1
|
Ponzi D, Palanza P. Sex is a biologically coherent concept: A response to. Horm Behav 2024; 166:105636. [PMID: 39277911 DOI: 10.1016/j.yhbeh.2024.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Affiliation(s)
- Davide Ponzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Krueger-Hadfield SA. Let's talk about sex: Why reproductive systems matter for understanding algae. JOURNAL OF PHYCOLOGY 2024; 60:581-597. [PMID: 38743848 DOI: 10.1111/jpy.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Sex is a crucial process that has molecular, genetic, cellular, organismal, and population-level consequences for eukaryotic evolution. Eukaryotic life cycles are composed of alternating haploid and diploid phases but are constrained by the need to accommodate the phenotypes of these different phases. Critical gaps in our understanding of evolutionary drivers of the diversity in algae life cycles include how selection acts to stabilize and change features of the life cycle. Moreover, most eukaryotes are partially clonal, engaging in both sexual and asexual reproduction. Yet, our understanding of the variation in their reproductive systems is largely based on sexual reproduction in animals or angiosperms. The relative balance of sexual versus asexual reproduction not only controls but also is in turn controlled by standing genetic variability, thereby shaping evolutionary trajectories. Thus, we must quantitatively assess the consequences of the variation in life cycles on reproductive systems. Algae are a polyphyletic group spread across many of the major eukaryotic lineages, providing powerful models by which to resolve this knowledge gap. There is, however, an alarming lack of data about the population genetics of most algae and, therefore, the relative frequency of sexual versus asexual processes. For many algae, the occurrence of sexual reproduction is unknown, observations have been lost in overlooked papers, or data on population genetics do not yet exist. This greatly restricts our ability to forecast the consequences of climate change on algal populations inhabiting terrestrial, aquatic, and marine ecosystems. This perspective summarizes our extant knowledge and provides some future directions to pursue broadly across micro- and macroalgal species.
Collapse
|
3
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
4
|
Clarke E, Bradshaw K, Drissell K, Kadam P, Rutter N, Vaglio S. Primate Sex and Its Role in Pleasure, Dominance and Communication. Animals (Basel) 2022; 12:ani12233301. [PMID: 36496822 PMCID: PMC9736109 DOI: 10.3390/ani12233301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Sexual intercourse in the animal kingdom functions to enable reproduction. However, we now know that several species of non-human primates regularly engage in sex outside of the times when conception is possible. In addition, homosexual and immature sex are not as uncommon as were once believed. This suggests that sex also has important functions outside of reproduction, yet these are rarely discussed in sex-related teaching and research activities concerning primate behaviour. Is the human sexual experience, which includes pleasure, dominance, and communication (among others) unique, or do other primates also share these experiences to any extent? If so, is there any way to measure them, or are they beyond the rigour of scientific objectivity? What would be the evolutionary implications if human-like sexual experiences were found amongst other animals too? We comment on the evidence provided by our close relatives, non-human primates, discuss the affective and social functions of sex, and suggest potential methods for measuring some of these experiences empirically. We hope that this piece may foster the discussion among academics and change the way we think about, teach and research primate sex.
Collapse
Affiliation(s)
- Esther Clarke
- Department of Linguistics and Philosophy, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anthropology, Durham University, Durham DH1 3LE, UK
| | - Katie Bradshaw
- Department of Anthropology, Durham University, Durham DH1 3LE, UK
| | - Kieran Drissell
- Department of Anthropology, Durham University, Durham DH1 3LE, UK
| | - Parag Kadam
- Department of Anthropology, Durham University, Durham DH1 3LE, UK
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Nikki Rutter
- Department of Anthropology, Durham University, Durham DH1 3LE, UK
- Department of Sociology, Durham University, Durham DH1 3HN, UK
| | - Stefano Vaglio
- Department of Anthropology, Durham University, Durham DH1 3LE, UK
- Correspondence:
| |
Collapse
|
5
|
Somjee U, Shankar A, Falk JJ. Can Sex-Specific Metabolic Rates Provide Insight Into Patterns of Metabolic Scaling? Integr Comp Biol 2022; 62:icac135. [PMID: 35963649 DOI: 10.1093/icb/icac135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Females and males can exhibit striking differences in body size, relative trait size, physiology and behavior. As a consequence the sexes can have very different rates of whole-body energy use, or converge on similar rates through different physiological mechanisms. Yet many studies that measure the relationship between metabolic rate and body size only pay attention to a single sex (more often males), or do not distinguish between sexes. We present four reasons why explicit attention to energy-use between the sexes can yield insight into the physiological mechanisms that shape broader patterns of metabolic scaling in nature. First, the sexes often differ considerably in their relative investment in reproduction which shapes much of life-history and rates of energy use. Second, males and females share a majority of their genome but may experience different selective pressures. Sex-specific energy profiles can reveal how the energetic needs of individuals are met despite the challenge of within-species genetic constraints. Third, sexual selection often pushes growth and behavior to physiological extremes. Exaggerated sexually selected traits are often most prominent in one sex, can comprise up to 50% of body mass and thus provide opportunities to uncover energetic constraints of trait growth and maintenance. Finally, sex-differences in behavior such as mating-displays, long-distance dispersal and courtship can lead to drastically different energy allocation among the sexes; the physiology to support this behavior can shape patterns of metabolic scaling. The mechanisms underlying metabolic scaling in females, males and hermaphroditic animals can provide opportunities to develop testable predictions that enhance our understanding of energetic scaling patterns in nature.
