-1,5-bisphosphate isomerase, which we propose to rename to aIF2Bα. Affinity isolation of aIFs also led to the co-isolation of many ribosomal proteins, but also transcription factors and subunits of the RNA polymerase (Rpo). To analyze a possible coupling of transcription and translation, seven tagged Rpo subunits were overproduced, affinity isolated, and co-isolated proteins were identified. The Rpo interaction network contained many transcription factors, but also many ribosomal proteins as well as the initiation factors aIF5B and aIF2Bα. These results showed that transcription and translation are coupled in haloarchaea, like in Escherichia coli. It seems that aIF5B and aIF2Bα are not only interaction hubs in the translation initiation network, but also key players in the transcription-translation coupling.
Collapse
Affiliation(s)
- Franziska Schramm
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Andreas Borst
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Phillipps University Marburg, Marburg, Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| |
Collapse
|
7
|
Contu L, Balistreri G, Domanski M, Uldry AC, Mühlemann O. Characterisation of the Semliki Forest Virus-host cell interactome reveals the viral capsid protein as an inhibitor of nonsense-mediated mRNA decay. PLoS Pathog 2021; 17:e1009603. [PMID: 34019569 PMCID: PMC8174725 DOI: 10.1371/journal.ppat.1009603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/03/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
The positive-sense, single-stranded RNA alphaviruses pose a potential epidemic threat. Understanding the complex interactions between the viral and the host cell proteins is crucial for elucidating the mechanisms underlying successful virus replication strategies and for developing specific antiviral interventions. Here we present the first comprehensive protein-protein interaction map between the proteins of Semliki Forest Virus (SFV), a mosquito-borne member of the alphaviruses, and host cell proteins. Among the many identified cellular interactors of SFV proteins, the enrichment of factors involved in translation and nonsense-mediated mRNA decay (NMD) was striking, reflecting the virus' hijacking of the translation machinery and indicating viral countermeasures for escaping NMD by inhibiting NMD at later time points during the infectious cycle. In addition to observing a general inhibition of NMD about 4 hours post infection, we also demonstrate that transient expression of the SFV capsid protein is sufficient to inhibit NMD in cells, suggesting that the massive production of capsid protein during the SFV reproduction cycle is responsible for NMD inhibition.
Collapse
Affiliation(s)
- Lara Contu
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Giuseppe Balistreri
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Lu Y, Yu S, Wang G, Ma Z, Fu X, Cao Y, Li Q, Xu Z. Elevation of EIF4G1 promotes non-small cell lung cancer progression by activating mTOR signalling. J Cell Mol Med 2021; 25:2994-3005. [PMID: 33523588 PMCID: PMC7957198 DOI: 10.1111/jcmm.16340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1), as the key component of the transcription initiation factor complex EIF4F, is significantly upregulated in multiple solid tumours, including lung cancer. However, the function and mechanism of EIF4G1 in the regulation of non‐small‐cell lung cancer (NSCLC) remain unclear. Here, using the clinical samples and the comprehensive survival analysis platforms Kaplan‐Meier plotter, we observed aberrant upregulation of EIF4G1 in NSCLC tissues; furthermore, high expression of EIF4G1 showed association with low differentiation of lung cancer cells and poor overall survival in NSCLC patients. Non‐small‐cell lung cancer cell line A549 and H1703 stably infected with EIF4G1 shRNA were used to determine the function of EIF4G1 in regulating cell proliferation and tumorigenesis in vitro and in vivo. The results demonstrated that EIF4G1 promoted the G1/S transition of the cell cycle and tumour cell proliferation in non‐small cell lung cancer. Mechanistically, EIF4G1 was found to regulate the expression and phosphorylation of mTOR (Ser2448), which mediates the tumorigenesis‐promoting function of EIF4G1. The inhibition of mTOR attenuated the EIF4G1‐induced development and progression of tumours. These findings demonstrated that EIF4G1 is a new potential molecular target for the clinical treatment of non‐small cell lung cancer.
