1
|
Isaksson H, Lind P, Libby E. Adaptive evolutionary trajectories in complexity: Transitions between unicellularity and facultative differentiated multicellularity. Proc Natl Acad Sci U S A 2025; 122:e2411692122. [PMID: 39841150 DOI: 10.1073/pnas.2411692122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Multicellularity spans a wide gamut in terms of complexity, from simple clonal clusters of cells to large-scale organisms composed of differentiated cells and tissues. While recent experiments have demonstrated that simple forms of multicellularity can readily evolve in response to different selective pressures, it is unknown if continued exposure to those same selective pressures will result in the evolution of increased multicellular complexity. We use mathematical models to consider the adaptive trajectories of unicellular organisms exposed to periodic bouts of abiotic stress, such as drought or antibiotics. Populations can improve survival in response to the stress by evolving multicellularity or cell differentiation-or both; however, these responses have associated costs when the stress is absent. We define a parameter space of fitness-relevant traits and identify where multicellularity, differentiation, or their combination is fittest. We then study the effects of adaptation by allowing populations to fix mutations that improve their fitness. We find that while the same mutation can be beneficial to populations of different complexity, e.g., strict unicellularity or life cycles with stages of differentiated multicellularity, the magnitudes of their effects can differ and alter which is fittest. As a result, we observe adaptive trajectories that gain and lose complexity. We also show that the order of mutations, historical contingency, can cause some transitions to be permanent in the absence of neutral evolution. Ultimately, we find that continued exposure to a selective driver for multicellularity can either lead to increasing complexity or a return to unicellularity.
Collapse
Affiliation(s)
- Hanna Isaksson
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå 90187, Sweden
- IceLab, Umeå University, Umeå 90187, Sweden
| | - Peter Lind
- IceLab, Umeå University, Umeå 90187, Sweden
- Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå 90187, Sweden
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå 90187, Sweden
- IceLab, Umeå University, Umeå 90187, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå 90187, Sweden
| |
Collapse
|
2
|
Doulcier G, Takacs P, Hammerschmidt K, Bourrat P. Stability of ecologically scaffolded traits during evolutionary transitions in individuality. Nat Commun 2024; 15:6566. [PMID: 39095362 PMCID: PMC11297203 DOI: 10.1038/s41467-024-50625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Evolutionary transitions in individuality are events in the history of life leading to the emergence of new levels of individuality. Recent studies have described an ecological scaffolding scenario of such transitions focused on the evolutionary consequences of an externally imposed renewing meta-population structure with limited dispersal. One difficulty for such a scenario has been explaining the stability of collective-level traits when scaffolding conditions no longer apply. Here, we show that the stability of scaffolded traits can rely on evolutionary hysteresis: even if the environment is reverted to an ancestral state, collectives do not return to ancestral phenotypes. We describe this phenomenon using a stochastic meta-population model and adaptive dynamics. Further, we show that ecological scaffolding may be limited to Goldilocks zones of the environment. We conjecture that Goldilocks zones-even if they might be rare-could act as initiators of evolutionary transitions and help to explain the near ubiquity of collective-level individuality.
Collapse
Affiliation(s)
- Guilhem Doulcier
- Philosophy Department, Macquarie University, New South Wales 2109, Australia.
- Theoretical Biology Department, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Peter Takacs
- Philosophy Department, Macquarie University, New South Wales 2109, Australia
- Department of Philosophy and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | | | - Pierrick Bourrat
- Philosophy Department, Macquarie University, New South Wales 2109, Australia.
- Department of Philosophy and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia.
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia.
| |
Collapse
|
3
|
Oszoli I, Zachar I. Group-selection via aggregative propagule-formation enables cooperative multicellularity in an individual based, spatial model. PLoS Comput Biol 2024; 20:e1012107. [PMID: 38713735 PMCID: PMC11101088 DOI: 10.1371/journal.pcbi.1012107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/17/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
The emergence of multicellularity is one of the major transitions in evolution that happened multiple times independently. During aggregative multicellularity, genetically potentially unrelated lineages cooperate to form transient multicellular groups. Unlike clonal multicellularity, aggregative multicellular organisms do not rely on kin selection instead other mechanisms maintain cooperation against cheater phenotypes that benefit from cooperators but do not contribute to groups. Spatiality with limited diffusion can facilitate group selection, as interactions among individuals are restricted to local neighbourhoods only. Selection for larger size (e.g. avoiding predation) may facilitate the emergence of aggregation, though it is unknown, whether and how much role such selection played during the evolution of aggregative multicellularity. We have investigated the effect of spatiality and the necessity of predation on the stability of aggregative multicellularity via individual-based modelling on the ecological timescale. We have examined whether aggregation facilitates the survival of cooperators in a temporally heterogeneous environment against cheaters, where only a subset of the population is allowed to periodically colonize a new, resource-rich habitat. Cooperators constitutively produce adhesive molecules to promote aggregation and propagule-formation while cheaters spare this expense to grow faster but cannot aggregate on their own, hence depending on cooperators for long-term survival. We have compared different population-level reproduction modes with and without individual selection (predation) to evaluate the different hypotheses. In a temporally homogeneous environment without propagule-based colonization, cheaters always win. Predation can benefit cooperators, but it is not enough to maintain the necessary cooperator amount in successive dispersals, either randomly or by fragmentation. Aggregation-based propagation however can ensure the adequate ratio of cooperators-to-cheaters in the propagule and is sufficient to do so even without predation. Spatiality combined with temporal heterogeneity helps cooperators via group selection, thus facilitating aggregative multicellularity. External stress selecting for larger size (e.g. predation) may facilitate aggregation, however, according to our results, it is neither necessary nor sufficient for aggregative multicellularity to be maintained when there is effective group-selection.
