1
|
Rangubpit W, Sungted S, Wong-Ekkabut J, Distaffen HE, Nilsson BL, Dias CL. Pore Formation by Amyloid-like Peptides: Effects of the Nonpolar-Polar Sequence Pattern. ACS Chem Neurosci 2024; 15:3354-3362. [PMID: 39172951 PMCID: PMC11443323 DOI: 10.1021/acschemneuro.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
One of the mechanisms accounting for the toxicity of amyloid peptides in diseases like Alzheimer's and Parkinson's is the formation of pores on the plasma membrane of neurons. Here, we perform unbiased all-atom simulations of the full membrane damaging pathway, which includes adsorption, aggregation, and perforation of the lipid bilayer accounting for pore-like structures. Simulations are performed using four peptides made with the same amino acids. Differences in the nonpolar-polar sequence pattern of these peptides prompt them to adsorb into the membrane with the extended conformations oriented either parallel [peptide labeled F1, Ac-(FKFE)2-NH2], perpendicular (F4, Ac-FFFFKKEE-NH2), or with an intermediate orientation (F2, Ac-FFKKFFEE-NH2, and F3, Ac-FFFKFEKE-NH2) in regard to the membrane surface. At the water-lipid interface, only F1 fully self-assembles into β-sheets, and F2 peptides partially fold into an α-helical structure. The β-sheets of F1 emerge as electrostatic interactions attract neighboring peptides to intermediate distances where nonpolar side chains can interact within the dry core of the bilayer. This complex interplay between electrostatic and nonpolar interactions is not observed for the other peptides. Although β-sheets of F1 peptides are mostly parallel to the membrane, some of their edges penetrate deep inside the bilayer, dragging water molecules with them. This precedes pore formation, which starts with the flow of two water layers through the membrane that expand into a stable cylindrical pore delimited by polar faces of β-sheets spanning both leaflets of the bilayer.
Collapse
Affiliation(s)
- Warin Rangubpit
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Siwaporn Sungted
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Hannah E Distaffen
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Materials Science Program, University of Rochester, Rochester, New York 14627-0166, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
2
|
Richardson JD, Van Lehn RC. Free Energy Analysis of Peptide-Induced Pore Formation in Lipid Membranes by Bridging Atomistic and Coarse-Grained Simulations. J Phys Chem B 2024; 128:8737-8752. [PMID: 39207202 DOI: 10.1021/acs.jpcb.4c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are attractive materials for combating the antimicrobial resistance crisis because they can kill target microbes by directly disrupting cell membranes. Although thousands of AMPs have been discovered, their molecular mechanisms of action are still poorly understood. One broad mechanism for membrane disruption is the formation of membrane-spanning hydrophilic pores which can be stabilized by AMPs. In this study, we use molecular dynamics simulations to investigate the thermodynamics of pore formation in model single-component lipid membranes in the presence of one of three AMPs: aurein 1.2, melittin and magainin 2. To overcome the general challenge of modeling long time scale membrane-related behaviors, including AMP binding, clustering, and pore formation, we develop a generalizable methodology for sampling AMP-induced pore formation. This approach involves the long equilibration of peptides around a pore created with a nucleation collective variable by performing coarse-grained simulations, then backmapping equilibrated AMP-membrane configurations to all-atom resolution. We then perform all-atom simulations to resolve free energy profiles for pore formation while accurately modeling the interplay of lipid-peptide-solvent interactions that dictate pore formation free energies. Using this approach, we quantify free energy barriers for pore formation without direct biases on peptides or whole lipids, allowing us to investigate mechanisms of pore formation for these 3 AMPs that are a consequence of unbiased peptide diffusion and clustering. Further analysis of simulation trajectories then relates variations in pore lining by AMPs, AMP-induced lipid disruptions, and salt bridges between AMPs to the observed pore formation free energies and corresponding mechanisms. This methodology and mechanistic analysis have the potential to generalize beyond the AMPs in this study to improve our understanding of pore formation by AMPs and related antimicrobial materials.
Collapse
Affiliation(s)
- Joshua D Richardson
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Roseli RB, Huang YH, Henriques ST, Kaas Q, Craik DJ. Molecular dynamics simulations support a preference of cyclotide kalata B1 for phosphatidylethanolamine phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184268. [PMID: 38191035 DOI: 10.1016/j.bbamem.2023.184268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Kalata B1 (kB1), a naturally occurring cyclotide has been shown experimentally to bind lipid membranes that contain phosphatidylethanolamine (PE) phospholipids. Here, molecular dynamics simulations were used to explore its interaction with two phospholipids, palmitoyloleoylphosphatidylethanolamine (POPE), palmitoyloleoylphosphatidylcholine (POPC), and a heterogeneous membrane comprising POPC/POPE (90:10), to understand the basis for the selectivity of kB1 towards PE phospholipids. The simulations showed that in the presence of only 10 % POPE lipid, kB1 forms a stable binding complex with membrane bilayers. An ionic interaction between the E7 carboxylate group of kB1 and the ammonium group of PE headgroups consistently initiates binding of kB1 to the membrane. Additionally, stable noncovalent interactions such as hydrogen bonding (E7, T8, V10, G11, T13 and N15), cation-π (W23), and CH-π (W23) interactions between specific residues of kB1 and the lipid membrane play an important role in stabilizing the binding. These findings are consistent with a structure-activity relationship study on kB1 where lysine mutagenesis on the bioactive and hydrophobic faces of the peptide abolished membrane-dependent bioactivities. In summary, our simulations suggest the importance of residue E7 (in the bioactive face) in enabling kB1 to recognize and bind selectively to PE-containing phospholipids bilayers through ionic and hydrogen bonding interactions, and of W23 (in the hydrophobic face) for the association and insertion of kB1 into the lipid bilayer through cation-π and CH-π interactions. Overall, this work enhances our understanding of the molecular basis of the membrane binding and bioactivity of this prototypic cyclotide.