Collapse
Affiliation(s)
- Ying Lu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Yu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuan Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuelian Fu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yueyu Cao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinchuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zengguang Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Brown NP, Vergara AM, Whelan AB, Guerra P, Bolger TA. Medulloblastoma-associated mutations in the DEAD-box RNA helicase DDX3X/DED1 cause specific defects in translation. J Biol Chem 2021; 296:100296. [PMID: 33460649 PMCID: PMC7949108 DOI: 10.1016/j.jbc.2021.100296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
Medulloblastoma is the most common pediatric brain cancer, and sequencing studies identified frequent mutations in DDX3X, a DEAD-box RNA helicase primarily implicated in translation. Forty-two different sites were identified, suggesting that the functional effects of the mutations are complex. To investigate how these mutations are affecting DDX3X cellular function, we constructed a full set of equivalent mutant alleles in DED1, the Saccharomyces cerevisiae ortholog of DDX3X, and characterized their effects in vivo and in vitro. Most of the medulloblastoma-associated mutants in DDX3X/DED1 (ded1-mam) showed substantial growth defects, indicating that functional effects are conserved in yeast. Further, while translation was affected in some mutants, translation defects affecting bulk mRNA were neither consistent nor correlated with the growth phenotypes. Likewise, increased formation of stress granules in ded1-mam mutants was common but did not correspond to the severity of the mutants' growth defects. In contrast, defects in translating mRNAs containing secondary structure in their 5' untranslated regions (UTRs) were found in almost all ded1-mam mutants and correlated well with growth phenotypes. We thus conclude that these specific translation defects, rather than generalized effects on translation, are responsible for the observed cellular phenotypes and likely contribute to DDX3X-mutant medulloblastoma. Examination of ATPase activity and RNA binding of recombinant mutant proteins also did not reveal a consistent defect, indicating that the translation defects are derived from multiple enzymatic deficiencies. This work suggests that future studies into medulloblastoma pathology should focus on this specific translation defect, while taking into account the wide spectrum of DDX3X mutations.
Collapse
Affiliation(s)
- Nicolette P Brown
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Ashley M Vergara
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Alisha B Whelan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Paolo Guerra
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Timothy A Bolger
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
10
|
Despons L, Martin F. How Many Messenger RNAs Can Be Translated by the START Mechanism? Int J Mol Sci 2020; 21:ijms21218373. [PMID: 33171614 PMCID: PMC7664666 DOI: 10.3390/ijms21218373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022] Open
Abstract
Translation initiation is a key step in the protein synthesis stage of the gene expression pathway of all living cells. In this important process, ribosomes have to accurately find the AUG start codon in order to ensure the integrity of the proteome. “Structure Assisted RNA Translation”, or “START”, has been proposed to use stable secondary structures located in the coding sequence to augment start site selection by steric hindrance of the progression of pre-initiation complex on messenger RNA. This implies that such structures have to be located downstream and at on optimal distance from the AUG start codon (i.e., downstream nucleotide +16). In order to assess the importance of the START mechanism in the overall mRNA translation process, we developed a bioinformatic tool to screen coding sequences for such stable structures in a 50 nucleotide-long window spanning the nucleotides from +16 to +65. We screened eight bacterial genomes and six eukaryotic genomes. We found stable structures in 0.6–2.5% of eukaryotic coding sequences. Among these, approximately half of them were structures predicted to form G-quadruplex structures. In humans, we selected 747 structures. In bacteria, the coding sequences from Gram-positive bacteria contained 2.6–4.2% stable structures, whereas the structures were less abundant in Gram-negative bacteria (0.2–2.7%). In contrast to eukaryotes, putative G-quadruplex structures are very rare in the coding sequence of bacteria. Altogether, our study reveals that the START mechanism seems to be an ancient strategy to facilitate the start codon recognition that is used in different kingdoms of life.
Collapse
|
11
|
Hernández G, García A, Sonenberg N, Lasko P. Unorthodox Mechanisms to Initiate Translation Open Novel Paths for Gene Expression. J Mol Biol 2020; 432:166702. [PMID: 33166539 DOI: 10.1016/j.jmb.2020.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Translation in eukaryotes is dependent on the activity of translation initiation factor (eIF) 4G family of proteins, a scaffold protein that, during the initiation step, coordinates the activity of other eIFs to recruit the 40S ribosomal subunit to the mRNA. Three decades of research on protein synthesis and its regulation has provided a wealth of evidence supporting the crucial role of cap-dependent translation initiation, which involves eIF4G. However, the recent discovery of a surprising variety of alternative mechanisms to initiate translation in the absence of eIF4G has stirred the orthodox view of how protein synthesis is performed. These mechanisms involve novel interactions among known eIFs, or between known eIFs and other proteins not previously linked to translation. Thus, a new picture is emerging in which the unorthodox translation initiation complexes contribute to the diversity of mechanisms that regulate gene expression in eukaryotes.