Collapse
Affiliation(s)
- István Oszoli
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
| | - István Zachar
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- HUN-REN Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| |
Collapse
|
4
|
Pentz JT, MacGillivray K, DuBose JG, Conlin PL, Reinhardt E, Libby E, Ratcliff WC. Evolutionary consequences of nascent multicellular life cycles. eLife 2023; 12:e84336. [PMID: 37889142 PMCID: PMC10611430 DOI: 10.7554/elife.84336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
A key step in the evolutionary transition to multicellularity is the origin of multicellular groups as biological individuals capable of adaptation. Comparative work, supported by theory, suggests clonal development should facilitate this transition, although this hypothesis has never been tested in a single model system. We evolved 20 replicate populations of otherwise isogenic clonally reproducing 'snowflake' yeast (Δace2/∆ace2) and aggregative 'floc' yeast (GAL1p::FLO1 /GAL1p::FLO1) with daily selection for rapid growth in liquid media, which favors faster cell division, followed by selection for rapid sedimentation, which favors larger multicellular groups. While both genotypes adapted to this regime, growing faster and having higher survival during the group-selection phase, there was a stark difference in evolutionary dynamics. Aggregative floc yeast obtained nearly all their increased fitness from faster growth, not improved group survival; indicating that selection acted primarily at the level of cells. In contrast, clonal snowflake yeast mainly benefited from higher group-dependent fitness, indicating a shift in the level of Darwinian individuality from cells to groups. Through genome sequencing and mathematical modeling, we show that the genetic bottlenecks in a clonal life cycle also drive much higher rates of genetic drift-a result with complex implications for this evolutionary transition. Our results highlight the central role that early multicellular life cycles play in the process of multicellular adaptation.
Collapse
Affiliation(s)
| | - Kathryn MacGillivray
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of TechnologyAtlantaUnited States
| | - James G DuBose
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Emma Reinhardt
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | | | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
5
|
Blackiston D, Kriegman S, Bongard J, Levin M. Biological Robots: Perspectives on an Emerging Interdisciplinary Field. Soft Robot 2023; 10:674-686. [PMID: 37083430 PMCID: PMC10442684 DOI: 10.1089/soro.2022.0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Advances in science and engineering often reveal the limitations of classical approaches initially used to understand, predict, and control phenomena. With progress, conceptual categories must often be re-evaluated to better track recently discovered invariants across disciplines. It is essential to refine frameworks and resolve conflicting boundaries between disciplines such that they better facilitate, not restrict, experimental approaches and capabilities. In this essay, we address specific questions and critiques which have arisen in response to our research program, which lies at the intersection of developmental biology, computer science, and robotics. In the context of biological machines and robots, we explore changes across concepts and previously distinct fields that are driven by recent advances in materials, information, and life sciences. Herein, each author provides their own perspective on the subject, framed by their own disciplinary training. We argue that as with computation, certain aspects of developmental biology and robotics are not tied to specific materials; rather, the consilience of these fields can help to shed light on issues of multiscale control, self-assembly, and relationships between form and function. We hope new fields can emerge as boundaries arising from technological limitations are overcome, furthering practical applications from regenerative medicine to useful synthetic living machines.
Collapse
Affiliation(s)
- Douglas Blackiston
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
| | - Sam Kriegman
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
- Center for Robotics and Biosystems, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Josh Bongard
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
- Department of Computer Science, University of Vermont, Burlington, Vermont, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
| |
Collapse
|
6
|
Barrere J, Nanda P, Murray AW. Alternating selection for dispersal and multicellularity favors regulated life cycles. Curr Biol 2023; 33:1809-1817.e3. [PMID: 37019107 PMCID: PMC10175205 DOI: 10.1016/j.cub.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
The evolution of complex multicellularity opened paths to increased morphological diversity and organizational novelty. This transition involved three processes: cells remained attached to one another to form groups, cells within these groups differentiated to perform different tasks, and the groups evolved new reproductive strategies.1,2,3,4,5 Recent experiments identified selective pressures and mutations that can drive the emergence of simple multicellularity and cell differentiation,6,7,8,9,10,11 but the evolution of life cycles, particularly how simple multicellular forms reproduce, has been understudied. The selective pressure and mechanisms that produced a regular alternation between single cells and multicellular collectives are still unclear.12 To probe the factors regulating simple multicellular life cycles, we examined a collection of wild isolates of the budding yeast S. cerevisiae.12,13 We found that all these strains can exist as multicellular clusters, a phenotype that is controlled by the mating-type locus and strongly influenced by the nutritional environment. Inspired by this variation, we engineered inducible dispersal in a multicellular laboratory strain and demonstrated that a regulated life cycle has an advantage over constitutively single-celled or constitutively multicellular life cycles when the environment alternates between favoring intercellular cooperation (a low sucrose concentration) and dispersal (a patchy environment generated by emulsion). Our results suggest that the separation of mother and daughter cells is under selection in wild isolates and is regulated by their genetic composition and the environments they encounter and that alternating patterns of resource availability may have played a role in the evolution of life cycles.