Collapse
Affiliation(s)
- Ras Baizureen Roseli
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
4
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2024:1-40. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
5
|
Ul Haq I, Maryam S, Shyntum DY, Khan TA, Li F. Exploring the frontiers of therapeutic breadth of antifungal peptides: A new avenue in antifungal drugs. J Ind Microbiol Biotechnol 2024; 51:kuae018. [PMID: 38710584 PMCID: PMC11119867 DOI: 10.1093/jimb/kuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The growing prevalence of fungal infections alongside rising resistance to antifungal drugs poses a significant challenge to public health safety. At the close of the 2000s, major pharmaceutical firms began to scale back on antimicrobial research due to repeated setbacks and diminished economic gains, leaving only smaller companies and research labs to pursue new antifungal solutions. Among various natural sources explored for novel antifungal compounds, antifungal peptides (AFPs) emerge as particularly promising. Despite their potential, AFPs receive less focus than their antibacterial counterparts. These peptides have been sourced extensively from nature, including plants, animals, insects, and especially bacteria and fungi. Furthermore, with advancements in recombinant biotechnology and computational biology, AFPs can also be synthesized in lab settings, facilitating peptide production. AFPs are noted for their wide-ranging efficacy, in vitro and in vivo safety, and ability to combat biofilms. They are distinguished by their high specificity, minimal toxicity to cells, and reduced likelihood of resistance development. This review aims to comprehensively cover AFPs, including their sources-both natural and synthetic-their antifungal and biofilm-fighting capabilities in laboratory and real-world settings, their action mechanisms, and the current status of AFP research. ONE-SENTENCE SUMMARY This comprehensive review of AFPs will be helpful for further research in antifungal research.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Divine Y Shyntum
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Taj A Khan
- Division of Infectious Diseases & Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Fan Li
- School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
6
|
Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A. Effects of Nitro-Oxidative Stress on Biomolecules: Part 1-Non-Reactive Molecular Dynamics Simulations. Biomolecules 2023; 13:1371. [PMID: 37759771 PMCID: PMC10527456 DOI: 10.3390/biom13091371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Tayebeh Ghorbi
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Parisa Shali
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Agriculture, Ghent University, 9000 Ghent, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
7
|
Yadav A, Kelich P, Kallmyer N, Reuel NF, Vuković L. Characterizing the Interactions of Cell-Membrane-Disrupting Peptides with Lipid-Functionalized Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24084-24096. [PMID: 37184257 PMCID: PMC10310319 DOI: 10.1021/acsami.3c01217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Lipid-functionalized single-walled carbon nanotubes (SWNTs) have garnered significant interest for their potential use in a wide range of biomedical applications. In this work, we used molecular dynamics simulations to study the equilibrium properties of SWNTs surrounded by the phosphatidylcholine (POPC) corona phase and their interactions with three cell membrane disruptor peptides: colistin, TAT peptide, and crotamine-derived peptide. Our results show that SWNTs favor asymmetrical positioning within the POPC corona, so that one side of the SWNT, covered by the thinnest part of the corona, comes in contact with charged and polar functional groups of POPC and water. We also observed that colistin and TAT insert deeply into the POPC corona, while crotamine-derived peptide only adsorbs to the corona surface. In separate simulations, we show that three examined peptides exhibit similar insertion and adsorption behaviors when interacting with POPC bilayers, confirming that peptide-induced perturbations to POPC in conjugates and bilayers are similar in nature and magnitude. Furthermore, we observed correlations between the peptide-induced structural perturbations and the near-infrared emission of the lipid-functionalized SWNTs, which suggest that the optical signal of the conjugates transduces the morphological changes in the lipid corona. Overall, our findings indicate that lipid-functionalized SWNTs could serve as simplified cell membrane model systems for prescreening of new antimicrobial compounds that disrupt cell membranes.
Collapse
Affiliation(s)
- Anju Yadav
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, United States of America
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, United States of America
| | | | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Lela Vuković
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, United States of America
| |
Collapse
|
8
|
Espeche JC, Varas R, Maturana P, Cutro AC, Maffía PC, Hollmann A. Membrane permeability and antimicrobial peptides: Much more than just making a hole. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
The interactions of amyloid β aggregates with phospholipid membranes and the implications for neurodegeneration. Biochem Soc Trans 2023; 51:147-159. [PMID: 36629697 DOI: 10.1042/bst20220434] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
Misfolding, aggregation and accumulation of Amyloid-β peptides (Aβ) in neuronal tissue and extracellular matrix are hallmark features of Alzheimer's disease (AD) pathology. Soluble Aβ oligomers are involved in neuronal toxicity by interacting with the lipid membrane, compromising its integrity, and affecting the function of receptors. These facts indicate that the interaction between Aβ oligomers and cell membranes may be one of the central molecular level factors responsible for the onset of neurodegeneration. The present review provides a structural understanding of Aβ neurotoxicity via membrane interactions and contributes to understanding early events in Alzheimer's disease.
Collapse
|
10
|
Aguiar TKB, Mesquita FP, Neto NAS, Gomes FÍR, Freitas CDT, Carneiro RF, Nagano CS, Alencar LMR, Santos-Oliveira R, Oliveira JTA, Souza PFN. No Chance to Survive: Mo-CBP 3-PepII Synthetic Peptide Acts on Cryptococcus neoformans by Multiple Mechanisms of Action. Antibiotics (Basel) 2023; 12:antibiotics12020378. [PMID: 36830289 PMCID: PMC9952340 DOI: 10.3390/antibiotics12020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Multidrug-resistant Cryptococcus neoformans is an encapsulated yeast causing a high mortality rate in immunocompromised patients. Recently, the synthetic peptide Mo-CBP3-PepII emerged as a potent anticryptococcal molecule with an MIC50 at low concentration. Here, the mechanisms of action of Mo-CBP3-PepII were deeply analyzed to provide new information about how it led C. neoformans cells to death. Light and fluorescence microscopies, analysis of enzymatic activities, and proteomic analysis were employed to understand the effect of Mo-CBP3-PepII on C. neoformans cells. Light and fluorescence microscopies revealed Mo-CBP3-PepII induced the accumulation of anion superoxide and hydrogen peroxide in C. neoformans cells, in addition to a reduction in the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) in the cells treated with Mo-CBP3-PepII. In the presence of ascorbic acid (AsA), no reactive oxygen species (ROS) were detected, and Mo-CBP3-PepII lost the inhibitory activity against C. neoformans. However, Mo-CBP3-PepII inhibited the activity of lactate dehydrogenase (LDH) ergosterol biosynthesis and induced the decoupling of cytochrome c (Cyt c) from the mitochondrial membrane. Proteomic analysis revealed a reduction in the abundance of proteins related to energetic metabolism, DNA and RNA metabolism, pathogenicity, protein metabolism, cytoskeleton, and cell wall organization and division. Our findings indicated that Mo-CBP3-PepII might have multiple mechanisms of action against C. neoformans cells, mitigating the development of resistance and thus being a potent molecule to be employed in the production of new drugs against C. neoformans infections.
Collapse
Affiliation(s)
- Tawanny K. B. Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Felipe P. Mesquita
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Nilton A. S. Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Francisco Í. R. Gomes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Cleverson D. T. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Rômulo F. Carneiro
- Department of Fisheries Engineering, Federal University of Ceará (UFC), Fortaleza 60451-970, CE, Brazil
| | - Celso S. Nagano
- Department of Fisheries Engineering, Federal University of Ceará (UFC), Fortaleza 60451-970, CE, Brazil
| | - Luciana M. R. Alencar
- Laboratory of Biophysics and Nanosystems, Physics Department, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941-906, RJ, Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070-200, RJ, Brazil
| | - Jose T. A. Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Pedro F. N. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Correspondence: or
| |
Collapse
|
11
|
Yadav A, Kelich P, Kallmyer NE, Reuel NF, VukoviÄ L. Characterizing the Interactions of Cell Membrane-Disrupting Peptides with Lipid-Functionalized Single-Walled Carbon Nanotube Systems for Antimicrobial Screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525557. [PMID: 36747775 PMCID: PMC9900920 DOI: 10.1101/2023.01.25.525557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lipid-functionalized single-walled carbon nanotubes (SWNTs) have garnered significant interest for their potential use in a wide range of biomedical applications. In this work, we used molecular dynamics simulations to study the equilibrium properties of SWNTs surrounded by the phosphatidylcholine (POPC) corona phase, and their interactions with three cell membrane disruptor peptides: colistin, TAT peptide, and crotamine-derived peptide. Our results show that SWNTs favor asymmetrical positioning within the POPC corona, so that one side of the SWNT, covered by the thinnest part of the corona, comes in contact with charged and polar functional groups of POPC and water. We also observed that colistin and TAT insert deeply into POPC corona, while crotamine-derived peptide only adsorbs to the corona surface. Compared to crotamine-derived peptide, colistin and TAT also induce larger perturbations in the thinnest region of the corona, by allowing more water molecules to directly contact the SWNT surface. In separate simulations, we show that three examined peptides exhibit similar insertion and adsorption behaviors when interacting with POPC bilayers, confirming that peptide-induced perturbations to POPC in conjugates and bilayers are similar in nature and magnitude. Furthermore, we observed correlations between the peptide-induced structural perturbations and the near-infrared emission of the lipid-functionalized SWNTs, which suggest that the optical signal of the conjugates transduces the morphological changes in the lipid corona. Overall, our findings indicate that lipid-functionalized SWNTs could serve as simplified cell membrane model systems for pre-screening of new antimicrobial compounds that disrupt cell membranes.