Collapse
Affiliation(s)
- Ummat Somjee
- Smithsonian Tropical Research Institute, Panama
- University of Texas, Austin, TX
| | | | - Jay J Falk
- Smithsonian Tropical Research Institute, Panama
- University of Washington, Seattle, WA
| |
Collapse
|
6
|
Reinhardt D, Roux C, Corradi N, Di Pietro A. Lineage-Specific Genes and Cryptic Sex: Parallels and Differences between Arbuscular Mycorrhizal Fungi and Fungal Pathogens. TRENDS IN PLANT SCIENCE 2021; 26:111-123. [PMID: 33011084 DOI: 10.1016/j.tplants.2020.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live as obligate root symbionts on almost all land plants. They have long been regarded as ancient asexuals that have propagated clonally for millions of years. However, genomic studies in Rhizophagus irregularis and other AMF revealed many features indicative of sex. Surprisingly, comparative genomics of conspecific isolates of R. irregularis revealed an unexpected interstrain diversity, suggesting that AMF carry a high number of lineage-specific (LS) genes. Intriguingly, cryptic sex and LS genomic regions have previously been reported in a number of fungal pathogens of plants and humans. Here, we discuss these genomic similarities and highlight their potential relevance for AMF adaptation to the environment and for symbiotic functioning.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan 31326, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
7
|
Orive ME, Krueger-Hadfield SA. Sex and Asex: A Clonal Lexicon. J Hered 2020; 112:1-8. [PMID: 33336685 DOI: 10.1093/jhered/esaa058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023] Open
Abstract
Organisms across the tree of life have complex life cycles that include both sexual and asexual reproduction or that are obligately asexual. These organisms include ecologically dominant species that structure many terrestrial and marine ecosystems, as well as many pathogens, pests, and invasive species. We must consider both the evolution and maintenance of these various reproductive modes and how these modes shape the genetic diversity, adaptive evolution, and ability to persist in the species that exhibit them. Thus, having a common framework is a key aspect of understanding the biodiversity that shapes our planet. In the 2019 AGA President's Symposium, Sex and Asex: The genetics of complex life cycles, researchers investigating a wide range of taxonomic models and using a variety of modes of investigation coalesced around a common theme-understanding not only how such complex life cycles may evolve, but how they are shaped by the evolutionary and ecological forces around them. In this introduction to the Special Issue from the symposium, we give an overview of some of the key ideas and areas of investigation (a common clonal lexicon, we might say) and introduce the breadth of work submitted by symposium participants.
Collapse
Affiliation(s)
- Maria E Orive
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045
| | - Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama, Birmingham, 1300 University Blvd., Birmingham, AL 35294
| |
Collapse
|
8
|
Krumbeck Y, Constable GWA, Rogers T. Fitness differences suppress the number of mating types in evolving isogamous species. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192126. [PMID: 32257356 PMCID: PMC7062084 DOI: 10.1098/rsos.192126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
Sexual reproduction is not always synonymous with the existence of two morphologically different sexes; isogamous species produce sex cells of equal size, typically falling into multiple distinct self-incompatible classes, termed mating types. A long-standing open question in evolutionary biology is: what governs the number of these mating types across species? Simple theoretical arguments imply an advantage to rare types, suggesting the number of types should grow consistently; however, empirical observations are very different. While some isogamous species exhibit thousands of mating types, such species are exceedingly rare, and most have fewer than 10. In this paper, we present a mathematical analysis to quantify the role of fitness variation-characterized by different mortality rates-in determining the number of mating types emerging in simple evolutionary models. We predict that the number of mating types decreases as the variance of mortality increases.