Collapse
Affiliation(s)
- Julien Barrere
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Piyush Nanda
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Isaksson H, Brännström Å, Libby E. Minor variations in multicellular life cycles have major effects on adaptation. PLoS Comput Biol 2023; 19:e1010698. [PMID: 37083675 PMCID: PMC10156057 DOI: 10.1371/journal.pcbi.1010698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/03/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Multicellularity has evolved several independent times over the past hundreds of millions of years and given rise to a wide diversity of complex life. Recent studies have found that large differences in the fundamental structure of early multicellular life cycles can affect fitness and influence multicellular adaptation. Yet, there is an underlying assumption that at some scale or categorization multicellular life cycles are similar in terms of their adaptive potential. Here, we consider this possibility by exploring adaptation in a class of simple multicellular life cycles of filamentous organisms that only differ in one respect, how many daughter filaments are produced. We use mathematical models and evolutionary simulations to show that despite the similarities, qualitatively different mutations fix. In particular, we find that mutations with a tradeoff between cell growth and group survival, i.e. "selfish" or "altruistic" traits, spread differently. Specifically, altruistic mutations more readily spread in life cycles that produce few daughters while in life cycles producing many daughters either type of mutation can spread depending on the environment. Our results show that subtle changes in multicellular life cycles can fundamentally alter adaptation.
Collapse
Affiliation(s)
- Hanna Isaksson
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- IceLab, Umeå University, Umeå, Sweden
| | - Åke Brännström
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- IceLab, Umeå University, Umeå, Sweden
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami, Japan
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- IceLab, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Pineau RM, Demory D, Libby E, Lac DT, Day TC, Bravo P, Yunker PJ, Weitz JS, Bozdag GO, Ratcliff WC. Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524803. [PMID: 36711513 PMCID: PMC9882323 DOI: 10.1101/2023.01.19.524803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The evolution of multicellular life spurred evolutionary radiations, fundamentally changing many of Earth’s ecosystems. Yet little is known about how early steps in the evolution of multicellularity transform eco-evolutionary dynamics, e.g., via niche expansion processes that may facilitate coexistence. Using long-term experimental evolution in the snowflake yeast model system, we show that the evolution of multicellularity drove niche partitioning and the adaptive divergence of two distinct, specialized lineages from a single multicellular ancestor. Over 715 daily transfers, snowflake yeast were subject to selection for rapid growth in rich media, followed by selection favoring larger group size. Both small and large cluster-forming lineages evolved from a monomorphic ancestor, coexisting for over ~4,300 generations. These small and large sized snowflake yeast lineages specialized on divergent aspects of a trade-off between growth rate and survival, mirroring predictions from ecological theory. Through modeling and experimentation, we demonstrate that coexistence is maintained by a trade-off between organismal size and competitiveness for dissolved oxygen. Taken together, this work shows how the evolution of a new level of biological individuality can rapidly drive adaptive diversification and the expansion of a nascent multicellular niche, one of the most historically-impactful emergent properties of this evolutionary transition.
Collapse
|
9
|
Day TC, Márquez-Zacarías P, Bravo P, Pokhrel AR, MacGillivray KA, Ratcliff WC, Yunker PJ. Varied solutions to multicellularity: The biophysical and evolutionary consequences of diverse intercellular bonds. BIOPHYSICS REVIEWS 2022; 3:021305. [PMID: 35673523 PMCID: PMC9164275 DOI: 10.1063/5.0080845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
The diversity of multicellular organisms is, in large part, due to the fact that multicellularity has independently evolved many times. Nonetheless, multicellular organisms all share a universal biophysical trait: cells are attached to each other. All mechanisms of cellular attachment belong to one of two broad classes; intercellular bonds are either reformable or they are not. Both classes of multicellular assembly are common in nature, having independently evolved dozens of times. In this review, we detail these varied mechanisms as they exist in multicellular organisms. We also discuss the evolutionary implications of different intercellular attachment mechanisms on nascent multicellular organisms. The type of intercellular bond present during early steps in the transition to multicellularity constrains future evolutionary and biophysical dynamics for the lineage, affecting the origin of multicellular life cycles, cell-cell communication, cellular differentiation, and multicellular morphogenesis. The types of intercellular bonds used by multicellular organisms may thus result in some of the most impactful historical constraints on the evolution of multicellularity.