Collapse
Affiliation(s)
- Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Ave., Tlalpan, 14080 Mexico City, Mexico.
| | - Alejandra García
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Ave., Tlalpan, 14080 Mexico City, Mexico
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Paul Lasko
- Department of Biology, McGill University, Montreal, Québec, Canada; Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
12
|
Grad-cryo-EM: Tool to Isolate Translation Initiation Complexes from Rabbit Reticulocyte Lysate Suitable for Structural Studies. Methods Mol Biol 2020. [PMID: 32006323 DOI: 10.1007/978-1-0716-0278-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Since its development, single-particle cryogenic electron microscopy (cryo-EM) has played a central role in the study at medium resolution of both bacterial and eukaryotic ribosomal complexes. With the advent of the direct electron detectors and new processing software which allow obtaining structures at atomic resolution, formerly obtained only by X-ray crystallography, cryo-EM has become the method of choice for the structural analysis of the translation machinery. In most of the cases, the ribosomal complexes at different stages of the translation process are assembled in vitro from purified components, which limit the analysis to previously well-characterized complexes with known factors composition. The initiation phase of the protein synthesis is a very dynamic process during which several proteins interact with the translation apparatus leading to the formation of a chronological series of initiation complexes (ICs). Here we describe a method to isolate ICs assembled on natural in vitro transcribed mRNA directly from rabbit reticulocyte lysate (RRL) by sucrose density gradient centrifugation . The Grad-cryo-EM approach allows investigating structures and composition of intermediate ribosomal complexes prepared in near-native condition by cryo-EM and mass spectrometry analyses. This is a powerful approach, which could be used to study translation initiation of any mRNAs, including IRES containing ones, and which could be adapted to different cell extracts.
Collapse
|
13
|
Mishra RK, Datey A, Hussain T. mRNA Recruiting eIF4 Factors Involved in Protein Synthesis and Its Regulation. Biochemistry 2019; 59:34-46. [DOI: 10.1021/acs.biochem.9b00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rishi Kumar Mishra
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Ayushi Datey
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Acosta-Reyes F, Neupane R, Frank J, Fernández IS. The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. EMBO J 2019; 38:e102226. [PMID: 31609474 PMCID: PMC6826211 DOI: 10.15252/embj.2019102226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
Colony collapse disorder (CCD) is a multi-faceted syndrome decimating bee populations worldwide, and a group of viruses of the widely distributed Dicistroviridae family have been identified as a causing agent of CCD. This family of viruses employs non-coding RNA sequences, called internal ribosomal entry sites (IRESs), to precisely exploit the host machinery for viral protein production. Using single-particle cryo-electron microscopy (cryo-EM), we have characterized how the IRES of Israeli acute paralysis virus (IAPV) intergenic region captures and redirects translating ribosomes toward viral RNA messages. We reconstituted two in vitro reactions targeting a pre-translocation and a post-translocation state of the IAPV-IRES in the ribosome, allowing us to identify six structures using image processing classification methods. From these, we reconstructed the trajectory of IAPV-IRES from the early small subunit recruitment to the final post-translocated state in the ribosome. An early commitment of IRES/ribosome complexes for global pre-translocation mimicry explains the high efficiency observed for this IRES. Efforts directed toward fighting CCD by targeting the IAPV-IRES using RNA-interference technology are underway, and the structural framework presented here may assist in further refining these approaches.