Collapse
|
12
|
Behind the Curtain: In Silico and In Vitro Experiments Brought to Light New Insights into the Anticryptococcal Action of Synthetic Peptides. Antibiotics (Basel) 2023; 12:antibiotics12010153. [PMID: 36671354 PMCID: PMC9854638 DOI: 10.3390/antibiotics12010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cryptococcus neoformans is the pathogen responsible for cryptococcal pneumonia and meningitis, mainly affecting patients with suppressed immune systems. We have previously revealed the mechanism of anticryptococcal action of synthetic antimicrobial peptides (SAMPs). In this study, computational and experimental analyses provide new insights into the mechanisms of action of SAMPs. Computational analysis revealed that peptides interacted with the PHO36 membrane receptor of C. neoformans. Additionally, ROS (reactive oxygen species) overproduction, the enzymes of ROS metabolism, interference in the ergosterol biosynthesis pathway, and decoupling of cytochrome c mitochondrial membrane were evaluated. Three of four peptides were able to interact with the PHO36 receptor, altering its function and leading to ROS overproduction. SAMPs-treated C. neoformans cells showed a decrease in scavenger enzyme activity, supporting ROS accumulation. In the presence of ascorbic acid, an antioxidant agent, SAMPs did not induce ROS accumulation in C. neoformans cells. Interestingly, two SAMPs maintained inhibitory activity and membrane pore formation in C. neoformans cells by a ROS-independent mechanism. Yet, the ergosterol biosynthesis and lactate dehydrogenase activity were affected by SAMPs. In addition, we noticed decoupling of Cyt c from the mitochondria, which led to apoptosis events in the cryptococcal cells. The results presented herein suggest multiple mechanisms imposed by SAMPs against C. neoformans interfering in the development of resistance, thus revealing the potential of SAMPs in treating infections caused by C. neoformans.
Collapse
|
13
|
Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022; 51:8696-8755. [PMID: 36190355 PMCID: PMC9575517 DOI: 10.1039/d1cs00915j] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.
Collapse
Affiliation(s)
- Jack A Doolan
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - George T Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - Rajas Chaudhari
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
14
|
Yang Y, Distaffen H, Jalali S, Nieuwkoop AJ, Nilsson BL, Dias CL. Atomic Insights into Amyloid-Induced Membrane Damage. ACS Chem Neurosci 2022; 13:2766-2777. [PMID: 36095304 DOI: 10.1021/acschemneuro.2c00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amphipathic peptides can cause biological membranes to leak either by dissolving their lipid content via a detergent-like mechanism or by forming pores on the membrane surface. These modes of membrane damage have been related to the toxicity of amyloid peptides and to the activity of antimicrobial peptides. Here, we perform the first all-atom simulations in which membrane-bound amphipathic peptides self-assemble into β-sheets that subsequently either form stable pores inside the bilayer or drag lipids out of the membrane surface. An analysis of these simulations shows that the acyl tail of lipids interact strongly with non-polar side chains of peptides deposited on the membrane. These strong interactions enable lipids to be dragged out of the bilayer by oligomeric structures accounting for detergent-like damage. They also disturb the orientation of lipid tails in the vicinity of peptides. These distortions are minimized around pore structures. We also show that membrane-bound β-sheets become twisted with one of their extremities partially penetrating the lipid bilayer. This allows peptides on opposite leaflets to interact and form a long transmembrane β-sheet, which initiates poration. In simulations, where peptides are deposited on a single leaflet, the twist in β-sheets allows them to penetrate the membrane and form pores. In addition, our simulations show that fibril-like structures produce little damage to lipid membranes, as non-polar side chains in these structures are unavailable to interact with the acyl tail of lipids.
Collapse
Affiliation(s)
- Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Hannah Distaffen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
15
|
Rončević T, Gerdol M, Mardirossian M, Maleš M, Cvjetan S, Benincasa M, Maravić A, Gajski G, Krce L, Aviani I, Hrabar J, Trumbić Ž, Derks M, Pallavicini A, Weingarth M, Zoranić L, Tossi A, Mladineo I. Anisaxins, helical antimicrobial peptides from marine parasites, kill resistant bacteria by lipid extraction and membrane disruption. Acta Biomater 2022; 146:131-144. [PMID: 35470073 DOI: 10.1016/j.actbio.2022.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
An infecting and propagating parasite relies on its innate defense system to evade the host's immune response and to survive challenges from commensal bacteria. More so for the nematode Anisakis, a marine parasite that during its life cycle encounters both vertebrate and invertebrate hosts and their highly diverse microbiotas. Although much is still unknown about how the nematode mitigates the effects of these microbiota, its antimicrobial peptides likely play an important role in its survival. We identified anisaxins, the first cecropin-like helical antimicrobial peptides originating from a marine parasite, by mining available genomic and transcriptomic data for Anisakis spp. These peptides are potent bactericidal agents in vitro, selectively active against Gram-negative bacteria, including multi-drug resistant strains, at sub-micromolar concentrations. Their interaction with bacterial membranes was confirmed by solid state NMR (ssNMR) and is highly dependent on the peptide concentration as well as peptide to lipid ratio, as evidenced by molecular dynamics (MD) simulations. MD results indicated that an initial step in the membranolytic mode of action involves membrane bulging and lipid extraction; a novel mechanism which may underline the peptides' potency. Subsequent steps include membrane permeabilization leading to leakage of molecules and eventually cell death, but without visible macroscopic damage, as shown by atomic force microscopy and flow cytometry. This membranolytic antibacterial activity does not translate to cytotoxicity towards human peripheral blood mononuclear cells (HPBMCs), which was minimal at well above bactericidal concentrations, making anisaxins promising candidates for further drug development. STATEMENT OF SIGNIFICANCE: Witnessing the rapid spread of antibiotic resistance resulting in millions of infected and dozens of thousands dying worldwide every year, we identified anisaxins, antimicrobial peptides (AMPs) from marine parasites, Anisakis spp., with potent bactericidal activity and selectivity towards multi-drug resistant Gram-negative bacteria. Anisaxins are membrane-active peptides, whose activity, very sensitive to local peptide concentrations, involves membrane bulging and lipid extraction, leading to membrane permeabilization and bacterial cell death. At the same time, their toxicity towards host cells is negligible, which is often not the case for membrane-active AMPs, therefore making them suitable drug candidates. Membrane bulging and lipid extraction are novel concepts that broaden our understanding of peptide interactions with bacterial functional structures, essential for future design of such biomaterials.