Collapse
Affiliation(s)
- Thomas C. Day
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Aawaz R. Pokhrel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
10
|
Takács K, Gross J, Testori M, Letina S, Kenny AR, Power EA, Wittek RPM. Networks of reliable reputations and cooperation: a review. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200297. [PMID: 34601917 PMCID: PMC8487750 DOI: 10.1098/rstb.2020.0297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reputation has been shown to provide an informal solution to the problem of cooperation in human societies. After reviewing models that connect reputations and cooperation, we address how reputation results from information exchange embedded in a social network that changes endogenously itself. Theoretical studies highlight that network topologies have different effects on the extent of cooperation, since they can foster or hinder the flow of reputational information. Subsequently, we review models and empirical studies that intend to grasp the coevolution of reputations, cooperation and social networks. We identify open questions in the literature concerning how networks affect the accuracy of reputations, the honesty of shared information and the spread of reputational information. Certain network topologies may facilitate biased beliefs and intergroup competition or in-group identity formation that could lead to high cooperation within but conflicts between different subgroups of a network. Our review covers theoretical, experimental and field studies across various disciplines that target these questions and could explain how the dynamics of interactions and reputations help or prevent the establishment and sustainability of cooperation in small- and large-scale societies. This article is part of the theme issue ‘The language of cooperation: reputation and honest signalling’.
Collapse
Affiliation(s)
- Károly Takács
- The Institute for Analytical Sociology, Linköping University, 601 74 Norrköping, Sweden.,Computational Social Science-Research Center for Educational and Network Studies (CSS-RECENS), Centre for Social Sciences, Tóth Kálmán u. 4., 1097 Budapest, Hungary
| | - Jörg Gross
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
| | - Martina Testori
- Organization Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Srebrenka Letina
- The Institute for Analytical Sociology, Linköping University, 601 74 Norrköping, Sweden.,Institute of Health and Wellbeing, MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Berkeley Square, 99 Berkeley Street, Glasgow G3 7HR, UK
| | - Adam R Kenny
- Institute of Cognitive and Evolutionary Anthropology, University of Oxford, 64 Banbury Road, Oxford OX2 6PN, UK.,Calleva Research Centre for Evolution and Human Sciences, Magdalen College, High Street, Oxford OX1 4AU, UK
| | - Eleanor A Power
- Department of Methodology, The London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK
| | - Rafael P M Wittek
- Department of Sociology, University of Groningen, Grote Rozenstraat 31, 9712 TG Groningen, The Netherlands
| |
Collapse
|
11
|
Why have aggregative multicellular organisms stayed simple? Curr Genet 2021; 67:871-876. [PMID: 34114051 DOI: 10.1007/s00294-021-01193-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Multicellularity has evolved numerous times across the tree of life. One of the most fundamental distinctions among multicellular organisms is their developmental mode: whether they stay together during growth and develop clonally, or form a group through the aggregation of free-living cells. The five eukaryotic lineages to independently evolve complex multicellularity (animals, plants, red algae, brown algae, and fungi) all develop clonally. This fact has largely been explained through social evolutionary theory's lens of cooperation and conflict, where cheating within non-clonal groups has the potential to undermine multicellular adaptation. Multicellular organisms that form groups via aggregation could mitigate the costs of cheating by evolving kin recognition systems that prevent the formation of chimeric groups. However, recent work suggests that selection for the ability to aggregate quickly may constrain the evolution of highly specific kin recognition, sowing the seeds for persistent evolutionary conflict. Importantly, other features of aggregative multicellular life cycles may independently act to constrain the evolution of complex multicellularity. All known aggregative multicellular organisms are facultatively multicellular (as opposed to obligately multicellular), allowing unicellular-level adaptation to environmental selection. Because they primarily exist in a unicellular state, it may be difficult for aggregative multicellular organisms to evolve multicellular traits that carry pleiotropic cell-level fitness costs. Thus, even in the absence of social conflict, aggregative multicellular organisms may have limited potential for the evolution of complex multicellularity.
Collapse
|
12
|
Isaksson H, Conlin PL, Kerr B, Ratcliff WC, Libby E. The Consequences of Budding versus Binary Fission on Adaptation and Aging in Primitive Multicellularity. Genes (Basel) 2021; 12:661. [PMID: 33924996 PMCID: PMC8145350 DOI: 10.3390/genes12050661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 01/21/2023] Open
Abstract
Early multicellular organisms must gain adaptations to outcompete their unicellular ancestors, as well as other multicellular lineages. The tempo and mode of multicellular adaptation is influenced by many factors including the traits of individual cells. We consider how a fundamental aspect of cells, whether they reproduce via binary fission or budding, can affect the rate of adaptation in primitive multicellularity. We use mathematical models to study the spread of beneficial, growth rate mutations in unicellular populations and populations of multicellular filaments reproducing via binary fission or budding. Comparing populations once they reach carrying capacity, we find that the spread of mutations in multicellular budding populations is qualitatively distinct from the other populations and in general slower. Since budding and binary fission distribute age-accumulated damage differently, we consider the effects of cellular senescence. When growth rate decreases with cell age, we find that beneficial mutations can spread significantly faster in a multicellular budding population than its corresponding unicellular population or a population reproducing via binary fission. Our results demonstrate that basic aspects of the cell cycle can give rise to different rates of adaptation in multicellular organisms.
