1
|
Watrobska CM, Pasquier G, Leadbeater E, Portugal SJ. Metabolic rate does not explain performance on a short-term memory task or personality traits in juvenile chickens ( Gallus gallus domesticus). ROYAL SOCIETY OPEN SCIENCE 2023; 10:221650. [PMID: 37711148 PMCID: PMC10498036 DOI: 10.1098/rsos.221650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Metabolic rate determines life processes and the physiological requirements of an individual, and has recently been implicated as a driver of inter-individual variation in behaviour, with positive correlations associated with boldness, exploration and aggressive behaviours being recorded. While the link between metabolism and personality has been explored, little is known about the influence of metabolism on cognitive abilities. Here we used juvenile female chickens (Gallus gallus domesticus) to investigate the relationships between metabolic rate at rest, short-term memory, personality, and dominance. Resting metabolic rates of the chicks were measured over a three-week period, concurrently with measures of short-term memory using an analogue of the radial arm maze. We also measured latency to leave the shelter (boldness), neophobia (fear of novel objects) and dominance within a group, both before and after short-term memory trials. We found that metabolic rate did not explain inter-individual differences in short-term memory, personality traits or dominance, suggesting that energy allocated to these traits is independent of individual metabolic rate, and providing evidence for the independent energy-management hypothesis. Differences in short-term memory were also not explained by boldness or neophobia. Variation in behaviour in chicks, therefore, appears to be driven by separate, currently unknown variables.
Collapse
Affiliation(s)
- Cecylia M. Watrobska
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Grégoire Pasquier
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Ellouise Leadbeater
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
2
|
Sridhar VH, Davidson JD, Twomey CR, Sosna MMG, Nagy M, Couzin ID. Inferring social influence in animal groups across multiple timescales. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220062. [PMID: 36802787 PMCID: PMC9939267 DOI: 10.1098/rstb.2022.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Many animal behaviours exhibit complex temporal dynamics, suggesting there are multiple timescales at which they should be studied. However, researchers often focus on behaviours that occur over relatively restricted temporal scales, typically ones that are more accessible to human observation. The situation becomes even more complex when considering multiple animals interacting, where behavioural coupling can introduce new timescales of importance. Here, we present a technique to study the time-varying nature of social influence in mobile animal groups across multiple temporal scales. As case studies, we analyse golden shiner fish and homing pigeons, which move in different media. By analysing pairwise interactions among individuals, we show that predictive power of the factors affecting social influence depends on the timescale of analysis. Over short timescales the relative position of a neighbour best predicts its influence and the distribution of influence across group members is relatively linear, with a small slope. At longer timescales, however, both relative position and kinematics are found to predict influence, and nonlinearity in the influence distribution increases, with a small number of individuals being disproportionately influential. Our results demonstrate that different interpretations of social influence arise from analysing behaviour at different timescales, highlighting the importance of considering its multiscale nature. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Vivek H. Sridhar
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, 78467 Konstanz, Germany
| | - Jacob D. Davidson
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Colin R. Twomey
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA,Mind Center for Outreach, Research, and Education, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew M. G. Sosna
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Máté Nagy
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany,MTA-ELTE Statistical and Biological Physics Research Group, Hungarian Academy of Sciences, Budapest 1117, Hungary,MTA-ELTE ‘Lendület’ Collective Behaviour Research Group, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest 1117, Hungary,Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1A, Budapest 1117, Hungary