Collapse
Affiliation(s)
- Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split 21000, Croatia.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Mario Mardirossian
- Department of Medical Sciences, University of Trieste, Trieste 34125, Italy
| | - Matko Maleš
- Faculty of Maritime Studies, University of Split, Split 21000, Croatia
| | - Svjetlana Cvjetan
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split 21000, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, Split 21000, Croatia
| | - Ivica Aviani
- Department of Physics, Faculty of Science, University of Split, Split 21000, Croatia
| | - Jerko Hrabar
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Željka Trumbić
- University Department of Marine Studies, University of Split, Split 21000, Croatia
| | - Maik Derks
- NMR spectroscopy, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht 3584CH, The Netherlands; Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Markus Weingarth
- NMR spectroscopy, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht 3584CH, The Netherlands
| | - Larisa Zoranić
- Department of Physics, Faculty of Science, University of Split, Split 21000, Croatia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Ivona Mladineo
- Laboratory of Functional Helminthology, Biology Centre Czech Academy of Sciences, Institute of Parasitology BC CAS, Branisovska 31, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
16
|
Al Nahas K, Fletcher M, Hammond K, Nehls C, Cama J, Ryadnov MG, Keyser UF. Measuring Thousands of Single-Vesicle Leakage Events Reveals the Mode of Action of Antimicrobial Peptides. Anal Chem 2022; 94:9530-9539. [PMID: 35760038 PMCID: PMC9280716 DOI: 10.1021/acs.analchem.1c03564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Host defense or antimicrobial
peptides hold promise for providing
new pipelines of effective antimicrobial agents. Their activity quantified
against model phospholipid membranes is fundamental to a detailed
understanding of their structure–activity relationships. However,
classical characterization assays often lack the ability to achieve
this insight. Leveraging a highly parallelized microfluidic platform
for trapping and studying thousands of giant unilamellar vesicles,
we conducted quantitative long-term microscopy studies to monitor
the membrane-disruptive activity of archetypal antimicrobial peptides
with a high spatiotemporal resolution. We described the modes of action
of these peptides via measurements of the disruption of the vesicle
population under the conditions of continuous peptide dosing using
a range of concentrations and related the observed modes to the molecular
activity mechanisms of these peptides. The study offers an effective
approach for characterizing membrane-targeting antimicrobial agents
in a standardized manner and for assigning specific modes of action
to the corresponding antimicrobial mechanisms.
Collapse
Affiliation(s)
- Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Marcus Fletcher
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.,London Centre for Nanotechnology, University College London, London WC1H 0AH, U.K
| | - Christian Nehls
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, Borstel 23845, Germany
| | - Jehangir Cama
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.,Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, U.K
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.,Department of Physics, King's College London, Strand Lane, London WC2R 2LS, U.K
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
17
|
Patra P, Banerjee R, Chakrabarti J. Effect of biphosphate salt on dipalmitoylphosphatidylcholine bilayer deformation by Tat polypeptide. Biopolymers 2022; 113:e23518. [PMID: 35621373 DOI: 10.1002/bip.23518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/06/2022]
Abstract
Translocation of positively charged cell penetrating peptides (CPP) through cell membrane is important in drug delivery. Here we report all-atom molecular dynamics simulations to investigate how a biphosphate salt in a solvent affects the interaction of a CPP, HIV-1 Tat peptide with model dipalmitoylphosphatidylcholine (DPPC) lipid bilayer. Tat peptide has a large number of basic arginines and a couple of polar glutamines. We observe that in absence of salt, the basic residues of the polypeptide get localized in the vicinity of the membrane without altering the bilayer properties much; polypeptide induce local thinning of the bilayer membrane at the area of localization. In presence of biphosphate salt, the basic residues, dressed by the biphosphate ions, are repelled by the phosphate head groups of the lipid molecules. However, polar glutamine prefers to stay in the vicinity of the bilayer. This leads to larger local bilayer thickness at the contact point by the polar residue and non-uniform bilayer thickness profile. The thickness deformation of bilayer structure disappears upon mutating the polar residue, suggesting importance of the polar residue in bilayer deformation. Our studies point to control bilayer deformation by appropriate peptide sequence and solvent conditions.
Collapse
Affiliation(s)
- Piya Patra
- Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, West Bengal, India
| | - Raja Banerjee
- Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, West Bengal, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, Thematic Unit of Excellence on Computational Materials Science and Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata, West Bengal, India
| |
Collapse
|
18
|
Ferguson PM, Clarke M, Manzo G, Hind CK, Clifford M, Sutton JM, Lorenz CD, Phoenix DA, Mason AJ. Temporin B Forms Hetero-Oligomers with Temporin L, Modifies Its Membrane Activity, and Increases the Cooperativity of Its Antibacterial Pharmacodynamic Profile. Biochemistry 2022; 61:1029-1040. [PMID: 35609188 PMCID: PMC9178791 DOI: 10.1021/acs.biochem.1c00762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The pharmacodynamic
profile of antimicrobial peptides (AMPs) and
their in vivo synergy are two factors that are thought
to restrict resistance evolution and ensure their conservation. The
frog Rana temporaria secretes a family of closely
related AMPs, temporins A–L, as an effective chemical dermal
defense. The antibacterial potency of temporin L has been shown to
increase synergistically in combination with both temporins B and
A, but this is modest. Here we show that the less potent temporin
B enhances the cooperativity of the in vitro antibacterial
activity of the more potent temporin L against EMRSA-15 and that this
may be associated with an altered interaction with the bacterial plasma
membrane, a feature critical for the antibacterial activity of most
AMPs. Addition of buforin II, a histone H2A fragment, can further
increase the cooperativity. Molecular dynamics simulations indicate
temporins B and L readily form hetero-oligomers in models of Gram-positive
bacterial plasma membranes. Patch-clamp studies show transmembrane
ion conductance is triggered with lower amounts of both peptides and
more quickly when used in combination, but conductance is of a lower
amplitude and pores are smaller. Temporin B may therefore act by forming
temporin L/B hetero-oligomers that are more effective than temporin
L homo-oligomers at bacterial killing and/or by reducing the probability
of the latter forming until a threshold concentration is reached.
Exploration of the mechanism of synergy between AMPs isolated from
the same organism may therefore yield antibiotic combinations with
advantageous pharmacodynamic properties.
