1
|
McNeill J, Brandt N, Schwarzkopf EJ, Jimenez M, Heil CS. Temperature affects recombination rate plasticity and meiotic success between thermotolerant and cold tolerant yeast species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610152. [PMID: 39257736 PMCID: PMC11383653 DOI: 10.1101/2024.08.28.610152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Meiosis is required for the formation of gametes in all sexually reproducing species and the process is well conserved across the tree of life. However, meiosis is sensitive to a variety of external factors, which can impact chromosome pairing, recombination, and fertility. For example, the optimal temperature for successful meiosis varies between species of plants and animals. This suggests that meiosis is temperature sensitive, and that natural selection may act on variation in meiotic success as organisms adapt to different environmental conditions. To understand how temperature alters the successful completion of meiosis, we utilized two species of the budding yeast Saccharomyces with different temperature preferences: thermotolerant Saccharomyces cerevisiae and cold tolerant Saccharomyces uvarum. We surveyed three metrics of meiosis: sporulation efficiency, spore viability, and recombination rate in multiple strains of each species. As per our predictions, the proportion of cells that complete meiosis and form spores is temperature sensitive, with thermotolerant S. cerevisiae having a higher temperature threshold for successful meiosis than cold tolerant S. uvarum. We confirmed previous observations that S. cerevisiae recombination rate varies between strains and across genomic regions, and add new results that S. uvarum has higher recombination rates than S. cerevisiae. We find that temperature significantly influences recombination rate plasticity in S. cerevisiae and S. uvarum, in agreement with studies in animals and plants. Overall, these results suggest that meiotic thermal sensitivity is associated with organismal thermal tolerance, and may even result in temporal reproductive isolation as populations diverge in thermal profiles.
Collapse
Affiliation(s)
- Jessica McNeill
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | | - Mili Jimenez
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | |
Collapse
|
2
|
Nieto-Blázquez ME, Gómez-Suárez M, Pfenninger M, Koch K. Impact of feralization on evolutionary trajectories in the genomes of feral cat island populations. PLoS One 2024; 19:e0308724. [PMID: 39137187 PMCID: PMC11321585 DOI: 10.1371/journal.pone.0308724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.
Collapse
Affiliation(s)
- María Esther Nieto-Blázquez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Manuela Gómez-Suárez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Katrin Koch
- Department of Biodiversity, Conservation and Attractions, Former, Biodiversity and Conservation Science, Woodvale, Australia
| |
Collapse
|
3
|
Rybnikov SR, Hübner S, Korol AB. A Numerical Model Supports the Evolutionary Advantage of Recombination Plasticity in Shifting Environments. Am Nat 2024; 203:E78-E91. [PMID: 38358806 DOI: 10.1086/728405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractNumerous empirical studies have witnessed an increase in meiotic recombination rate in response to physiological stress imposed by unfavorable environmental conditions. Thus, inherited plasticity in recombination rate is hypothesized to be evolutionarily advantageous in changing environments. Previous theoretical models proceeded from the assumption that organisms increase their recombination rate when the environment becomes more stressful and demonstrated the evolutionary advantage of such a form of plasticity. Here, we numerically explore a complementary scenario-when the plastic increase in recombination rate is triggered by the environmental shifts. Specifically, we assume increased recombination in individuals developing in a different environment than their parents and, optionally, also in offspring of such individuals. We show that such shift-inducible recombination is always superior when the optimal constant recombination implies an intermediate rate. Moreover, under certain conditions, plastic recombination may also appear beneficial when the optimal constant recombination is either zero or free. The advantage of plastic recombination was better predicted by the range of the population's mean fitness over the period of environmental fluctuations, compared with the geometric mean fitness. These results hold for both panmixia and partial selfing, with faster dynamics of recombination modifier alleles under selfing. We think that recombination plasticity can be acquired under the control of environmentally responsive mechanisms, such as chromatin epigenetics remodeling.