| | - Iain D. Couzin
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| |
Collapse
|
3
|
Pigeon leadership hierarchies are not dependent on environmental contexts or individual phenotypes. Behav Processes 2022; 198:104629. [DOI: 10.1016/j.beproc.2022.104629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
|
4
|
Portugal SJ, White CR. Externally attached biologgers cause compensatory body mass loss in birds. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Steven J. Portugal
- Department of Biological Sciences School of Life and Environmental Sciences Royal Holloway University of London Egham UK
| | - Craig R. White
- School of Biological Sciences Monash University Clayton, Melbourne Vic. Australia
| |
Collapse
|
5
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition in Vertebrates: Mate Choice Turns Cognition or Cognition Turns Mate Choice? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The idea of “smart is sexy,” meaning superior cognition provides competitive benefits in mate choice and, therefore, evolutionary advantages in terms of reproductive fitness, is both exciting and captivating. Cognitively flexible individuals perceive and adapt more dynamically to (unpredictable) environmental changes. The sex roles that females and males adopt within their populations can vary greatly in response to the prevalent mating system. Based on how cognition determines these grossly divergent sex roles, different selection pressures could possibly shape the (progressive) evolution of cognitive abilities, suggesting the potential to induce sexual dimorphisms in superior cognitive abilities. Associations between an individual’s mating success, sexual traits and its cognitive abilities have been found consistently across vertebrate species and taxa, providing evidence that sexual selection may well shape the supporting cognitive prerequisites. Yet, while superior cognitive abilities provide benefits such as higher feeding success, improved antipredator behavior, or more favorable mate choice, they also claim costs such as higher energy levels and metabolic rates, which in turn may reduce fecundity, growth, or immune response. There is compelling evidence in a variety of vertebrate taxa that females appear to prefer skilled problem-solver males, i.e., they prefer those that appear to have better cognitive abilities. Consequently, cognition is also likely to have substantial effects on sexual selection processes. How the choosing sex assesses the cognitive abilities of potential mates has not been explored conclusively yet. Do cognitive skills guide an individual’s mate choice and does learning change an individual’s mate choice decisions? How and to which extent do individuals use their own cognitive skills to assess those of their conspecifics when choosing a mate? How does an individual’s role within a mating system influence the choice of the choosing sex in this context? Drawing on several examples from the vertebrate world, this review aims to elucidate various aspects associated with cognitive sex differences, the different roles of males and females in social and sexual interactions, and the potential influence of cognition on mate choice decisions. Finally, future perspectives aim to identify ways to answer the central question of how the triad of sex, cognition, and mate choice interacts.
Collapse
|
6
|
McClelland SC, Reynolds M, Cordall M, Hauber ME, Goymann W, McClean LA, Hamama S, Lund J, Dixit T, Louder MIM, Safari I, Honza M, Spottiswoode CN, Portugal SJ. Embryo movement is more frequent in avian brood parasites than birds with parental reproductive strategies. Proc Biol Sci 2021; 288:20211137. [PMID: 34702076 PMCID: PMC8548802 DOI: 10.1098/rspb.2021.1137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Movement of the embryo is essential for musculoskeletal development in vertebrates, yet little is known about whether, and why, species vary. Avian brood parasites exhibit feats of strength in early life as adaptations to exploit the hosts that rear them. We hypothesized that an increase in embryonic movement could allow brood parasites to develop the required musculature for these demands. We measured embryo movement across incubation for multiple brood-parasitic and non-parasitic bird species. Using a phylogenetically controlled analysis, we found that brood parasites exhibited significantly increased muscular movement during incubation compared to non-parasites. This suggests that increased embryo movement may facilitate the development of the stronger musculoskeletal system required for the demanding tasks undertaken by young brood parasites.