Collapse
Affiliation(s)
- Francisco Acosta-Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ritam Neupane
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Janapala Y, Preiss T, Shirokikh NE. Control of Translation at the Initiation Phase During Glucose Starvation in Yeast. Int J Mol Sci 2019; 20:E4043. [PMID: 31430885 PMCID: PMC6720308 DOI: 10.3390/ijms20164043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Glucose is one of the most important sources of carbon across all life. Glucose starvation is a key stress relevant to all eukaryotic cells. Glucose starvation responses have important implications in diseases, such as diabetes and cancer. In yeast, glucose starvation causes rapid and dramatic effects on the synthesis of proteins (mRNA translation). Response to glucose deficiency targets the initiation phase of translation by different mechanisms and with diverse dynamics. Concomitantly, translationally repressed mRNAs and components of the protein synthesis machinery may enter a variety of cytoplasmic foci, which also form with variable kinetics and may store or degrade mRNA. Much progress has been made in understanding these processes in the last decade, including with the use of high-throughput/omics methods of RNA and RNA:protein detection. This review dissects the current knowledge of yeast reactions to glucose starvation systematized by the stage of translation initiation, with the focus on rapid responses. We provide parallels to mechanisms found in higher eukaryotes, such as metazoans, for the most critical responses, and point out major remaining gaps in knowledge and possible future directions of research on translational responses to glucose starvation.
Collapse
Affiliation(s)
- Yoshika Janapala
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
16
|
Zamurrad S, Hatch HAM, Drelon C, Belalcazar HM, Secombe J. A Drosophila Model of Intellectual Disability Caused by Mutations in the Histone Demethylase KDM5. Cell Rep 2019; 22:2359-2369. [PMID: 29490272 DOI: 10.1016/j.celrep.2018.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 10/17/2022] Open
Abstract
Mutations in KDM5 family histone demethylases cause intellectual disability in humans. However, the molecular mechanisms linking KDM5-regulated transcription and cognition remain unknown. Here, we establish Drosophila as a model to understand this connection by generating a fly strain harboring an allele analogous to a disease-causing missense mutation in human KDM5C (kdm5A512P). Transcriptome analysis of kdm5A512P flies revealed a striking downregulation of genes required for ribosomal assembly and function and a concomitant reduction in translation. kdm5A512P flies also showed impaired learning and/or memory. Significantly, the behavioral and transcriptional changes in kdm5A512P flies were similar to those specifically lacking demethylase activity. These data suggest that the primary defect of the KDM5A512P mutation is a loss of histone demethylase activity and reveal an unexpected role for this enzymatic function in gene activation. Because translation is critical for neuronal function, we propose that this defect contributes to the cognitive defects of kdm5A512P flies.
Collapse
Affiliation(s)
- Sumaira Zamurrad
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Hayden A M Hatch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Coralie Drelon
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| |
Collapse
|
17
|
Major structural rearrangements of the canonical eukaryotic translation initiation complex. Curr Opin Struct Biol 2018; 53:151-158. [DOI: 10.1016/j.sbi.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
|
18
|
Llácer JL, Hussain T, Saini AK, Nanda JS, Kaur S, Gordiyenko Y, Kumar R, Hinnebusch AG, Lorsch JR, Ramakrishnan V. Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. eLife 2018; 7:e39273. [PMID: 30475211 PMCID: PMC6298780 DOI: 10.7554/elife.39273] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic translation initiation, AUG recognition of the mRNA requires accommodation of Met-tRNAi in a 'PIN' state, which is antagonized by the factor eIF1. eIF5 is a GTPase activating protein (GAP) of eIF2 that additionally promotes stringent AUG selection, but the molecular basis of its dual function was unknown. We present a cryo-electron microscopy (cryo-EM) reconstruction of a yeast 48S pre-initiation complex (PIC), at an overall resolution of 3.0 Å, featuring the N-terminal domain (NTD) of eIF5 bound to the 40S subunit at the location vacated by eIF1. eIF5 interacts with and allows a more accommodated orientation of Met-tRNAi. Substitutions of eIF5 residues involved in the eIF5-NTD/tRNAi interaction influenced initiation at near-cognate UUG codonsin vivo, and the closed/open PIC conformation in vitro, consistent with direct stabilization of the codon:anticodon duplex by the wild-type eIF5-NTD. The present structure reveals the basis for a key role of eIF5 in start-codon selection.