Collapse
|
4
|
Darolti I, Almeida P, Wright AE, Mank JE. Comparison of methodological approaches to the study of young sex chromosomes: A case study in Poecilia. J Evol Biol 2022; 35:1646-1658. [PMID: 35506576 PMCID: PMC10084049 DOI: 10.1111/jeb.14013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022]
Abstract
Studies of sex chromosome systems at early stages of divergence are key to understanding the initial process and underlying causes of recombination suppression. However, identifying signatures of divergence in homomorphic sex chromosomes can be challenging due to high levels of sequence similarity between the X and the Y. Variations in methodological precision and underlying data can make all the difference between detecting subtle divergence patterns or missing them entirely. Recent efforts to test for X-Y sequence differentiation in the guppy have led to contradictory results. Here, we apply different analytical methodologies to the same data set to test for the accuracy of different approaches in identifying patterns of sex chromosome divergence in the guppy. Our comparative analysis reveals that the most substantial source of variation in the results of the different analyses lies in the reference genome used. Analyses using custom-made genome assemblies for the focal population or species successfully recover a signal of divergence across different methodological approaches. By contrast, using the distantly related Xiphophorus reference genome results in variable patterns, due to both sequence evolution and structural variations on the sex chromosomes between the guppy and Xiphophorus. Changes in mapping and filtering parameters can additionally introduce noise and obscure the signal. Our results illustrate how analytical differences can alter perceived results and we highlight best practices for the study of nascent sex chromosomes.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall, UK
| |
Collapse
|
5
|
Altindag UH, Taylor HN, Shoben C, Pownall KA, Stevison LS. Putative Condition-Dependent Viability Selection in Wild-Type Stocks of <b><i>Drosophila pseudoobscura</i></b>. Cytogenet Genome Res 2022; 162:76-93. [DOI: 10.1159/000522585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/04/2022] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination rates vary in response to intrinsic and extrinsic factors. Recently, heat stress has been shown to reveal plasticity in recombination rates in <i>Drosophila pseudoobscura.</i> Here, a combination of molecular genotyping and X-linked recessive phenotypic markers were used to investigate differences in recombination rates due to heat stress. In addition, haplotypes from the genetic crosses were compared to test if they deviated from equal proportions, which would indicate viability selection. To avoid this potential bias, SNP genotyping markers overlapping the regions assayed with mutant markers were used to further investigate recombination rate. Interestingly, skews in haplotype frequency were consistent with the fixation of alleles in the wild-type stocks used that are unfit at high temperature. Evidence of viability selection due to heat stress in the wild-type haplotypes was most apparent on days 7–9 when more mutant non-crossover haplotypes were recovered in comparison to wild type (<i>p</i> < 0.0001). Recombination analysis using SNP markers showed days 9–10 as significantly different due to heat stress in 2 pairs of consecutive SNP markers (<i>p</i> = 0.018; <i>p</i> = 0.015), suggesting that during this time period the recombination rate is most sensitive to heat stress. This peak timing for recombination plasticity is consistent with <i>Drosophila melanogaster</i> based on a comparison of similarly timed key meiotic events, enabling future mechanistic work of temperature stress on recombination rate.
Collapse
|
6
|
Akopyan M, Tigano A, Jacobs A, Wilder AP, Baumann H, Therkildsen NO. Comparative linkage mapping uncovers recombination suppression across massive chromosomal inversions associated with local adaptation in Atlantic silversides. Mol Ecol 2022; 31:3323-3341. [DOI: 10.1111/mec.16472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Akopyan
- Department of Ecology and Evolutionary Biology Cornell University NY USA
| | - Anna Tigano
- Department of Biology UBC Okanagan Campus British Columbia Canada
- Department of Natural Resources and the Environment Cornell University NY USA
| | - Arne Jacobs
- Institute of Biodiversity Animal Health & Comparative Medicine University of Glasgow UK
- Department of Natural Resources and the Environment Cornell University NY USA
| | - Aryn P. Wilder
- Conservation Science Wildlife Health San Diego Zoo Wildlife Alliance CA USA
- Department of Natural Resources and the Environment Cornell University NY USA
| | - Hannes Baumann
- Department of Marine Sciences University of Connecticut CT USA
| | - Nina O. Therkildsen
- Department of Natural Resources and the Environment Cornell University NY USA
| |
Collapse
|
7
|
Versoza CJ, Rivera JA, Rosenblum EB, Vital-García C, Hews DK, Pfeifer SP. The recombination landscapes of spiny lizards (genus Sceloporus). G3 (BETHESDA, MD.) 2022; 12:jkab402. [PMID: 34878100 PMCID: PMC9210290 DOI: 10.1093/g3journal/jkab402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/14/2021] [Indexed: 11/16/2022]
Abstract
Despite playing a critical role in evolutionary processes and outcomes, relatively little is known about rates of recombination in the vast majority of species, including squamate reptiles-the second largest order of extant vertebrates, many species of which serve as important model organisms in evolutionary and ecological studies. This paucity of data has resulted in limited resolution on questions related to the causes and consequences of rate variation between species and populations, the determinants of within-genome rate variation, as well as the general tempo of recombination rate evolution on this branch of the tree of life. In order to address these questions, it is thus necessary to begin broadening our phylogenetic sampling. We here provide the first fine-scale recombination maps for two species of spiny lizards, Sceloporus jarrovii and Sceloporus megalepidurus, which diverged at least 12 Mya. As might be expected from similarities in karyotype, population-scaled recombination landscapes are largely conserved on the broad-scale. At the same time, considerable variation exists at the fine-scale, highlighting the importance of incorporating species-specific recombination maps in future population genomic studies.