Collapse
Affiliation(s)
- Stephanie C. McClelland
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Miranda Reynolds
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Molly Cordall
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Mark E. Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
- American Museum of Natural History, New York, NY 10024, USA
| | - Wolfgang Goymann
- Max-Planck-Institut für Ornithologie, Abteilung für Verhaltensneurobiologie, Eberhard-Gwinner-Str. 6a, D-82319 Seewiesen, Germany
- Coucal Project, PO Box 26, Chimala, Tanzania
| | - Luke A. McClean
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Silky Hamama
- c/o Musumanene Farm, PO Box 630038, Choma, Zambia
| | - Jess Lund
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Tanmay Dixit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Matthew I. M. Louder
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Ignas Safari
- Max-Planck-Institut für Ornithologie, Abteilung für Verhaltensneurobiologie, Eberhard-Gwinner-Str. 6a, D-82319 Seewiesen, Germany
- Coucal Project, PO Box 26, Chimala, Tanzania
- Department of Biology, University of Dodoma, PO Box 338, Dodoma, Tanzania
| | - Marcel Honza
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65 Brno, Czech Republic
| | - Claire N. Spottiswoode
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
7
|
Garde B, Wilson RP, Lempidakis E, Börger L, Portugal SJ, Hedenström A, Dell'Omo G, Quetting M, Wikelski M, Shepard ELC. Fine-scale changes in speed and altitude suggest protean movements in homing pigeon flights. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210130. [PMID: 34017602 PMCID: PMC8131938 DOI: 10.1098/rsos.210130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 05/14/2023]
Abstract
The power curve provides a basis for predicting adjustments that animals make in flight speed, for example in relation to wind, distance, habitat foraging quality and objective. However, relatively few studies have examined how animals respond to the landscape below them, which could affect speed and power allocation through modifications in climb rate and perceived predation risk. We equipped homing pigeons (Columba livia) with high-frequency loggers to examine how flight speed, and hence effort, varies in relation to topography and land cover. Pigeons showed mixed evidence for an energy-saving strategy, as they minimized climb rates by starting their ascent ahead of hills, but selected rapid speeds in their ascents. Birds did not modify their speed substantially in relation to land cover, but used higher speeds during descending flight, highlighting the importance of considering the rate of change in altitude before estimating power use from speed. Finally, we document an unexpected variability in speed and altitude over fine scales; a source of substantial energetic inefficiency. We suggest this may be a form of protean behaviour adopted to reduce predation risk when flocking is not an option, and that such a strategy could be widespread.
Collapse
Affiliation(s)
- Baptiste Garde
- Biosciences, College of Science, Swansea University, Singleton Park, Swansea, UK
| | - Rory P. Wilson
- Biosciences, College of Science, Swansea University, Singleton Park, Swansea, UK
| | - Emmanouil Lempidakis
- Biosciences, College of Science, Swansea University, Singleton Park, Swansea, UK
| | - Luca Börger
- Biosciences, College of Science, Swansea University, Singleton Park, Swansea, UK
| | - Steven J. Portugal
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Anders Hedenström
- Department of Biology, Centre for Animal Movement Research, Lund University, Lund, Sweden
| | | | - Michael Quetting
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Wikelski
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Migration and Immuno-Ecology, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Emily L. C. Shepard
- Biosciences, College of Science, Swansea University, Singleton Park, Swansea, UK
| |
Collapse
|
8
|
Honda T. Geographical personality gradient in herbivorous animals: Implications for selective culling to reduce crop damage. Ecol Res 2021. [DOI: 10.1111/1440-1703.12186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Takeshi Honda
- Yamanashi Prefecture Agricultural Research Center Kai Japan
| |
Collapse
|
9
|
Portugal SJ, Usherwood JR, White CR, Sankey DWE, Wilson AM. Artificial mass loading disrupts stable social order in pigeon dominance hierarchies. Biol Lett 2020; 16:20200468. [PMID: 32750272 DOI: 10.1098/rsbl.2020.0468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dominance hierarchies confer benefits to group members by decreasing the incidences of physical conflict, but may result in certain lower ranked individuals consistently missing out on access to resources. Here, we report a linear dominance hierarchy remaining stable over time in a closed population of birds. We show that this stability can be disrupted, however, by the artificial mass loading of birds that typically comprise the bottom 50% of the hierarchy. Mass loading causes these low-ranked birds to immediately become more aggressive and rise-up the dominance hierarchy; however, this effect was only evident in males and was absent in females. Removal of the artificial mass causes the hierarchy to return to its previous structure. This interruption of a stable hierarchy implies a strong direct link between body mass and social behaviour and suggests that an individual's personality can be altered by the artificial manipulation of body mass.