Collapse
Affiliation(s)
- Yvonne Krumbeck
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | | | - Tim Rogers
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
9
|
Li XY, Liu XL, Zhu YJ, Zhang J, Ding M, Wang MT, Wang ZW, Li Z, Zhang XJ, Zhou L, Gui JF. Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish. Heredity (Edinb) 2018; 121:64-74. [PMID: 29391565 PMCID: PMC5997666 DOI: 10.1038/s41437-017-0049-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/23/2017] [Indexed: 12/31/2022] Open
Abstract
Most vertebrates reproduce sexually, and plastic sex determination mechanisms including genotypic sex determination (GSD) and environmental sex determination (ESD) have been extensively revealed. However, why sex determination mechanisms evolve diversely and how they correlate with diverse reproduction strategies remain largely unclear. Here, we utilize the superiority of a hexaploid gibel carp (Carassius gibelio) that is able to reproduce by unisexual gynogenesis and contains a rare but diverse proportion of males to investigate these puzzles. A total of 2248 hexaploid specimens were collected from 34 geographic wild populations throughout mainland China, in which 24 populations were revealed to contain 186 males with various incidences ranging from 1.2 to 26.5%. Subsequently, the proportion of temperature-dependent sex determination (TSD) was revealed to be positively correlated to average annual temperature in wild populations, and male incidence in lab gynogenetic progenies was demonstrated to increase with the increasing of larval rearing temperature. Meanwhile, extra microchromosomes were confirmed to play genotypic male determination role as previously reported. Thereby, GSD and TSD were found to coexist in gibel carp, and the proportions of GSD were observed to be much higher than that of TSD in sympatric wild populations. Our findings uncover a potential new mechanism in the evolution of sex determination system in polyploid vertebrates with unisexual gynogenesis ability, and also reveal a possible association of sex determination mechanism transition between TSD and GSD and reproduction mode transition between unisexual gynogenesis and bisexual reproduction.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yao-Jun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ming-Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
10
|
Schärer L. The varied ways of being male and female. Mol Reprod Dev 2017; 84:94-104. [PMID: 28032683 DOI: 10.1002/mrd.22775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022]
Abstract
Our understanding of sexual reproduction is mainly informed by research on gonochorists (i.e., species with separate sexes), including insects, birds, and mammals. But the male and female sexes are not two types of individuals; they actually represent two different reproductive strategies, and in many organisms, these two strategies are distributed among individuals in a population in a variety of ways. For example, sequential hermaphrodites (or sex-changers) exhibit one strategy early in life and later switch to the other, while simultaneous hermaphrodites exhibit both strategies at the same time. There are also many intermediate sexual systems that mix gonochorists and hermaphrodites in the same species and within many organismal groups, shifts occur between these sexual systems. A fascinating collection of six articles in this special issue on Hermaphroditism & Sex Determination impressively documents some important challenges to our understanding of sex determination, and the specification of male and female reproductive function when these need to occur within the same individual rather than in two separate individuals. Moreover, hermaphroditism changes how we need to think about reproductive allocation to sexual functions, how such allocation can be specified, as well as how the sexual system affects sexual conflict and the resulting antagonistic coevolution. Our understanding of sexual reproduction will profit greatly from exploring the varied ways of being male and female. Mol. Reprod. Dev. 84: 94-104, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Nieuwenhuis BPS, James TY. The frequency of sex in fungi. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0540. [PMID: 27619703 DOI: 10.1098/rstb.2015.0540] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
Fungi are a diverse group of organisms with a huge variation in reproductive strategy. While almost all species can reproduce sexually, many reproduce asexually most of the time. When sexual reproduction does occur, large variation exists in the amount of in- and out-breeding. While budding yeast is expected to outcross only once every 10 000 generations, other fungi are obligate outcrossers with well-mixed panmictic populations. In this review, we give an overview of the costs and benefits of sexual and asexual reproduction in fungi, and the mechanisms that evolved in fungi to reduce the costs of either mode. The proximate molecular mechanisms potentiating outcrossing and meiosis appear to be present in nearly all fungi, making them of little use for predicting outcrossing rates, but also suggesting the absence of true ancient asexual lineages. We review how population genetic methods can be used to estimate the frequency of sex in fungi and provide empirical data that support a mixed mode of reproduction in many species with rare to frequent sex in between rounds of mitotic reproduction. Finally, we highlight how these estimates might be affected by the fungus-specific mechanisms that evolved to reduce the costs of sexual and asexual reproduction.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Bart P S Nieuwenhuis
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
12
|
Kokko H. Give one species the task to come up with a theory that spans them all: what good can come out of that? Proc Biol Sci 2017; 284:20171652. [PMID: 29142112 PMCID: PMC5719169 DOI: 10.1098/rspb.2017.1652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 01/01/2023] Open
Abstract
Does the progress in understanding evolutionary theory depend on the species that is doing the investigation? This question is difficult to answer scientifically, as we are dealing with an n = 1 scenario: every individual who has ever written about evolution is a human being. I will discuss, first, whether we get the correct answer to questions if we begin with ourselves and expand outwards, and second, whether we might fail to ask all the interesting questions unless we combat our tendencies to favour taxa that are close to us. As a whole, the human tendency to understand general biological phenomena via 'putting oneself in another organism's shoes' has upsides and downsides. As an upside, our intuitive ability to rethink strategies if the situation changes can lead to ready generation of adaptive hypotheses. Downsides occur if we trust this intuition too much, and particular danger zones exist for traits where humans are an unusual species. I argue that the levels of selection debate might have proceeded differently if human cooperation patterns were not so unique, as this brings about unique challenges in biology teaching; and that theoretical insights regarding inbreeding avoidance versus tolerance could have spread faster if we were not extrapolating our emotional reactions to incest disproportionately depending on whether we study animals or plants. I also discuss patterns such as taxonomic chauvinism, i.e. less attention being paid to species that differ more from human-like life histories. Textbooks on evolution reinforce such biases insofar as they present, as a default case, systems that resemble ours in terms of life cycles and other features (e.g. gonochorism). Additionally, societal norms may have led to incorrect null hypotheses such as females not mating multiply.