Collapse
Affiliation(s)
- Jose Luis Llácer
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Instituto de Biomedicina de Valencia (IBV-CSIC)ValenciaSpain
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Adesh K Saini
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | - Jagpreet Singh Nanda
- Laboratory on the Mechanism and Regulation of Protein SynthesisEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Sukhvir Kaur
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | | | - Rakesh Kumar
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and DevelopmentEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein SynthesisEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - V Ramakrishnan
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
19
|
Ribosomal flavours: an acquired taste for specific mRNAs? Biochem Soc Trans 2018; 46:1529-1539. [PMID: 30420413 DOI: 10.1042/bst20180160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
The regulation of translation is critical in almost every aspect of gene expression. Nonetheless, the ribosome is historically viewed as a passive player in this process. However, evidence is accumulating to suggest that variations in the ribosome can have an important influence on which mRNAs are translated. Scope for variation is provided via multiple avenues, including heterogeneity at the level of both ribosomal proteins and ribosomal RNAs and their covalent modifications. Together, these variations provide the potential for hundreds, if not thousands, of flavours of ribosome, each of which could have idiosyncratic preferences for the translation of certain messenger RNAs. Indeed, perturbations to this heterogeneity appear to affect specific subsets of transcripts and manifest as cell-type-specific diseases. This review provides a historical perspective of the ribosomal code hypothesis, before outlining the various sources of heterogeneity, their regulation and functional consequences for the cell.
Collapse
|
20
|
Steitz TA, Moore PB. Perspectives on the ribosome. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0537. [PMID: 28138074 DOI: 10.1098/rstb.2016.0537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/18/2022] Open
Affiliation(s)
- Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Peter B Moore
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA
| |
Collapse
|
21
|
Shirokikh NE, Preiss T. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1473. [PMID: 29624880 DOI: 10.1002/wrna.1473] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Gene expression universally relies on protein synthesis, where ribosomes recognize and decode the messenger RNA template by cycling through translation initiation, elongation, and termination phases. All aspects of translation have been studied for decades using the tools of biochemistry and molecular biology available at the time. Here, we focus on the mechanism of translation initiation in eukaryotes, which is remarkably more complex than prokaryotic initiation and is the target of multiple types of regulatory intervention. The "consensus" model, featuring cap-dependent ribosome entry and scanning of mRNA leader sequences, represents the predominantly utilized initiation pathway across eukaryotes, although several variations of the model and alternative initiation mechanisms are also known. Recent advances in structural biology techniques have enabled remarkable molecular-level insights into the functional states of eukaryotic ribosomes, including a range of ribosomal complexes with different combinations of translation initiation factors that are thought to represent bona fide intermediates of the initiation process. Similarly, high-throughput sequencing-based ribosome profiling or "footprinting" approaches have allowed much progress in understanding the elongation phase of translation, and variants of them are beginning to reveal the remaining mysteries of initiation, as well as aspects of translation termination and ribosomal recycling. A current view on the eukaryotic initiation mechanism is presented here with an emphasis on how recent structural and footprinting results underpin axioms of the consensus model. Along the way, we further outline some contested mechanistic issues and major open questions still to be addressed. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| |
Collapse
|
22
|
de Melo Neto OP, da Costa Lima TDC, Merlo KC, Romão TP, Rocha PO, Assis LA, Nascimento LM, Xavier CC, Rezende AM, Reis CRS, Papadopoulou B. Phosphorylation and interactions associated with the control of the Leishmania Poly-A Binding Protein 1 (PABP1) function during translation initiation. RNA Biol 2018; 15:739-755. [PMID: 29569995 DOI: 10.1080/15476286.2018.1445958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Poly-A Binding Protein (PABP) is a conserved eukaryotic polypeptide involved in many aspects of mRNA metabolism. During translation initiation, PABP interacts with the translation initiation complex eIF4F and enhances the translation of polyadenylated mRNAs. Schematically, most PABPs can be divided into an N-terminal RNA-binding region, a non-conserved linker segment and the C-terminal MLLE domain. In pathogenic Leishmania protozoans, three PABP homologues have been identified, with the first one (PABP1) targeted by phosphorylation and shown to co-immunoprecipitate with an eIF4F-like complex (EIF4E4/EIF4G3) implicated in translation initiation. Here, PABP1 phosphorylation was shown to be linked to logarithmic cell growth, reminiscent of EIF4E4 phosphorylation, and coincides with polysomal association. Phosphorylation targets multiple serine-proline (SP) or threonine-proline (TP) residues within the PABP1 linker region. This is an essential protein, but phosphorylation is not needed for its association with polysomes or cell viability. Mutations which do impair PABP1 polysomal association and are required for viability do not prevent phosphorylation, although further mutations lead to a presumed inactive protein largely lacking phosphorylated isoforms. Co-immunoprecipitation experiments were carried out to investigate PABP1 function further, identifying several novel protein partners and the EIF4E4/EIF4G3 complex, but no other eIF4F-like complex or subunit. A novel, direct interaction between PABP1 and EIF4E4 was also investigated and found to be mediated by the PABP1 MLLE binding to PABP Interacting Motifs (PAM2) within the EIF4E4 N-terminus. The results shown here are consistent with phosphorylation of PABP1 being part of a novel pathway controlling its function and possibly translation in Leishmania.