Collapse
Affiliation(s)
- Philip M Ferguson
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Giorgia Manzo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Charlotte K Hind
- Technology Development Group, UKHSA, Salisbury SP4 0JG, United Kingdom
| | - Melanie Clifford
- Technology Development Group, UKHSA, Salisbury SP4 0JG, United Kingdom
| | - J Mark Sutton
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom.,Technology Development Group, UKHSA, Salisbury SP4 0JG, United Kingdom
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - David A Phoenix
- School of Applied Science, London South Bank University, 103 Borough Road, London SE1 0AA, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
19
|
Franco LR, Park P, Chaimovich H, Coutinho K, Cuccovia IM, Lima FS. Simulations reveal that antimicrobial BP100 induces local membrane thinning, slows lipid dynamics and favors water penetration. RSC Adv 2022; 12:4573-4588. [PMID: 35425494 PMCID: PMC8981376 DOI: 10.1039/d1ra06267k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
MD simulations reveal that BP100 peptide induces local membrane thinning and negative curvature, slows lipid dynamics and increases the water life time in the lipid hydrophobic core and transmembrane water transport in the direction of the peptide.
Collapse
Affiliation(s)
| | - Peter Park
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Hernan Chaimovich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
| | - Iolanda M. Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Filipe S. Lima
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
20
|
Daison FA, Kumar N, Balakrishnan S, Venugopal K, Elango S, Sokkar P. Molecular Dynamics Studies on the Bacterial Membrane Pore Formation by Small Molecule Antimicrobial Agents. J Chem Inf Model 2021; 62:40-48. [PMID: 34932333 DOI: 10.1021/acs.jcim.1c01049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) act on the membrane bilayer of pathogens, causing leakage in the membrane and cell death. Amphiphilic kaempferol derivatives possessing basic functional groups show excellent antibacterial activities, which has been proven through experimental techniques. These compounds are known to target negatively charged bacterial membranes. However, the detailed mechanism of action and their structure-activity relationship are not clear. In this work, we reported theoretical investigation on the mechanism of action of two previously reported kaempferol derivatives on a DMPC/DMPG mixed bilayer. Despite the rigid structure of the compounds when compared to AMPs, spontaneous pore formation in the membrane was not observed in 400 ns molecular dynamics (MD) simulations. MD simulations with biasing forces resulted in the formation of pores in the bilayer for the derivatives and not for kaempferol. The stability of the pores was assessed by pore closure timescales in unbiased MD simulations, which was found to be 5.3 and 17.0 ns for 2 and 3, respectively. Free energy change for the permeation into the bilayer for kaempferol (1), tertiary amine derivative (2), and arginine derivative (3) was calculated to be -1.5, -48.2, and -100.3 kJ/mol, respectively, which correlate with their antibacterial activity. Furthermore, our results indicate that compound 3 forms a stable toroidal pore in the membrane when multiple molecules are oriented in a transmembrane configuration. Our work sheds light on the mechanism of action of small molecule antimicrobial agents, which can be exploited for the rational design of drug candidates.
Collapse
Affiliation(s)
- Felsis Angelene Daison
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Nitheeshkumar Kumar
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Siranjeevi Balakrishnan
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Kavyashree Venugopal
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Sangamithra Elango
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Pandian Sokkar
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| |
Collapse
|
21
|
Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021; 26:molecules26247453. [PMID: 34946535 PMCID: PMC8708364 DOI: 10.3390/molecules26247453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
22
|
Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021. [DOI: https://doi.org/10.3390/molecules26247453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
23
|
Koneru JK, Prakashchand DD, Dube N, Ghosh P, Mondal J. Spontaneous transmembrane pore formation by short-chain synthetic peptide. Biophys J 2021; 120:4557-4574. [PMID: 34478698 DOI: 10.1016/j.bpj.2021.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Amphiphilic β-peptides, which are synthetically designed short-chain helical foldamers of β-amino acids, are established potent biomimetic alternatives of natural antimicrobial peptides. An intriguing question is how the distinct molecular architecture of these short-chain and rigid synthetic peptides translates to its potent membrane-disruption ability. Here, we address this question via a combination of all-atom and coarse-grained molecular dynamics simulations of the interaction of mixed phospholipid bilayer with an antimicrobial 10-residue globally amphiphilic helical β-peptide at a wide range of concentrations. The simulation demonstrates that multiple copies of this synthetic peptide, initially placed in aqueous solution, readily self-assemble and adsorb at membrane interface. Subsequently, beyond a threshold peptide/lipid ratio, the surface-adsorbed oligomeric aggregate moves inside the membrane and spontaneously forms stable water-filled transmembrane pores via a cooperative mechanism. The defects induced by these pores lead to the dislocation of interfacial lipid headgroups, membrane thinning, and substantial water leakage inside the hydrophobic core of the membrane. A molecular analysis reveals that despite having a short architecture, these synthetic peptides, once inside the membrane, would stretch themselves toward the distal leaflet in favor of potential contact with polar headgroups and interfacial water layer. The pore formed in coarse-grained simulation was found to be resilient upon structural refinement. Interestingly, the pore-inducing ability was found to be elusive in a non-globally amphiphilic sequence isomer of the same β-peptide, indicating strong sequence dependence. Taken together, this work puts forward key perspectives of membrane activity of minimally designed synthetic biomimetic oligomers relative to the natural antimicrobial peptides.
Collapse
Affiliation(s)
- Jaya Krishna Koneru
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, Telangana, India
| | - Dube Dheeraj Prakashchand
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, Telangana, India
| | - Namita Dube
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, Telangana, India
| | - Pushpita Ghosh
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, Telangana, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, Telangana, India.
| |
Collapse
|
24
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
25
|
Talandashti R, Mehrnejad F, Rostamipour K, Doustdar F, Lavasanifar A. Molecular Insights into Pore Formation Mechanism, Membrane Perturbation, and Water Permeation by the Antimicrobial Peptide Pleurocidin: A Combined All-Atom and Coarse-Grained Molecular Dynamics Simulation Study. J Phys Chem B 2021; 125:7163-7176. [PMID: 34171196 DOI: 10.1021/acs.jpcb.1c01954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antimicrobial peptide (AMP) pleurocidin has a broad antimicrobial activity against Gram-negative and Gram-positive bacteria by perturbation and permeabilizing their membranes; however, understanding the mechanism of action of pleurocidin, a promising AMP for replacing current antibiotic agents, has tremendous importance for future applications. Hence, we applied all-atom (AA) and coarse-grained (CG) molecular dynamics (MD) simulations to provide molecular-level insights into the pore-forming process. The early stages of pore formation were examined by 500 ns AA simulations. The results demonstrated that pleurocidin has the ability to create a pore with two peptides through which water molecules can flow. However, the results of the 25 μs CG simulations indicate that the final pore will be created by accumulation of more than two peptides. The results show that after 2.5 μs of simulations, peptides will aggregate and create a channel-like pore across the membrane. Pleurocidin can construct a more efficient and stable pore in the anionic membranes than in the zwitterionic membranes. Moreover, the structure amphipathicity, polarity, and basic residues play crucial roles in the pore formation and flow of water molecules across the lipid bilayers. In general, the findings revealed that based on the lipid compositions of the membranes, pleurocidin could act by forming either toroidal or disordered toroidal pores with different peptide arrangements.