Collapse
Affiliation(s)
- Cyril J Versoza
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Julio A Rivera
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cuauhcihuatl Vital-García
- Departamento de Ciencias Veterinarias, Programa de Maestría en Ciencia Animal, Universidad Autónoma de Ciudad Juárez México, Chihuahua 32315, Mexico
| | - Diana K Hews
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
8
|
Bulankova P, Sekulić M, Jallet D, Nef C, van Oosterhout C, Delmont TO, Vercauteren I, Osuna-Cruz CM, Vancaester E, Mock T, Sabbe K, Daboussi F, Bowler C, Vyverman W, Vandepoele K, De Veylder L. Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms. Curr Biol 2021; 31:3221-3232.e9. [PMID: 34102110 DOI: 10.1016/j.cub.2021.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 01/31/2023]
Abstract
Diatoms, an evolutionarily successful group of microalgae, display high levels of intraspecific genetic variability in natural populations. However, the contribution of various mechanisms generating such diversity is unknown. Here we estimated the genetic micro-diversity within a natural diatom population and mapped the genomic changes arising within clonally propagated diatom cell cultures. Through quantification of haplotype diversity by next-generation sequencing and amplicon re-sequencing of selected loci, we documented a rapid accumulation of multiple haplotypes accompanied by the appearance of novel protein variants in cell cultures initiated from a single founder cell. Comparison of the genomic changes between mother and daughter cells revealed copy number variation and copy-neutral loss of heterozygosity leading to the fixation of alleles within individual daughter cells. The loss of heterozygosity can be accomplished by recombination between homologous chromosomes. To test this hypothesis, we established an endogenous readout system and estimated that the frequency of interhomolog mitotic recombination was under standard growth conditions 4.2 events per 100 cell divisions. This frequency is increased under environmental stress conditions, including treatment with hydrogen peroxide and cadmium. These data demonstrate that copy number variation and mitotic recombination between homologous chromosomes underlie clonal variability in diatom populations. We discuss the potential adaptive evolutionary benefits of the plastic response in the interhomolog mitotic recombination rate, and we propose that this may have contributed to the ecological success of diatoms.
Collapse
Affiliation(s)
- Petra Bulankova
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
| | - Mirna Sekulić
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Denis Jallet
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
| | - Ilse Vercauteren
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Cristina Maria Osuna-Cruz
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Emmelien Vancaester
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Koen Sabbe
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Fayza Daboussi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Klaas Vandepoele
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Lieven De Veylder
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
9
|
Oomen RA, Kuparinen A, Hutchings JA. Consequences of Single-Locus and Tightly Linked Genomic Architectures for Evolutionary Responses to Environmental Change. J Hered 2020; 111:319-332. [PMID: 32620014 PMCID: PMC7423069 DOI: 10.1093/jhered/esaa020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
Genetic and genomic architectures of traits under selection are key factors influencing evolutionary responses. Yet, knowledge of their impacts has been limited by a widespread assumption that most traits are controlled by unlinked polygenic architectures. Recent advances in genome sequencing and eco-evolutionary modeling are unlocking the potential for integrating genomic information into predictions of population responses to environmental change. Using eco-evolutionary simulations, we demonstrate that hypothetical single-locus control of a life history trait produces highly variable and unpredictable harvesting-induced evolution relative to the classically applied multilocus model. Single-locus control of complex traits is thought to be uncommon, yet blocks of linked genes, such as those associated with some types of structural genomic variation, have emerged as taxonomically widespread phenomena. Inheritance of linked architectures resembles that of single loci, thus enabling single-locus-like modeling of polygenic adaptation. Yet, the number of loci, their effect sizes, and the degree of linkage among them all occur along a continuum. We review how linked architectures are often associated, directly or indirectly, with traits expected to be under selection from anthropogenic stressors and are likely to play a large role in adaptation to environmental disturbance. We suggest using single-locus models to explore evolutionary extremes and uncertainties when the trait architecture is unknown, refining parameters as genomic information becomes available, and explicitly incorporating linkage among loci when possible. By overestimating the complexity (e.g., number of independent loci) of the genomic architecture of traits under selection, we risk underestimating the complexity (e.g., nonlinearity) of their evolutionary dynamics.