Collapse
Affiliation(s)
| | | | - Kleison C Merlo
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | - Tatiany P Romão
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Ludmila A Assis
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Camila C Xavier
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | | | - Barbara Papadopoulou
- c CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology , Laval University , Quebec , QC , Canada
| |
Collapse
|
23
|
Zydowicz-Machtel P, Swiatkowska A, Popenda Ł, Gorska A, Ciesiołka J. Variants of the 5'-terminal region of p53 mRNA influence the ribosomal scanning and translation efficiency. Sci Rep 2018; 8:1533. [PMID: 29367734 PMCID: PMC5784139 DOI: 10.1038/s41598-018-20010-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/11/2018] [Indexed: 12/25/2022] Open
Abstract
The p53 protein is one of the major cell cycle regulators. The protein is expressed as at least twelve protein isoforms resulting from the use of alternative promoters, alternative splicing or downstream initiation codons. Importantly, there is growing evidence that translation initiation of p53 mRNA may be regulated by the structure and length of the naturally occurring variants of the 5′-terminal region of p53 mRNA transcripts. Here, several mRNA constructs were synthesized with variable length of the p53 5′-terminal regions and encoding luciferase reporter protein, and their translation was monitored continuously in situ in a rabbit reticulocyte lysate system. Moreover, four additional mRNA constructs were prepared. In two constructs, the structural context of AUG1 initiation codon was altered while in the other two constructs, characteristic hairpin motifs present in the p53 5′-terminal region were changed. Translation of the last two constructs was also performed in the presence of the cap analogue to test the function of the 5′-terminal region in cap-independent translation initiation. Superposition of several structural factors connected with the length of the 5′-terminal region, stable elements of the secondary structure, structural environment of the initiation codon and IRES elements greatly influenced the ribosomal scanning and translation efficiency.
Collapse
Affiliation(s)
- Paulina Zydowicz-Machtel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, 61-614, Poznan, Poland
| | - Agnieszka Gorska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
24
|
Weisser M, Schäfer T, Leibundgut M, Böhringer D, Aylett CHS, Ban N. Structural and Functional Insights into Human Re-initiation Complexes. Mol Cell 2017; 67:447-456.e7. [PMID: 28732596 DOI: 10.1016/j.molcel.2017.06.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/14/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023]
Abstract
After having translated short upstream open reading frames, ribosomes can re-initiate translation on the same mRNA. This process, referred to as re-initiation, controls the translation of a large fraction of mammalian cellular mRNAs, many of which are important in cancer. Key ribosomal binding proteins involved in re-initiation are the eukaryotic translation initiation factor 2D (eIF2D) or the homologous complex of MCT-1/DENR. We determined the structures of these factors bound to the human 40S ribosomal subunit in complex with initiator tRNA positioned on an mRNA start codon in the P-site using a combination of cryoelectron microscopy and X-ray crystallography. The structures, supported by biochemical experiments, reveal how eIF2D emulates the function of several canonical translation initiation factors by using three independent, flexibly connected RNA binding domains to simultaneously monitor codon-anticodon interactions in the ribosomal P-site and position the initiator tRNA.
Collapse
Affiliation(s)
- Melanie Weisser
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Tanja Schäfer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniel Böhringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|