Collapse
Affiliation(s)
- Reza Talandashti
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, P. O. Box: 1985717443 Tehran, Iran.,Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Faramarz Mehrnejad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Kiana Rostamipour
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Farahnoosh Doustdar
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran.,Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
26
|
Velasco-Bolom JL, Garduño-Juárez R. Computational studies of membrane pore formation induced by Pin2. J Biomol Struct Dyn 2021; 40:5060-5068. [PMID: 33397200 DOI: 10.1080/07391102.2020.1867640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Understanding, at the molecular level, the effect of AMPs on biological membranes is of crucial importance given the increasing number of multidrug-resistant bacteria. Being part of an ancient type of innate immunity system, AMPs have emerged as a potential solution for which bacteria have not developed resistance. Traditional antibiotics specifically act on biosynthetic pathways, while AMPs may directly destabilize the lipid membrane, but it is unclear how AMPs affect the membrane's stability. We performed multiscale molecular dynamics simulations to investigate the structural features leading to membrane pores formation on zwitterionic and anionic membranes by the antimicrobial peptide (AMP) Pandinin 2 (Pin2). Some experimental reports propose that Pin2 could form barrel-stave pores, while others suggest that it could form toroidal pores. Since there is no conclusive evidence of which type of pore is formed by Pin2 on bilayers, performing molecular dynamics simulations on these systems could shed some light on whether or not or what type of pore Pin2 forms on model membranes. Our results are focused on a detailed description of the pore formation by Pin2 in POPC and POPE:POPG membranes., which strongly suggest that Pin2 forms a toroidal pore and not a barrel-shaped pore; this type of pore also affects the membrane properties. In the process, a phospholipid remodeling in the POPE:POPG membrane takes place. Moreover, the pores formed by Pin2 indicate that they are selective for the chlorine ion. There are no previous ion selectivity reports for other AMPs with similar physicochemical properties, such as melittin and magainin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José-Luis Velasco-Bolom
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.,Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
27
|
Moqadam M, Tubiana T, Moutoussamy EE, Reuter N. Membrane models for molecular simulations of peripheral membrane proteins. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1932589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Mahmoud Moqadam
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Thibault Tubiana
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Emmanuel E. Moutoussamy
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Topological analysis of single-stranded DNA with an alpha-hederin nanopore. Biosens Bioelectron 2020; 171:112711. [PMID: 33059170 DOI: 10.1016/j.bios.2020.112711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022]
Abstract
Nanopores have been emerged as a powerful tool for analyzing the structural information and interactional properties of a range of biomolecules. The spatial resolution of nanopore is determined by the diameter and effective thickness of its constriction region, but the presence of vestibule or stem structure in protein-based nanopore could negatively affect the sensitivity of the nanopore when applied for genome sequencing and topological analysis of DNA. Recently, alpha-hederin (Ah) has been reported to form a sub-nanometer scale pore structure in lipid membrane. With the simple structure and extremely small effective thickness, the Ah nanopore was shown to discriminate four different types of nucleotides. However, identification of a certain nucleotide in a strand of DNA, which is essential for genome sequencing, remains challenging. Here, we investigated the resolving capability of Ah nanopore to discriminate few nucleotides in a strand of single-stranded DNA, and the factors determining the sensitivity of Ah nanopore. The Ah nanopore was shown to be able to identify as few as three adenosine nucleotides in a strand of poly cytidine, in which the dwell time of the additional current blockade that represents the adenosine residue was in good agreement with their physical length. We also found that the lateral tension and chain pressure generated around the nanopore were influenced by pore's diameter and played as a dependent variables to determine the geometry of nanopore's constriction as well as the spatial resolution of the Ah nanopore.
Collapse
|
29
|
Mercer DK, O'Neil DA. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front Immunol 2020; 11:2177. [PMID: 33072081 PMCID: PMC7533533 DOI: 10.3389/fimmu.2020.02177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to describe antifungal therapeutic candidates in preclinical and clinical development derived from, or directly influenced by, the immune system, with a specific focus on antimicrobial peptides (AMP). Although the focus of this review is AMP with direct antimicrobial effects on fungi, we will also discuss compounds with direct antifungal activity, including monoclonal antibodies (mAb), as well as immunomodulatory molecules that can enhance the immune response to fungal infection, including immunomodulatory AMP, vaccines, checkpoint inhibitors, interferon and colony stimulating factors as well as immune cell therapies. The focus of this manuscript will be a non-exhaustive review of antifungal compounds in preclinical and clinical development that are based on the principles of immunology and the authors acknowledge the incredible amount of in vitro and in vivo work that has been conducted to develop such therapeutic candidates.
Collapse
|
30
|
Hammond K, Ryadnov MG, Hoogenboom BW. Atomic force microscopy to elucidate how peptides disrupt membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183447. [PMID: 32835656 DOI: 10.1016/j.bbamem.2020.183447] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy is an increasingly attractive tool to study how peptides disrupt membranes. Often performed on reconstituted lipid bilayers, it provides access to time and length scales that allow dynamic investigations with nanometre resolution. Over the last decade, AFM studies have enabled visualisation of membrane disruption mechanisms by antimicrobial or host defence peptides, including peptides that target malignant cells and biofilms. Moreover, the emergence of high-speed modalities of the technique broadens the scope of investigations to antimicrobial kinetics as well as the imaging of peptide action on live cells in real time. This review describes how methodological advances in AFM facilitate new insights into membrane disruption mechanisms.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; Department of Physics, King's College London, Strand Lane, London WC2R 2LS, UK.
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| |
Collapse
|
31
|
Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, Giulianotti MA, Apidianakis Y, Bradfute S, Ferguson AL, Cherkasov A, Seleem MN, Pinilla C, de la Fuente-Nunez C, Lazaridis T, Dai T, Houghten RA, Hancock REW, Tegos GP. The value of antimicrobial peptides in the age of resistance. THE LANCET. INFECTIOUS DISEASES 2020; 20:e216-e230. [PMID: 32653070 DOI: 10.1016/s1473-3099(20)30327-3] [Citation(s) in RCA: 559] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/29/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Accelerating growth and global expansion of antimicrobial resistance has deepened the need for discovery of novel antimicrobial agents. Antimicrobial peptides have clear advantages over conventional antibiotics which include slower emergence of resistance, broad-spectrum antibiofilm activity, and the ability to favourably modulate the host immune response. Broad bacterial susceptibility to antimicrobial peptides offers an additional tool to expand knowledge about the evolution of antimicrobial resistance. Structural and functional limitations, combined with a stricter regulatory environment, have hampered the clinical translation of antimicrobial peptides as potential therapeutic agents. Existing computational and experimental tools attempt to ease the preclinical and clinical development of antimicrobial peptides as novel therapeutics. This Review identifies the benefits, challenges, and opportunities of using antimicrobial peptides against multidrug-resistant pathogens, highlights advances in the deployment of novel promising antimicrobial peptides, and underlines the needs and priorities in designing focused development strategies taking into account the most advanced tools available.