Collapse
Affiliation(s)
- Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
| | - Anna Kuparinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jeffrey A Hutchings
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
| |
Collapse
|
10
|
From molecules to populations: appreciating and estimating recombination rate variation. Nat Rev Genet 2020; 21:476-492. [DOI: 10.1038/s41576-020-0240-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
|
11
|
Walter GM, Abbott RJ, Brennan AC, Bridle JR, Chapman M, Clark J, Filatov D, Nevado B, Ortiz-Barrientos D, Hiscock SJ. Senecio as a model system for integrating studies of genotype, phenotype and fitness. THE NEW PHYTOLOGIST 2020; 226:326-344. [PMID: 31951018 DOI: 10.1111/nph.16434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/17/2019] [Indexed: 05/24/2023]
Abstract
Two major developments have made it possible to use examples of ecological radiations as model systems to understand evolution and ecology. First, the integration of quantitative genetics with ecological experiments allows detailed connections to be made between genotype, phenotype, and fitness in the field. Second, dramatic advances in molecular genetics have created new possibilities for integrating field and laboratory experiments with detailed genetic sequencing. Combining these approaches allows evolutionary biologists to better study the interplay between genotype, phenotype, and fitness to explore a wide range of evolutionary processes. Here, we present the genus Senecio (Asteraceae) as an excellent system to integrate these developments, and to address fundamental questions in ecology and evolution. Senecio is one of the largest and most phenotypically diverse genera of flowering plants, containing species ranging from woody perennials to herbaceous annuals. These Senecio species exhibit many growth habits, life histories, and morphologies, and they occupy a multitude of environments. Common within the genus are species that have hybridized naturally, undergone polyploidization, and colonized diverse environments, often through rapid phenotypic divergence and adaptive radiation. These diverse experimental attributes make Senecio an attractive model system in which to address a broad range of questions in evolution and ecology.
Collapse
Affiliation(s)
- Greg M Walter
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - Adrian C Brennan
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE, UK
| | - Jon R Bridle
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Mark Chapman
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - James Clark
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Dmitry Filatov
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | | | - Simon J Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| |
Collapse
|
12
|
DeLory T, Funderburk K, Miller K, Smith WZ, McPherson S, Pirk CW, Costa C, Teixeira ÉW, Dahle B, Rueppell O. Local Variation in Recombination Rates of the Honey Bee ( Apis mellifera) Genome among Samples from Six Disparate Populations. INSECTES SOCIAUX 2020; 67:127-138. [PMID: 33311731 PMCID: PMC7732154 DOI: 10.1007/s00040-019-00736-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Meiotic recombination is an essential component of eukaryotic sexual reproduction but its frequency varies within and between genomes. Although it is well-established that honey bees have a high recombination rate with about 20 cM/Mbp, the proximate and ultimate causes of this exceptional rate are poorly understood. Here, we describe six linkage maps of the Western Honey Bee Apis mellifera that were produced with consistent methodology from samples from distinct parts of the species' near global distribution. We compared the genome-wide rates and distribution of meiotic crossovers among the six maps and found considerable differences. Overall similarity of local recombination rates among our samples was unrelated to geographic or phylogenetic distance of the populations that our samples were derived from. However, the limited sampling constrains the interpretation of our results because it is unclear how representative these samples are. In contrast to previous studies, we found only in two datasets a significant relation between local recombination rate and GC content. Focusing on regions of particularly increased or decreased recombination in specific maps, we identified several enriched gene ontologies in these regions and speculate about their local adaptive relevance. These data are contributing to an increasing comparative effort to gain an understanding of the intra-specific variability of recombination rates and their evolutionary role in honey bees and other social insects.