Collapse
Affiliation(s)
- Hanna Isaksson
- Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden;
- Integrated Science Lab, Umeå University, 90187 Umeå, Sweden
| | - Peter L. Conlin
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (P.L.C.); (W.C.R.)
| | - Ben Kerr
- Department of Biology, BEACON Center for the Study of Evolution in Action, University of Washington, Seattle, WA 98195, USA;
| | - William C. Ratcliff
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (P.L.C.); (W.C.R.)
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden;
- Integrated Science Lab, Umeå University, 90187 Umeå, Sweden
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
13
|
Miele L, De Monte S. Aggregative cycles evolve as a solution to conflicts in social investment. PLoS Comput Biol 2021; 17:e1008617. [PMID: 33471791 PMCID: PMC7850506 DOI: 10.1371/journal.pcbi.1008617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/01/2021] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
Multicellular organization is particularly vulnerable to conflicts between different cell types when the body forms from initially isolated cells, as in aggregative multicellular microbes. Like other functions of the multicellular phase, coordinated collective movement can be undermined by conflicts between cells that spend energy in fuelling motion and ‘cheaters’ that get carried along. The evolutionary stability of collective behaviours against such conflicts is typically addressed in populations that undergo extrinsically imposed phases of aggregation and dispersal. Here, via a shift in perspective, we propose that aggregative multicellular cycles may have emerged as a way to temporally compartmentalize social conflicts. Through an eco-evolutionary mathematical model that accounts for individual and collective strategies of resource acquisition, we address regimes where different motility types coexist. Particularly interesting is the oscillatory regime that, similarly to life cycles of aggregative multicellular organisms, alternates on the timescale of several cell generations phases of prevalent solitary living and starvation-triggered aggregation. Crucially, such self-organized oscillations emerge as a result of evolution of cell traits associated to conflict escalation within multicellular aggregates. In aggregative multicellular life cycles, cells come together in heterogenous aggregates, whose collective function benefits all the constituent cells. Current explanations for the evolutionary stability of such organization presume that alternating phases of aggregation and dispersal are already in place. Here we propose that, instead of being externally driven, the temporal arrangement of aggregative life cycles may emerge from the interplay between ecology and evolution in populations with differential motility. In our model, cell motility underpins group formation and allows cells to forage individually and collectively. Notably, slower cells can exploit the propulsion by faster cells within multicellular groups. When the level of such exploitation is let evolve, increasing social conflicts are associated to the evolutionary emergence of self-sustained oscillations. Akin to aggregative life cycles, resource exhaustion triggers group formation, whereas conflicts within multicellular groups restrain resource consumption, thus paving the way for the subsequent unicellular phase. The evolutionary transition from equilibrium coexistence to life cycles solves conflicts among heterogenous cell types by integrating them on a timescale longer than cell division, that comes to be associated to multicellular organization.
Collapse
Affiliation(s)
- Leonardo Miele
- School of Mathematics, University of Leeds, U.K.
- Institut de Biologie de l’Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- * E-mail: (LM); (SDM)
| | - Silvia De Monte
- Institut de Biologie de l’Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plőn, Germany
- * E-mail: (LM); (SDM)
| |
Collapse
|
14
|
Pentz JT, Márquez-Zacarías P, Bozdag GO, Burnetti A, Yunker PJ, Libby E, Ratcliff WC. Ecological Advantages and Evolutionary Limitations of Aggregative Multicellular Development. Curr Biol 2020; 30:4155-4164.e6. [PMID: 32888478 DOI: 10.1016/j.cub.2020.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/14/2020] [Accepted: 08/03/2020] [Indexed: 01/24/2023]
Abstract
All multicellular organisms develop through one of two basic routes: they either aggregate from free-living cells, creating potentially chimeric multicellular collectives, or they develop clonally via mother-daughter cellular adhesion. Although evolutionary theory makes clear predictions about trade-offs between these developmental modes, these have never been experimentally tested in otherwise genetically identical organisms. We engineered unicellular baker's yeast (Saccharomyces cerevisiae) to develop either clonally ("snowflake"; Δace2) or aggregatively ("floc"; GAL1p::FLO1) and examined their fitness in a fluctuating environment characterized by periods of growth and selection for rapid sedimentation. When cultured independently, aggregation was far superior to clonal development, providing a 35% advantage during growth and a 2.5-fold advantage during settling selection. Yet when competed directly, clonally developing snowflake yeast rapidly displaced aggregative floc. This was due to unexpected social exploitation: snowflake yeast, which do not produce adhesive FLO1, nonetheless become incorporated into flocs at a higher frequency than floc cells themselves. Populations of chimeric clusters settle much faster than floc alone, providing snowflake yeast with a fitness advantage during competition. Mathematical modeling suggests that such developmental cheating may be difficult to circumvent; hypothetical "choosy floc" that avoid exploitation by maintaining clonality pay an ecological cost when rare, often leading to their extinction. Our results highlight the conflict at the heart of aggregative development: non-specific cellular binding provides a strong ecological advantage-the ability to quickly form groups-but this very feature leads to its exploitation.