Collapse
Affiliation(s)
- Steven J Portugal
- Structure and Motion Laboratory, The Royal Veterinary College, University of London, Hatfield, Herts AL9 7TA, UK.,Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - James R Usherwood
- Structure and Motion Laboratory, The Royal Veterinary College, University of London, Hatfield, Herts AL9 7TA, UK
| | - Craig R White
- Biological Sciences, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Daniel W E Sankey
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Alan M Wilson
- Structure and Motion Laboratory, The Royal Veterinary College, University of London, Hatfield, Herts AL9 7TA, UK
| |
Collapse
|
10
|
Caliva JM, Alcala RS, Guzmán DA, Marin RH, Kembro JM. High-resolution behavioral time series of Japanese quail within their social environment. Sci Data 2019; 6:300. [PMID: 31796742 PMCID: PMC6890678 DOI: 10.1038/s41597-019-0299-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/29/2019] [Indexed: 01/26/2023] Open
Abstract
The behavioral dynamics within a social group not only could depend on individual traits and social-experience of each member, but more importantly, emerges from inter-individual interactions over time. Herein, we first present a dataset, as well as the corresponding original video recordings, of the results of 4 behavioral tests associated with fear and aggressive response performed on 106 Japanese quail. In a second stage, birds were housed with conspecifics that performed similarly in the behavioral tests in groups of 2 females and 1 male. By continuously monitoring each bird in these small social groups, we obtained time series of social and reproductive behavior, and high-resolution locomotor time series. This approach provides the opportunity to perform precise quantification of the temporal dynamics of behavior at an individual level within different social scenarios including when an individual showing continued aggressive behaviors is present. These unique datasets and videos are publicly available in Figshare and can be used in further analysis, or for comparison with existing or future data sets or mathematical models across different taxa.
Collapse
Affiliation(s)
- Jorge Martín Caliva
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Córdoba, Argentina
| | - Rocio Soledad Alcala
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina
| | - Diego Alberto Guzmán
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Córdoba, Argentina
| | - Raúl Héctor Marin
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Córdoba, Argentina
| | - Jackelyn Melissa Kembro
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Córdoba, Argentina.
| |
Collapse
|
11
|
|
12
|
Sasaki T, Mann RP, Warren KN, Herbert T, Wilson T, Biro D. Personality and the collective: bold homing pigeons occupy higher leadership ranks in flocks. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0038. [PMID: 29581403 DOI: 10.1098/rstb.2017.0038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 01/07/2023] Open
Abstract
While collective movement is ecologically widespread and conveys numerous benefits on individuals, it also poses a coordination problem: who controls the group's movements? The role that animal 'personalities' play in this question has recently become a focus of research interest. Although many animal groups have distributed leadership (i.e. multiple individuals influence collective decisions), studies linking personality and leadership have focused predominantly on the group's single most influential individual. In this study, we investigate the relationship between personality and the influence of multiple leaders on collective movement using homing pigeons, Columba livia, a species known to display complex multilevel leadership hierarchies during flock flights. Our results show that more exploratory (i.e. 'bold') birds are more likely to occupy higher ranks in the leadership hierarchy and thus have more influence on the direction of collective movement than less exploratory (i.e. 'shy') birds during both free flights around their lofts and homing flights from a distant site. Our data also show that bold pigeons fly faster than shy birds during solo flights. We discuss our results in light of theories about the evolution of personality, with specific reference to the adaptive value of heterogeneity in animal groups.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Takao Sasaki
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Richard P Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Katherine N Warren
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Tristian Herbert
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Tara Wilson
- University College London, Gower Street, London WC1E 6BT, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
13
|
Bingman VP. Requiem for a heavyweight – can anything more be learned from homing pigeons about the sensory and spatial-representational basis of avian navigation? J Exp Biol 2018; 221:221/20/jeb163089. [DOI: 10.1242/jeb.163089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The homing pigeon (Columba livia) has long served as a study species to exhaustively investigate the sensory and spatial (map)-representational mechanisms that guide avian navigation. However, several factors have contributed to recent questioning of whether homing pigeons are as valuable as they once were as a general model for the study of the sensory and map-like, spatial-representational mechanisms of avian navigation. These reservations include: the success of this research program in unveiling navigational mechanisms; the burgeoning of new tracking technologies making navigational experiments on long-distance migratory and other wild birds much more accessible; the almost complete loss of the historically dominant, large-scale pigeon loft/research facilities; and prohibitive university per diem costs as well as animal care and use restrictions. Nevertheless, I propose here that there remain good prospects for homing pigeon research that could still profoundly influence how one understands aspects of avian navigation beyond sensory mechanisms and spatial-representational strategies. Indeed, research into neural mechanisms and brain organization, social/personality influences and genetics of navigation all offer opportunities to take advantage of the rich spatial behavior repertoire and experimental convenience of homing pigeons. Importantly, research in these areas would not necessarily require the large number of birds typically used in the past to study the sensory guidance of navigation. For those of us who have had the opportunity to work with this remarkable animal, one research door may be closing, but a window into exciting future opportunities lies ajar.