Collapse
Affiliation(s)
- Timothy DeLory
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, USA
| | - Karen Funderburk
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Applied Mathematics for the Life & Social Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Katelyn Miller
- Department of Biology, University of North Carolina at Greensboro, NC, USA
| | | | - Samantha McPherson
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Current address: NCSU Department of Entomology & Plant Pathology, Campus Box 7613, 100 Derieux Place, Raleigh, NC, USA
| | - Christian W. Pirk
- Social Insects Research Group, Department of Zoology & Entomology, University of Pretoria, South Africa
| | - Cecilia Costa
- Consiglio per la Ricerca in Agricolturae l’Analisi dell’Economia Agraria, Via Po, 14 - 00198 Rome, Italy
| | - Érica Weinstein Teixeira
- Honey Bee Health Specialized Laboratory, Biological Institute, São Paulo State Agribusiness Technology Agency, Av. Prof. Manoel César Ribeiro, 1920, Pindamonhangaba, São Paulo 12411-010, Brazil
| | - Bjørn Dahle
- Norwegian Beekeepers Association, Kløfta, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Corresponding author: 312 Eberhart Bldg, 321 McIver Street, Greensboro NC 27403, USA. Phone: (+1) 336-2562591,
| |
Collapse
|
13
|
Aggarwal DD, Rybnikov S, Cohen I, Frenkel Z, Rashkovetsky E, Michalak P, Korol AB. Desiccation-induced changes in recombination rate and crossover interference in Drosophila melanogaster: evidence for fitness-dependent plasticity. Genetica 2019; 147:291-302. [PMID: 31240599 DOI: 10.1007/s10709-019-00070-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
Abstract
Meiotic recombination is evolutionarily ambiguous, as being associated with both benefits and costs to its bearers, with the resultant dependent on a variety of conditions. While existing theoretical models explain the emergence and maintenance of recombination, some of its essential features remain underexplored. Here we focus on one such feature, recombination plasticity, and test whether recombination response to stress is fitness-dependent. We compare desiccation stress effects on recombination rate and crossover interference in chromosome 3 between desiccation-sensitive and desiccation-tolerant Drosophila lines. We show that relative to desiccation-tolerant genotypes, desiccation-sensitive genotypes exhibit a significant segment-specific increase in single- and double-crossover frequencies across the pericentromeric region of chromosome 3. Significant changes (relaxation) in crossover interference were found for the interval pairs flanking the centromere and extending to the left arm of the chromosome. These results indicate that desiccation is a recombinogenic factor and that desiccation-induced changes in both recombination rate and crossover interference are fitness-dependent, with a tendency of less fitted individuals to produce more variable progeny. Such dependence may play an important role in the regulation of genetic variation in populations experiencing environmental challenges.
Collapse
Affiliation(s)
- Dau Dayal Aggarwal
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Sviatoslav Rybnikov
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Irit Cohen
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Zeev Frenkel
- Department of Mathematics and Computational Science, Ariel University, 40700, Ariel, Israel
| | | | - Pawel Michalak
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA.,Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel. .,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
14
|
Singh ND. Wolbachia Infection Associated with Increased Recombination in Drosophila. G3 (BETHESDA, MD.) 2019; 9:229-237. [PMID: 30459180 PMCID: PMC6325905 DOI: 10.1534/g3.118.200827] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
Wolbachia is a maternally-transmitted endosymbiotic bacteria that infects a large diversity of arthropod and nematode hosts. Some strains of Wolbachia are parasitic, manipulating host reproduction to benefit themselves, while other strains of Wolbachia exhibit obligate or facultative mutualisms with their host. The effects of Wolbachia on its host are many, though primarily relate to host immune and reproductive function. Here we test the hypothesis that Wolbachia infection alters the frequency of homologous recombination during meiosis. We use D. melanogaster as a model system, and survey recombination in eight wild-derived Wolbachia-infected (strain wMel) and Wolbachia-uninfected strains, controlling for genotype. We measure recombination in two intervals of the genome. Our results indicate that Wolbachia infection is associated with increased recombination in one genomic interval and not the other. The effect of Wolbachia infection on recombination is thus heterogenous across the genome. Our data also indicate a reproductive benefit of Wolbachia infection; infected females show higher fecundity than their uninfected genotypic controls. Given the prevalence of Wolbachia infection in natural populations, our findings suggest that Wolbachia infection is likely to contribute to recombination rate and fecundity variation among individuals in nature.