Collapse
Affiliation(s)
- Jennifer T Pentz
- Department of Molecular Biology, Umeå University, Umeå 90187, Sweden; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pedro Márquez-Zacarías
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anthony Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå 90187, Sweden
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
15
|
Yanni D, Jacobeen S, Márquez-Zacarías P, Weitz JS, Ratcliff WC, Yunker PJ. Topological constraints in early multicellularity favor reproductive division of labor. eLife 2020; 9:e54348. [PMID: 32940598 PMCID: PMC7609046 DOI: 10.7554/elife.54348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
Reproductive division of labor (e.g. germ-soma specialization) is a hallmark of the evolution of multicellularity, signifying the emergence of a new type of individual and facilitating the evolution of increased organismal complexity. A large body of work from evolutionary biology, economics, and ecology has shown that specialization is beneficial when further division of labor produces an accelerating increase in absolute productivity (i.e. productivity is a convex function of specialization). Here we show that reproductive specialization is qualitatively different from classical models of resource sharing, and can evolve even when the benefits of specialization are saturating (i.e. productivity is a concave function of specialization). Through analytical theory and evolutionary individual-based simulations, we demonstrate that reproductive specialization is strongly favored in sparse networks of cellular interactions that reflect the morphology of early, simple multicellular organisms, highlighting the importance of restricted social interactions in the evolution of reproductive specialization.
Collapse
Affiliation(s)
- David Yanni
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Shane Jacobeen
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Pedro Márquez-Zacarías
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Joshua S Weitz
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter J Yunker
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
16
|
Miller JS, Reeve HK. Feedback loops in the major evolutionary transition to eusociality: the status and potential of theoretical approaches. CURRENT OPINION IN INSECT SCIENCE 2019; 34:85-90. [PMID: 31247424 DOI: 10.1016/j.cois.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
In this review, we adopt a step-wise framework for the evolution a major evolutionary transition in light of eusocial insects. By focusing on the sequence of (1) group formation, (2) alignment of genetic interests, and finally (3) group integration to higher-level functioning, we highlight that these steps occasionally interact with each other through feedback. We summarize models that capture such feedback and identify cases where there is room for the development of between-step relationships. We suggest that life history traits may serve as a conduit for analyzing feedback between suites of correlated traits. Our review reveals that there are many relationships both within and between the above steps that await formal modeling.
Collapse
Affiliation(s)
- Julie S Miller
- Ecology & Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr., Los Angeles, CA 90095, USA.
| | - Hudson Kern Reeve
- Neurobiology & Behavior, Cornell University, 215 Tower Rd., Ithaca, NY 14850, USA
| |
Collapse
|
17
|
Czégel D, Zachar I, Szathmáry E. Multilevel selection as Bayesian inference, major transitions in individuality as structure learning. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190202. [PMID: 31598234 PMCID: PMC6731722 DOI: 10.1098/rsos.190202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Complexity of life forms on the Earth has increased tremendously, primarily driven by subsequent evolutionary transitions in individuality, a mechanism in which units formerly being capable of independent replication combine to form higher-level evolutionary units. Although this process has been likened to the recursive combination of pre-adapted sub-solutions in the framework of learning theory, no general mathematical formalization of this analogy has been provided yet. Here we show, building on former results connecting replicator dynamics and Bayesian update, that (i) evolution of a hierarchical population under multilevel selection is equivalent to Bayesian inference in hierarchical Bayesian models and (ii) evolutionary transitions in individuality, driven by synergistic fitness interactions, is equivalent to learning the structure of hierarchical models via Bayesian model comparison. These correspondences support a learning theory-oriented narrative of evolutionary complexification: the complexity and depth of the hierarchical structure of individuality mirror the amount and complexity of data that have been integrated about the environment through the course of evolutionary history.