Collapse
Affiliation(s)
- Verner P. Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
14
|
Kano F, Walker J, Sasaki T, Biro D. Head-mounted sensors reveal visual attention of free-flying homing pigeons. ACTA ACUST UNITED AC 2018; 221:221/17/jeb183475. [PMID: 30190414 DOI: 10.1242/jeb.183475] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Gaze behavior offers valuable insights into attention and cognition. However, technological limitations have prevented the examination of animals' gaze behavior in natural, information-rich contexts; for example, during navigation through complex environments. Therefore, we developed a lightweight custom-made logger equipped with an inertial measurement unit (IMU) and GPS to simultaneously track the head movements and flight trajectories of free-flying homing pigeons. Pigeons have a limited range of eye movement, and their eye moves in coordination with their head in a saccadic manner (similar to primate eye saccades). This allows head movement to act as a proxy for visual scanning behavior. Our IMU sensor recorded the 3D movement of the birds' heads in high resolution, allowing us to reliably detect distinct saccade signals. The birds moved their head far more than necessary for maneuvering flight, suggesting that they actively scanned the environment. This movement was predominantly horizontal (yaw) and sideways (roll), allowing them to scan the environment with their lateral visual field. They decreased their head movement when they flew solo over prominent landmarks (major roads and a railway line) and also when they flew in pairs (especially when flying side by side, with the partner maintained in their lateral visual field). Thus, a decrease in head movement indicates a change in birds' focus of attention. We conclude that pigeons use their head gaze in a task-related manner and that tracking flying birds' head movement is a promising method for examining their visual attention during natural tasks.
Collapse
Affiliation(s)
- Fumihiro Kano
- Kumamoto Sanctuary, Wildlife Research Center, Kyoto University, Uki, Kumamoto, Japan .,Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - James Walker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Takao Sasaki
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
15
|
Seebacher F, Krause J. Physiological mechanisms underlying animal social behaviour. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0231. [PMID: 28673909 DOI: 10.1098/rstb.2016.0231] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jens Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.,Faculty of Life Sciences Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
16
|
Huang P, Kimball RT, St. Mary CM. Does the use of a multi-trait, multi-test approach to measure animal personality yield different behavioural syndrome results? BEHAVIOUR 2018. [DOI: 10.1163/1568539x-00003480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A multi-trait, multi-test approach to investigate the convergence or discrimination between behavioural tests putatively targeting the same or different animal personality traits has been recommended, yet whether and how the approaches affect the identification of behavioural syndrome(s), the suite of correlated personality traits, requires investigation. Here, we used behavioural measures collected from five commonly used behavioural tests targeting three personality traits, evaluated their convergence/discrimination through exploratory factor analysis (EFA), and then explored whether the identification of syndrome changed based on the approach we used to quantify personality traits. Our results indicated that tests presumably targeting the same personality trait actually measured distinct behavioural aspects. Syndrome defined using correlation changed due to how we identified personality traits, but not when using structural equation models (SEMs). Overall, this study emphasizes that it is critical to clarify the approach and terms we use for ‘personality traits’ in the field of animal personality.
Collapse
Affiliation(s)
- Ping Huang
- Department of Biology, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|