Collapse
Affiliation(s)
- Nadia D Singh
- Department of Biology, University of Oregon Eugene OR, 97403
| |
Collapse
|
15
|
Zilio G, Moesch L, Bovet N, Sarr A, Koella JC. The effect of parasite infection on the recombination rate of the mosquito Aedes aegypti. PLoS One 2018; 13:e0203481. [PMID: 30300349 PMCID: PMC6177114 DOI: 10.1371/journal.pone.0203481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
Sexual reproduction and meiotic recombination generate new genetic combinations and may thereby help an individual infected by a parasite to protect its offspring from being infected. While this idea is often used to understand the evolutionary forces underlying the maintenance of sex and recombination, it also suggests that infected individuals should increase plastically their rate of recombination. We tested the latter idea with the mosquito Aedes aegypti and asked whether females infected by the microsporidian Vavraia culicis were more likely to have recombinant offspring than uninfected females. To measure the rate of recombination over a chromosome we analysed combinations of microsatellites on chromosome 3 in infected and uninfected females, in the (uninfected) males they copulated with and in their offspring. As predicted, the infected females were more likely to have recombinant offspring than the uninfected ones. These results show the ability of a female to diversify her offspring in response to parasitic infection by plastically increasing her recombination rate.
Collapse
Affiliation(s)
- Giacomo Zilio
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lea Moesch
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Environmental Systems Science, ETHZ, Zurich, Switzerland
| | - Nathalie Bovet
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jacob C. Koella
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
16
|
Blankers T, Oh KP, Bombarely A, Shaw KL. The Genomic Architecture of a Rapid Island Radiation: Recombination Rate Variation, Chromosome Structure, and Genome Assembly of the Hawaiian Cricket Laupala. Genetics 2018; 209:1329-1344. [PMID: 29875253 PMCID: PMC6063224 DOI: 10.1534/genetics.118.300894] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/03/2018] [Indexed: 12/30/2022] Open
Abstract
Phenotypic evolution and speciation depend on recombination in many ways. Within populations, recombination can promote adaptation by bringing together favorable mutations and decoupling beneficial and deleterious alleles. As populations diverge, crossing over can give rise to maladapted recombinants and impede or reverse diversification. Suppressed recombination due to genomic rearrangements, modifier alleles, and intrinsic chromosomal properties may offer a shield against maladaptive gene flow eroding coadapted gene complexes. Both theoretical and empirical results support this relationship. However, little is known about this relationship in the context of behavioral isolation, where coevolving signals and preferences are the major hybridization barrier. Here we examine the genomic architecture of recently diverged, sexually isolated Hawaiian swordtail crickets (Laupala). We assemble a de novo genome and generate three dense linkage maps from interspecies crosses. In line with expectations based on the species' recent divergence and successful interbreeding in the laboratory, the linkage maps are highly collinear and show no evidence for large-scale chromosomal rearrangements. Next, the maps were used to anchor the assembly to pseudomolecules and estimate recombination rates across the genome to test the hypothesis that loci involved in behavioral isolation (song and preference divergence) are in regions of low interspecific recombination. Contrary to our expectations, the genomic region where a male song and female preference QTL colocalize is not associated with particularly low recombination rates. This study provides important novel genomic resources for an emerging evolutionary genetics model system and suggests that trait-preference coevolution is not necessarily facilitated by locally suppressed recombination.