Collapse
Affiliation(s)
- Dániel Czégel
- MTA Centre for Ecological Research, Evolutionary Systems Research Group, Hungarian Academy of Sciences, 8237 Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, 1117 Budapest, Hungary
- Parmenides Foundation, Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - István Zachar
- MTA Centre for Ecological Research, Evolutionary Systems Research Group, Hungarian Academy of Sciences, 8237 Tihany, Hungary
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Eötvös University, 1117 Budapest, Hungary
- Parmenides Foundation, Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany
| | - Eörs Szathmáry
- MTA Centre for Ecological Research, Evolutionary Systems Research Group, Hungarian Academy of Sciences, 8237 Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, 1117 Budapest, Hungary
- Parmenides Foundation, Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany
| |
Collapse
|
18
|
Staps M, van Gestel J, Tarnita CE. Emergence of diverse life cycles and life histories at the origin of multicellularity. Nat Ecol Evol 2019; 3:1197-1205. [PMID: 31285576 DOI: 10.1038/s41559-019-0940-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
The evolution of multicellularity has given rise to a remarkable diversity of multicellular life cycles and life histories. Whereas some multicellular organisms are long-lived, grow through cell division, and repeatedly release single-celled propagules (for example, animals), others are short-lived, form by aggregation, and propagate only once, by generating large numbers of solitary cells (for example, cellular slime moulds). There are no systematic studies that explore how diverse multicellular life cycles can come about. Here, we focus on the origin of multicellularity and develop a mechanistic model to examine the primitive life cycles that emerge from a unicellular ancestor when an ancestral gene is co-opted for cell adhesion. Diverse life cycles readily emerge, depending on ecological conditions, group-forming mechanism, and ancestral constraints. Among these life cycles, we recapitulate both extremes of long-lived groups that propagate continuously and short-lived groups that propagate only once, with the latter type of life cycle being particularly favoured when groups can form by aggregation. Our results show how diverse life cycles and life histories can easily emerge at the origin of multicellularity, shaped by ancestral constraints and ecological conditions. Beyond multicellularity, this finding has similar implications for other major transitions, such as the evolution of sociality.
Collapse
Affiliation(s)
- Merlijn Staps
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jordi van Gestel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland. .,Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland. .,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland.
| | - Corina E Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
19
|
Gulli JG, Herron MD, Ratcliff WC. Evolution of altruistic cooperation among nascent multicellular organisms. Evolution 2019; 73:1012-1024. [PMID: 30941746 PMCID: PMC6685537 DOI: 10.1111/evo.13727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Cooperation is a classic solution to hostile environments that limit individual survival. In extreme cases this may lead to the evolution of new types of biological individuals (e.g., eusocial super-organisms). We examined the potential for interindividual cooperation to evolve via experimental evolution, challenging nascent multicellular "snowflake yeast" with an environment in which solitary multicellular clusters experienced low survival. In response, snowflake yeast evolved to form cooperative groups composed of thousands of multicellular clusters that typically survive selection. Group formation occurred through the creation of protein aggregates, only arising in strains with high (>2%) rates of cell death. Nonetheless, it was adaptive and repeatable, although ultimately evolutionarily unstable. Extracellular protein aggregates act as a common good, as they can be exploited by cheats that do not contribute to aggregate production. These results highlight the importance of group formation as a mechanism for surviving environmental stress, and underscore the remarkable ease with which even simple multicellular entities may evolve-and lose-novel social traits.
Collapse
Affiliation(s)
- Jordan G. Gulli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Matthew D. Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
20
|
Herron MD, Zamani-Dahaj SA, Ratcliff WC. Trait heritability in major transitions. BMC Biol 2018; 16:145. [PMID: 30545356 PMCID: PMC6293664 DOI: 10.1186/s12915-018-0612-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Increases in biological complexity and the origins of life's hierarchical organization are described by the "major transitions" framework. A crucial component of this paradigm is that after the transition in complexity or organization, adaptation occurs primarily at the level of the new, higher-level unit. For collective-level adaptations to occur, though, collective-level traits-properties of the group, such as collective size-must be heritable. Since collective-level trait values are functions of lower-level trait values, collective-level heritability is related to particle-level heritability. However, the nature of this relationship has rarely been explored in the context of major transitions. RESULTS We examine relationships between particle-level heritability and collective-level heritability for several functions that express collective-level trait values in terms of particle-level trait values. For clonal populations, when a collective-level trait value is a linear function of particle-level trait values and the number of particles per collective is fixed, the heritability of a collective-level trait is never less than that of the corresponding particle-level trait and is higher under most conditions. For more complicated functions, collective-level heritability is higher under most conditions, but can be lower when the environment experienced by collectives is heterogeneous. Within-genotype variation in collective size reduces collective-level heritability, but it can still exceed particle-level heritability when phenotypic variance among particles within collectives is large. These results hold for a diverse sample of biologically relevant traits. CONCLUSIONS Rather than being an impediment to major transitions, we show that, under a wide range of conditions, the heritability of collective-level traits is actually higher than that of the corresponding particle-level traits. High levels of collective-level trait heritability thus arise "for free," with important implications not only for major transitions but for multilevel selection in general.
Collapse
Affiliation(s)
- Matthew D. Herron
- School of Biological Sciences, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332 USA
| | - Seyed A. Zamani-Dahaj
- School of Physics, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332 USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332 USA
| |
Collapse
|
21
|
Jacobeen S, Graba EC, Brandys CG, Day TC, Ratcliff WC, Yunker PJ. Geometry, packing, and evolutionary paths to increased multicellular size. Phys Rev E 2018; 97:050401. [PMID: 29906891 DOI: 10.1103/physreve.97.050401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Indexed: 01/09/2023]
Abstract
The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018)10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ∼13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.