Collapse
Affiliation(s)
- Maria Magana
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ana L Santos
- Department of Chemistry, Rice University, Houston, TX, USA; Investigación Sanitaria de las Islas Baleares, Palma, Spain
| | - Leon Leanse
- Department of Dermatology, Harvard Medical School, Boston, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Fernandez
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Steven Bradfute
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, USA
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Artem Cherkasov
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, Port St Lucie, FL, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Themis Lazaridis
- Department of Chemistry, The City College of New York, New York, NY, USA; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, NY, USA
| | - Tianhong Dai
- Department of Dermatology, Harvard Medical School, Boston, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - George P Tegos
- Reading Hospital, Tower Health, West Reading, PA, USA; Micromoria, Venture X Marlborough, Marlborough, MA, USA.
| |
Collapse
|
32
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
33
|
Rodnin MV, Vasquez-Montes V, Nepal B, Ladokhin AS, Lazaridis T. Experimental and Computational Characterization of Oxidized and Reduced Protegrin Pores in Lipid Bilayers. J Membr Biol 2020; 253:287-298. [PMID: 32500172 DOI: 10.1007/s00232-020-00124-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/23/2020] [Indexed: 12/16/2022]
Abstract
Protegrin-1 (PG-1), an 18-residue β-hairpin stabilized by two disulfide bonds, is a member of a family of powerful antimicrobial peptides which are believed to act through membrane permeabilization. Here we used a combination of experimental and computational approaches to characterize possible structural arrangements of PG-1 in lipid bilayers mimicking bacterial membranes. We have measured the dose-response function of the PG-1-induced leakage of markers of various sizes from vesicles and found it to be consistent with the formation of pores of two different sizes. The first one allows the release of small dyes and occurs at peptide:lipid ratios < 0.006. Above this ratio, larger pores are observed through which the smallest of dextrans FD4 can be released. In parallel with pore formation, we observe a general large-scale destabilization of vesicles which is probably related to complete rupture of some vesicles. The population of vesicles that are completely ruptured depends linearly on PG-1:lipid ratio. Neither pore size, nor vesicle rupture are influenced by the formation of disulfide bonds. Previous computational work on oxidized protegrin is complemented here by all-atom MD simulations of PG-1 with reduced disulfide bonds both in solution (monomer) and in a bilayer (dimer and octamer). The simulations provide molecular insights into the influence of disulfide bonds on peptide conformation, aggregation, and oligomeric structure.
Collapse
Affiliation(s)
- Mykola V Rodnin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Binod Nepal
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, 10031, USA
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Themis Lazaridis
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, 10031, USA. .,Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
34
|
Belluati A, Mikhalevich V, Yorulmaz Avsar S, Daubian D, Craciun I, Chami M, Meier WP, Palivan CG. How Do the Properties of Amphiphilic Polymer Membranes Influence the Functional Insertion of Peptide Pores? Biomacromolecules 2019; 21:701-715. [DOI: 10.1021/acs.biomac.9b01416] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Viktoria Mikhalevich
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Davy Daubian
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Wolfgang P. Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
35
|
Nangia S, Boyd KJ, May ER. Molecular dynamics study of membrane permeabilization by wild-type and mutant lytic peptides from the non-enveloped Flock House virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183102. [PMID: 31678020 DOI: 10.1016/j.bbamem.2019.183102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Flock House virus (FHV) serves as a model system for understanding infection mechanisms utilized by non-enveloped viruses to transport across cellular membranes. During the infection cycle of FHV, a fundamental stage involves disruption of the endosomal membrane by membrane active peptides, following externalization of the peptides from the capsid interior. The FHV lytic agents are the 44 C-terminal amino acids residues of the capsid protein, which are auto-catalytically cleaved during the capsid maturation process. The cleaved peptides are termed γ peptides. In this study, we perform multi-scale molecular dynamics simulations including 40 μs all-atom molecular dynamics simulations to study the behavior of pre-inserted transmembrane lytic peptides at a high concentration in a neutral membrane. We study the dynamical organization among peptides to form oligomeric bundles in four systems including the wild-type γ peptide and three mutant forms; namely, a truncation mutant in which the 23 C-terminal residues are deleted (γ1), a construct where the 8 C-terminal residues of γ are fused to γ1 (Δ385-399 γ) and a single-point mutant (F402A γ), all of which have been experimentally shown to drastically affect infectivity and lytic activity compared to the wild-type γ. Our results shed light on the actions of varied forms of the FHV lytic peptide including membrane insertion, trans-membrane stability, peptide oligomerization, water permeation activity and dynamic pore formation. Findings from this study provide detailed structural information and rationale for the differences in lytic activity among variants of FHV γ.
Collapse
Affiliation(s)
- Shivangi Nangia
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States of America
| | - Kevin J Boyd
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States of America
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States of America.
| |
Collapse
|
36
|
Deplazes E, Chin YKY, King GF, Mancera RL. The unusual conformation of cross-strand disulfide bonds is critical to the stability of β-hairpin peptides. Proteins 2019; 88:485-502. [PMID: 31589791 DOI: 10.1002/prot.25828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023]
Abstract
The cross-strand disulfides (CSDs) found in β-hairpin antimicrobial peptides (β-AMPs) show a unique disulfide geometry that is characterized by unusual torsion angles and a short Cα-Cα distance. While the sequence and disulfide bond connectivity of disulfide-rich peptides is well studied, much less is known about the disulfide geometry found in CSDs and their role in the stability of β-AMPs. To address this, we solved the nuclear magnetic resonance (NMR) structure of the β-AMP gomesin (Gm) at 278, 298, and 310 K, examined the disulfide bond geometry of over 800 disulfide-rich peptides, and carried out extensive molecular dynamics (MD) simulation of the peptides Gm and protegrin. The NMR data suggests Cα-Cα distances characteristic for CSDs are independent of temperature. Analysis of disulfide-rich peptides from the Protein Data Bank revealed that right-handed and left-handed rotamers are equally likely in CSDs. The previously reported preference for right-handed rotamers was likely biased by restricting the analysis to peptides and proteins solved using X-ray crystallography. Furthermore, data from MD simulations showed that the short Cα-Cα distance is critical for the stability of these peptides. The unique disulfide geometry of CSDs poses a challenge to biomolecular force fields and to retain the stability of β-hairpin fold over long simulation times, restraints on the torsion angles might be required.
Collapse
Affiliation(s)
- Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, Western Australia, Australia
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
37
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
38
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
39
|
Lai PK, Kaznessis YN. Insights into Membrane Translocation of Protegrin Antimicrobial Peptides by Multistep Molecular Dynamics Simulations. ACS OMEGA 2018; 3:6056-6065. [PMID: 29978143 PMCID: PMC6026836 DOI: 10.1021/acsomega.8b00483] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Protegrin-1 (PG-1) is a cationic arginine-rich antimicrobial peptide. It is widely accepted that PG-1 induces membrane disruption by forming pores that lead to cell death. However, the insertion mechanism for these highly cationic peptides into the hydrophobic membrane environment is still poorly understood at the molecular scale. It has previously been determined that the association of arginine guanidinium and lipid phosphate groups results in strong bidentate bonds that stabilize peptide-lipid complexes. It has also been suggested that arginine residues are able to drag phosphate groups as they insert inside the membrane to form a toroidal pore. However, whether bidentate bonds play a significant role in inducing a pore formation remains unclear. To investigate the role of bidentate complexes in PG-1 translocation, we conducted molecular dynamics simulations. Two computational electroporation methods were implemented to examine the translocation process. We found that PG-1 could insert into the membrane, provided the external electric potential is large enough to first induce a water column or a pore within the lipid bilayer membrane. We also found that the highly charged PG-1 is capable in itself of inducing molecular electroporation. Substitution of arginines with charge-equivalent lysines showed a markedly reduced tendency for insertion. This indicates that the guanidinium group likely facilitates PG-1 translocation. Potential of mean force calculations suggests that peptide insertion inside the hydrophobic environment of the membrane core is not favored. We found that formation of a water column or a pore might be a prerequisite for PG-1 translocation. We also found that PG-1 can stabilize the pore after insertion. We suggest that PG-1 could be a pore inducer and stabilizer. This work sheds some light on PG-1 translocation mechanisms at the molecular level. Methods presented in this study may be extended to other arginine-rich antimicrobial and cell-penetrating peptides.