Collapse
Affiliation(s)
- Thomas Blankers
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Kevin P Oh
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| |
Collapse
|
17
|
Santos ALSD, Galdino ACM, Mello TPD, Ramos LDS, Branquinha MH, Bolognese AM, Columbano Neto J, Roudbary M. What are the advantages of living in a community? A microbial biofilm perspective! Mem Inst Oswaldo Cruz 2018; 113:e180212. [PMID: 30066753 PMCID: PMC6057313 DOI: 10.1590/0074-02760180212] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023] Open
Abstract
Biofilm formation is the preferred mode of growth lifestyle for many microorganisms, including bacterial and fungal human pathogens. Biofilm is a strong and dynamic structure that confers a broad range of advantages to its members, such as adhesion/cohesion capabilities, mechanical properties, nutritional sources, metabolite exchange platform, cellular communication, protection and resistance to drugs (e.g., antimicrobials, antiseptics, and disinfectants), environmental stresses (e.g., dehydration and ultraviolet light), host immune attacks (e.g., antibodies, complement system, antimicrobial peptides, and phagocytes), and shear forces. Microbial biofilms cause problems in the hospital environment, generating high healthcare costs and prolonged patient stay, which can result in further secondary microbial infections and various health complications. Consequently, both public and private investments must be made to ensure better patient management, as well as to find novel therapeutic strategies to circumvent the resistance and resilience profiles arising from biofilm-associated microbial infections. In this work, we present a general overview of microbial biofilm formation and its relevance within the biomedical context.
Collapse
Affiliation(s)
| | - Anna Clara Milesi Galdino
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Laboratório de Estudos Avançados em Microrganismos Emergentes e Resistentes, Rio de Janeiro, RJ, Brasil.,Universidade Federal do Rio de Janeiro, Instituto de Química, Programa de Pós-Graduação em Bioquímica, Rio de Janeiro, RJ, Brasil
| | - Thaís Pereira de Mello
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Laboratório de Estudos Avançados em Microrganismos Emergentes e Resistentes, Rio de Janeiro, RJ, Brasil
| | - Lívia de Souza Ramos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Laboratório de Estudos Avançados em Microrganismos Emergentes e Resistentes, Rio de Janeiro, RJ, Brasil
| | - Marta Helena Branquinha
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Laboratório de Estudos Avançados em Microrganismos Emergentes e Resistentes, Rio de Janeiro, RJ, Brasil
| | - Ana Maria Bolognese
- Universidade Federal do Rio de Janeiro, Faculdade de Odontologia, Departamento de Odontopediatria e Ortodontia, Rio de Janeiro, RJ, Brasil
| | - José Columbano Neto
- Faculdades São José, Faculdade de Odontologia, Disciplina de Ortodontia e Clínica Integrada Infantil, Rio de Janeiro, RJ, Brasil
| | - Maryam Roudbary
- Iran University of Medical Sciences, School of Medicine, Department of Medical Mycology and Parasitology, Tehran, Iran
| |
Collapse
|
18
|
Dapper AL, Payseur BA. Connecting theory and data to understand recombination rate evolution. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0469. [PMID: 29109228 DOI: 10.1098/rstb.2016.0469] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 02/03/2023] Open
Abstract
Meiotic recombination is necessary for successful gametogenesis in most sexually reproducing organisms and is a fundamental genomic parameter, influencing the efficacy of selection and the fate of new mutations. The molecular and evolutionary functions of recombination should impose strong selective constraints on the range of recombination rates. Yet, variation in recombination rate is observed on a variety of genomic and evolutionary scales. In the past decade, empirical studies have described variation in recombination rate within genomes, between individuals, between sexes, between populations and between species. At the same time, theoretical work has provided an increasingly detailed picture of the evolutionary advantages to recombination. Perhaps surprisingly, the causes of natural variation in recombination rate remain poorly understood. We argue that empirical and theoretical approaches to understand the evolution of recombination have proceeded largely independently of each other. Most models that address the evolution of recombination rate were created to explain the evolutionary advantage of recombination rather than quantitative differences in rate among individuals. Conversely, most empirical studies aim to describe variation in recombination rate, rather than to test evolutionary hypotheses. In this Perspective, we argue that efforts to integrate the rich bodies of empirical and theoretical work on recombination rate are crucial to moving this field forward. We provide new directions for the development of theory and the production of data that will jointly close this gap.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Amy L Dapper
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
19
|
Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0455. [PMID: 29109219 PMCID: PMC5698618 DOI: 10.1098/rstb.2016.0455] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