Collapse
Affiliation(s)
- Shane Jacobeen
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Elyes C Graba
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Colin G Brandys
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Thomas C Day
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| |
Collapse
|
22
|
Hochberg ME, Marquet PA, Boyd R, Wagner A. Innovation: an emerging focus from cells to societies. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0414. [PMID: 29061887 DOI: 10.1098/rstb.2016.0414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
Innovations are generally unexpected, often spectacular changes in phenotypes and ecological functions. The contributions to this theme issue are the latest conceptual, theoretical and experimental developments, addressing how ecology, environment, ontogeny and evolution are central to understanding the complexity of the processes underlying innovations. Here, we set the stage by introducing and defining key terms relating to innovation and discuss their relevance to biological, cultural and technological change. Discovering how the generation and transmission of novel biological information, environmental interactions and selective evolutionary processes contribute to innovation as an ecosystem will shed light on how the dominant features across life come to be, generalize to social, cultural and technological evolution, and have applications in the health sciences and sustainability.This article is part of the theme issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Michael E Hochberg
- Institut des Sciences de l'Evolution, Université de Montpellier, 34095 Montpellier, France .,Santa Fe Institute, Santa Fe, NM 87501, USA.,Institute for Advanced Study in Toulouse, 31015 Toulouse, France
| | - Pablo A Marquet
- Santa Fe Institute, Santa Fe, NM 87501, USA.,Departamento de Ecologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Casilla 653, Santiago, Chile.,Instituto de Sistemas Complejos de Valparaíso (ISCV), Artillería 4780, Valparaíso, Chile
| | - Robert Boyd
- Santa Fe Institute, Santa Fe, NM 87501, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Andreas Wagner
- Santa Fe Institute, Santa Fe, NM 87501, USA.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
23
|
Aktipis A, Maley CC. Cooperation and cheating as innovation: insights from cellular societies. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0421. [PMID: 29061894 DOI: 10.1098/rstb.2016.0421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
The capacity to innovate is often considered a defining feature of human societies, but it is not a capacity that is unique to human societies: innovation occurs in cellular societies as well. Cellular societies such as multicellular bodies and microbial communities, including the human microbiome, are capable of innovation in response to novel opportunities and threats. Multicellularity represents a suite of innovations for cellular cooperation, but multicellularity also opened up novel opportunities for cells to cheat, exploiting the infrastructure and resources of the body. Multicellular bodies evolve less quickly than the cells within them, leaving them vulnerable to cellular innovations that can lead to cancer and infections. In order to counter these threats, multicellular bodies deploy additional innovations including the adaptive immune system and the development of partnerships with preferred microbial partners. What can we learn from examining these innovations in cooperation and cheating in cellular societies? First, innovation in social systems involves a constant tension between novel mechanisms that enable greater size and complexity of cooperative entities and novel ways of cheating. Second, cultivating cooperation with partners who can rapidly and effectively innovate (such as microbes) is important for large entities including multicellular bodies. And third, multicellularity enabled cells to manage risk socially, allowing organisms to survive in challenging environments where life would otherwise be impossible. Throughout, we ask how insights from cellular societies might be translated into new innovations in human health and medicine, promoting and protecting the cellular cooperation that makes us viable multicellular organisms.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA .,Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA 94143, USA
| | - Carlo C Maley
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
24
|
West T, Sojo V, Pomiankowski A, Lane N. The origin of heredity in protocells. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0419. [PMID: 29061892 PMCID: PMC5665807 DOI: 10.1098/rstb.2016.0419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2017] [Indexed: 12/27/2022] Open
Abstract
Here we develop a computational model that examines one of the first major biological innovations-the origin of heredity in simple protocells. The model assumes that the earliest protocells were autotrophic, producing organic matter from CO2 and H2 Carbon fixation was facilitated by geologically sustained proton gradients across fatty acid membranes, via iron-sulfur nanocrystals lodged within the membranes. Thermodynamic models suggest that organics formed this way should include amino acids and fatty acids. We assume that fatty acids partition to the membrane. Some hydrophobic amino acids chelate FeS nanocrystals, producing three positive feedbacks: (i) an increase in catalytic surface area; (ii) partitioning of FeS nanocrystals to the membrane; and (iii) a proton-motive active site for carbon fixing that mimics the enzyme Ech. These positive feedbacks enable the fastest-growing protocells to dominate the early ecosystem through a simple form of heredity. We propose that as new organics are produced inside the protocells, the localized high-energy environment is more likely to form ribonucleotides, linking RNA replication to its ability to drive protocell growth from the beginning. Our novel conceptualization sets out conditions under which protocell heredity and competition could arise, and points to where crucial experimental work is required.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Timothy West
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.,Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK
| | - Victor Sojo
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.,Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK.,Systems Biophysics, Faculty of Physics, Ludwig-Maximilian University of Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Andrew Pomiankowski
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.,Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK .,Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
25
|
Radzvilavicius AL, Blackstone NW. The evolution of individuality revisited. Biol Rev Camb Philos Soc 2018; 93:1620-1633. [DOI: 10.1111/brv.12412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 12/28/2022]
Affiliation(s)
| | - Neil W. Blackstone
- Department of Biological Sciences; Northern Illinois University; DeKalb IL 60115 U.S.A
| |
Collapse
|