Collapse
|
40
|
Gilbert RJC, Bayley H, Anderluh G. Membrane pores: from structure and assembly, to medicine and technology. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630148 DOI: 10.1098/rstb.2016.0208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Robert J C Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Hagan Bayley
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
41
|
Hsiao YW, Hedström M, Losasso V, Metz S, Crain J, Winn M. Cooperative Modes of Action of Antimicrobial Peptides Characterized with Atomistic Simulations: A Study on Cecropin B. J Phys Chem B 2018; 122:5908-5921. [PMID: 29737852 DOI: 10.1021/acs.jpcb.8b01957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides (AMPs) are widely occurring host defense agents of interest as one route for addressing the growing problem of multidrug-resistant pathogens. Understanding the mechanisms behind their antipathogen activity is instrumental in designing new AMPs. Herein, we present an all-atom molecular dynamics and free energy study on cecropin B (CB) and its constituent domains. We find a cooperative mechanism in which CB inserts into an anionic model membrane with its amphipathic N-terminal segment, supported by the hydrophobic C-terminal segment of a second peptide. The two peptides interact via a Glu···Lys salt bridge and together sustain a pore in the membrane. Using a modified membrane composition, we demonstrate that when the lower leaflet is overall neutral, insertion of the cationic segment is retarded and thus this mode of action is membrane specific. The observed mode of action utilizes a flexible hinge, a common structural motif among AMPs, which allows CB to insert into the membrane using either or both termini. Data from both unbiased trajectories and enhanced sampling simulations indicate that a requirement for CB to be an effective AMP is the interaction of its hydrophobic C-terminal segment with the membrane. Simulations of these segments in isolation reveal their aggregation in the membrane and a different mechanism of supporting pore formation. Together, our results show the complex interaction of different structural motifs of AMPs and, in particular, a potential role for electronegative side chains in an overall cationic AMP.
Collapse
Affiliation(s)
- Ya-Wen Hsiao
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , U.K
| | - Magnus Hedström
- Clay Technology AB , Ideon Science Park , SE-223 70 Lund , Sweden
| | - Valeria Losasso
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , U.K
| | - Sebastian Metz
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , U.K
| | - Jason Crain
- IBM Research , Hartree Centre , Daresbury WA4 4AD , U.K
| | - Martyn Winn
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , U.K
| |
Collapse
|
42
|
Alaybeyoglu B, Sariyar Akbulut B, Ozkirimli E. pVEC hydrophobic N-terminus is critical for antibacterial activity. J Pept Sci 2018; 24:e3083. [DOI: 10.1002/psc.3083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Begum Alaybeyoglu
- Chemical Engineering Department; Bogazici University; Bebek 34342 Istanbul Turkey
| | | | - Elif Ozkirimli
- Chemical Engineering Department; Bogazici University; Bebek 34342 Istanbul Turkey
| |
Collapse
|
43
|
Deplazes E. Molecular simulations of venom peptide-membrane interactions: Progress and challenges. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences; Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University; Bentley, Perth WA 6102 Australia
| |
Collapse
|
44
|
High-Throughput Identification of Antimicrobial Peptides from Amphibious Mudskippers. Mar Drugs 2017; 15:md15110364. [PMID: 29165344 PMCID: PMC5706053 DOI: 10.3390/md15110364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Widespread existence of antimicrobial peptides (AMPs) has been reported in various animals with comprehensive biological activities, which is consistent with the important roles of AMPs as the first line of host defense system. However, no big-data-based analysis on AMPs from any fish species is available. In this study, we identified 507 AMP transcripts on the basis of our previously reported genomes and transcriptomes of two representative amphibious mudskippers, Boleophthalmus pectinirostris (BP) and Periophthalmus magnuspinnatus (PM). The former is predominantly aquatic with less time out of water, while the latter is primarily terrestrial with extended periods of time on land. Within these identified AMPs, 449 sequences are novel; 15 were reported in BP previously; 48 are identically overlapped between BP and PM; 94 were validated by mass spectrometry. Moreover, most AMPs presented differential tissue transcription patterns in the two mudskippers. Interestingly, we discovered two AMPs, hemoglobin β1 and amylin, with high inhibitions on Micrococcus luteus. In conclusion, our high-throughput screening strategy based on genomic and transcriptomic data opens an efficient pathway to discover new antimicrobial peptides for ongoing development of marine drugs.
Collapse
|
45
|
Lipkin R, Pino-Angeles A, Lazaridis T. Transmembrane Pore Structures of β-Hairpin Antimicrobial Peptides by All-Atom Simulations. J Phys Chem B 2017; 121:9126-9140. [PMID: 28879767 DOI: 10.1021/acs.jpcb.7b06591] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protegrin-1 is an 18-residue β-hairpin antimicrobial peptide (AMP) that has been suggested to form transmembrane β-barrels in biological membranes. However, alternative structures have also been proposed. Here, we performed multimicrosecond, all-atom molecular dynamics simulations of various protegrin-1 oligomers on the membrane surface and in transmembrane topologies. The membrane surface simulations indicated that protegrin dimers are stable, whereas trimers and tetramers break down. Tetrameric arcs remained stably inserted in lipid membranes, but the pore water was displaced by lipid molecules. Unsheared protegrin β-barrels opened into β-sheets that surrounded stable aqueous pores, whereas tilted barrels with sheared hydrogen bonding patterns were stable in most topologies. A third type of observed pore consisted of multiple small oligomers surrounding a small, partially lipidic pore. We also considered the β-hairpin AMP tachyplesin, which showed less tendency to oligomerize than protegrin: the octameric bundle resulted in small pores surrounded by six peptides as monomers and dimers, with some peptides returning to the membrane surface. The results imply that multiple configurations of protegrin oligomers may produce aqueous pores and illustrate the relationship between topology and putative steps in protegrin-1's pore formation. However, the long-term stability of these structures needs to be assessed further.
Collapse
Affiliation(s)
- Richard Lipkin
- Department of Chemistry, City College of New York , 160 Convent Avenue, New York, New York 10031, United States.,Graduate Program in Chemistry, The Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| | - Almudena Pino-Angeles
- Department of Chemistry, City College of New York , 160 Convent Avenue, New York, New York 10031, United States
| | - Themis Lazaridis
- Department of Chemistry, City College of New York , 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|