Collapse
Affiliation(s)
- Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
13
|
Brandeis M. New-age ideas about age-old sex: separating meiosis from mating could solve a century-old conundrum. Biol Rev Camb Philos Soc 2017; 93:801-810. [PMID: 28913952 DOI: 10.1111/brv.12367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/01/2022]
Abstract
Ever since Darwin first addressed it, sexual reproduction reigns as the 'queen' of evolutionary questions. Multiple theories tried to explain how this apparently costly and cumbersome method has become the universal mode of eukaryote reproduction. Most theories stress the adaptive advantages of sex by generating variation, they fail however to explain the ubiquitous persistence of sexual reproduction also where adaptation is not an issue. I argue that the obstacle for comprehending the role of sex stems from the conceptual entanglement of two distinct processes - gamete production by meiosis and gamete fusion by mating (mixis). Meiosis is an ancient, highly rigid and evolutionary conserved process identical and ubiquitous in all eukaryotes. Mating, by contrast, shows tremendous evolutionary variability even in closely related clades and exhibits wonderful ecological adaptability. To appreciate the respective roles of these two processes, which are normally linked and alternating, we require cases where one takes place without the other. Such cases are rather common. The heteromorphic sex chromosomes Y and W, that do not undergo meiotic recombination are an evolutionary test case for demonstrating the role of meiosis. Substantial recent genomic evidence highlights the accelerated rates of change and attrition these chromosomes undergo in comparison to those of recombining autosomes. I thus propose that the most basic role of meiosis is conserving integrity of the genome. A reciprocal case of meiosis without bi-parental mating, is presented by self-fertilization, which is fairly common in flowering plants, as well as most types of apomixis. I argue that deconstructing sex into these two distinct processes - meiosis and mating - will greatly facilitate their analysis and promote our understanding of sexual reproduction.
Collapse
Affiliation(s)
- Michael Brandeis
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
14
|
Why Sex? A Pluralist Approach Revisited. Trends Ecol Evol 2017; 32:589-600. [DOI: 10.1016/j.tree.2017.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/08/2023]
|
15
|
Rodríguez-Verdugo A, Buckley J, Stapley J. The genomic basis of eco-evolutionary dynamics. Mol Ecol 2017; 26:1456-1464. [PMID: 28160333 DOI: 10.1111/mec.14045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 12/30/2022]
Abstract
Recent recognition that ecological and evolutionary processes can operate on similar timescales has led to a rapid increase in theoretical and empirical studies on eco-evolutionary dynamics. Progress in the fields of evolutionary biology, genomics and ecology is greatly enhancing our understanding of rapid adaptive processes, the predictability of adaptation and the genetics of ecologically important traits. However, progress in these fields has proceeded largely independently of one another. In an attempt to better integrate these fields, the centre for 'Adaptation to a Changing Environment' organized a conference entitled 'The genomic basis of eco-evolutionary change' and brought together experts in ecological genomics and eco-evolutionary dynamics. In this review, we use the work of the invited speakers to summarize eco-evolutionary dynamics and discuss how they are relevant for understanding and predicting responses to contemporary environmental change. Then, we show how recent advances in genomics are contributing to our understanding of eco-evolutionary dynamics. Finally, we highlight the gaps in our understanding of eco-evolutionary dynamics and recommend future avenues of research in eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Alejandra Rodríguez-Verdugo
- Adaptation to a Changing Environment, ETH Zürich, 8092, Zürich, Switzerland.,Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
| | - James Buckley
- Adaptation to a Changing Environment, ETH Zürich, 8092, Zürich, Switzerland
| | - Jessica Stapley
- Adaptation to a Changing Environment, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|