Recombination, the exchange of DNA between maternal and paternal chromosomes during meiosis, is an essential feature of sexual reproduction in nearly all multicellular organisms. While the role of recombination in the evolution of sex has received theoretical and empirical attention, less is known about how recombination rate itself evolves and what influence this has on evolutionary processes within sexually reproducing organisms. Here, we explore the patterns of, and processes governing recombination in eukaryotes. We summarize patterns of variation, integrating current knowledge with an analysis of linkage map data in 353 organisms. We then discuss proximate and ultimate processes governing recombination rate variation and consider how these influence evolutionary processes. Genome-wide recombination rates (cM/Mb) can vary more than tenfold across eukaryotes, and there is large variation in the distribution of recombination events across closely related taxa, populations and individuals. We discuss how variation in rate and distribution relates to genome architecture, genetic and epigenetic mechanisms, sex, environmental perturbations and variable selective pressures. There has been great progress in determining the molecular mechanisms governing recombination, and with the continued development of new modelling and empirical approaches, there is now also great opportunity to further our understanding of how and why recombination rate varies.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Jessica Stapley
- Centre for Adaptation to a Changing Environment, IBZ, ETH Zürich, 8092 Zürich, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JY, UK
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Carole M Smadja
- Institut des Sciences de l'Evolution UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, 3095 Montpellier cedex 05, France
| |
Collapse
|
20
|
Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. Recombination: the good, the bad and the variable. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2017.0279. [PMID: 29109232 PMCID: PMC5698631 DOI: 10.1098/rstb.2017.0279] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Recombination, the process by which DNA strands are broken and repaired, producing new combinations of alleles, occurs in nearly all multicellular organisms and has important implications for many evolutionary processes. The effects of recombination can be good, as it can facilitate adaptation, but also bad when it breaks apart beneficial combinations of alleles, and recombination is highly variable between taxa, species, individuals and across the genome. Understanding how and why recombination rate varies is a major challenge in biology. Most theoretical and empirical work has been devoted to understanding the role of recombination in the evolution of sex—comparing between sexual and asexual species or populations. How recombination rate evolves and what impact this has on evolutionary processes within sexually reproducing organisms has received much less attention. This Theme Issue focusses on how and why recombination rate varies in sexual species, and aims to coalesce knowledge of the molecular mechanisms governing recombination with our understanding of the evolutionary processes driving variation in recombination within and between species. By integrating these fields, we can identify important knowledge gaps and areas for future research, and pave the way for a more comprehensive understanding of how and why recombination rate varies.
Collapse
Affiliation(s)
- Jessica Stapley
- Centre for Adaptation to a Changing Environment, IBZ, ETH Zürich, Zürich, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JY, UK
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Carole M Smadja
- Institut des Sciences de l'Evolution UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, 3095 Montpellier cedex 05, France
| |
Collapse
|
21
|
Sefick SA, Castronova MA, Stevison LS. genotypeR
: An integrated
r
package for single nucleotide polymorphism genotype marker design and data analysis. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.12965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Haag CR, Theodosiou L, Zahab R, Lenormand T. Low recombination rates in sexual species and sex-asex transitions. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160461. [PMID: 29109224 PMCID: PMC5698623 DOI: 10.1098/rstb.2016.0461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
In most sexual, diploid eukaryotes, at least one crossover occurs between each pair of homologous chromosomes during meiosis, presumably in order to ensure proper segregation. Well-known exceptions to this rule are species in which one sex does not recombine and specific chromosomes lacking crossover. We review other possible exceptions, including species with chromosome maps of less than 50 cM in one or both sexes. We discuss the idea that low recombination rates may favour sex-asex transitions, or, alternatively may be a consequence of it. We then show that a yet undescribed species of brine shrimp Artemia from Kazakhstan (A sp. Kazakhstan), the closest known relative of the asexual Artemia parthenogenetica, has one of the shortest genetic linkage maps known. Based on a family of 42 individuals and 589 RAD markers, we find that many linkage groups are considerably shorter than 50 cM, suggesting either no obligate crossover or crossovers concentrated at terminal positions with little effect on recombination. We contrast these findings with the published map of the more distantly related sexual congener, A. franciscana, and conclude that the study of recombination in non-model systems is important to understand the evolutionary causes and consequences of recombination.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Christoph R Haag
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-École Pratique des Hautes Études, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Loukas Theodosiou
- Research Group for Community Dynamics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Roula Zahab
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-École Pratique des Hautes Études, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-École Pratique des Hautes Études, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|