1
|
Wenxia Z, Yuelong L, Zhou Z, Guoqing J, Huanjie H, Guifang Z, Chuhuai W, Wai Leung Ambrose L, Peng L. The efficacy of combined physiotherapeutic scoliosis-specific exercises and manual therapy in adolescent idiopathic scoliosis. BMC Musculoskelet Disord 2024; 25:874. [PMID: 39482645 PMCID: PMC11526564 DOI: 10.1186/s12891-024-07974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is a pathological condition characterized by vertebral curvature and associated trunk deformities in adolescents. The clinical efficacy of conservative treatment in alleviating spinal curvature of AIS remains a topic of ongoing debate. The objective of this study was to investigate the impact of combined physiotherapeutic scoliosis-specific exercises (PSSE) and manual therapy (MT) on trunk deformity, spinal function, mobility, and mental health in patients with AIS. METHODS Thirty-one participants who were diagnosed with AIS whose Cobb angle was between 10-45°were enrolled in the study. Participants in the intervention group received 50 min of PSSE combined with 10 min of MT, while the control group performed 50 min of PSSE as their home exercise program. Both treatments were implemented three times a week for four weeks. Cobb angle, spinal mobility, trunk morphology (vertebral rotation angle, apical deviation, pelvic obliquity distance and angle), movement capability, and quality of life (QOL) were assessed at baseline and post intervention. The treatment effects between the intervention and control groups were analyzed using a two-way repeated measures ANOVA. RESULTS Following a 4-week treatment period, Cobb angle was significantly reduced from 21.58° to 18.58° in intervention group and increased from 18.00° at baseline and 19.14° post intervention in the control group. Significant improvements were also observed in spinal mobility, movement capability, quality of life, and some of the trunk morphology indices in the intervention group compared to baseline (p < 0.05). Improvements were significantly higher in the intervention group than the control group. CONCLUSION Combining PSSE and MT shows potential benefits in alleviating AIS symptoms and improving QOL. Further studies to substantiate these findings are warranted. TRIAL REGISTRATION The trial was retrospectively registered in the Chinese Clinical Trial Registry ( https://www.chictr.org.cn ) with the registration number: ChiCTR2300071357, (Date: 12/05/2023).
Collapse
Affiliation(s)
- Zou Wenxia
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
| | - Li Yuelong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
| | - Zhang Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
| | - Jia Guoqing
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
| | - Huang Huanjie
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
| | - Zhang Guifang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
| | - Wang Chuhuai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China.
| | - Lo Wai Leung Ambrose
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China.
- Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Guangzhou, China.
| | - Liu Peng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China.
| |
Collapse
|
2
|
McCallum-Loudeac J, Moody E, Williams J, Johnstone G, Sircombe KJ, Clarkson AN, Wilson MJ. Deletion of a conserved genomic region associated with adolescent idiopathic scoliosis leads to vertebral rotation in mice. Hum Mol Genet 2024; 33:787-801. [PMID: 38280229 PMCID: PMC11031364 DOI: 10.1093/hmg/ddae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis, in which spinal curvature develops in adolescence, and 90% of patients are female. Scoliosis is a debilitating disease that often requires bracing or surgery in severe cases. AIS affects 2%-5.2% of the population; however, the biological origin of the disease remains poorly understood. In this study, we aimed to determine the function of a highly conserved genomic region previously linked to AIS using a mouse model generated by CRISPR-CAS9 gene editing to knockout this area of the genome to understand better its contribution to AIS, which we named AIS_CRMΔ. We also investigated the upstream factors that regulate the activity of this enhancer in vivo, whether the spatial expression of the LBX1 protein would change with the loss of AIS-CRM function, and whether any phenotype would arise after deletion of this region. We found a significant increase in mRNA expression in the developing neural tube at E10.5, and E12.5, for not only Lbx1 but also other neighboring genes. Adult knockout mice showed vertebral rotation and proprioceptive deficits, also observed in human AIS patients. In conclusion, our study sheds light on the elusive biological origins of AIS, by targeting and investigating a highly conserved genomic region linked to AIS in humans. These findings provide valuable insights into the function of the investigated region and contribute to our understanding of the underlying causes of this debilitating disease.
Collapse
Affiliation(s)
- Jeremy McCallum-Loudeac
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Edward Moody
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Jack Williams
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Georgia Johnstone
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Kathleen J Sircombe
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Andrew N Clarkson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Xu Y, Yan W, Li X. Research progress in female pelvic floor rehabilitation aids. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:482-490. [PMID: 38970523 PMCID: PMC11208410 DOI: 10.11817/j.issn.1672-7347.2024.230532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 07/08/2024]
Abstract
Pelvic floor dysfunction (PFD) is a common clinical problem that can lead to bladder and bowel dysfunction such as urinary incontinence, urinary retention, fecal incontinence, pelvic organ prolapse, and sexual dysfunction. Pelvic floor rehabilitation aids are essential tools in the treatment of PFD. However, there is limited understanding of the efficacy and mechanisms of these aids, and there is a lack of standardized guidelines for selecting appropriate aids for different types of PFD. To assist patients in choosing suitable pelvic floor rehabilitation aids to their needs, it is necessary to summarize the existing types, mechanisms, and applications of these aids. Based on their mechanisms and target functions, pelvic floor rehabilitation aids can be mainly categorized into 3 main types. The first type includes aids that improve pelvic floor function, such as vaginal dumbbells, vaginal tampons, and vaginal dilators, which aim to strengthen pelvic floor muscles and enhance the contractility of the urethral, vaginal, and anal sphincters, thereby improving incontinence symptoms. The second type consists of aids that mechanically block the outlet, such as pessaries, urethral plugs, incontinence pads, incontinence pants, anal plugs, and vaginal bowel control systems, which directly or indirectly prevent incontinence leakage. The third type includes aids that assist in outlet drainage, such as catheters and anal excreta collection devices, which help patients effectively expel urine, feces, and other waste materials, preventing incontinence leakage. By summarizing the existing pelvic floor rehabilitation aids, personalized guidance can be provided to patients with PFD, helping them select the appropriate aids for their rehabilitation needs.
Collapse
Affiliation(s)
- Yuting Xu
- Department of Rehabilitation Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Wenguang Yan
- Department of Rehabilitation Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xuhong Li
- Department of Rehabilitation Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
4
|
Martínez-Gago A, García-Mesa Y, Cuendias P, Martín-Cruces J, Abellán JF, García-Suárez O, Vega JA. Sensory innervation of the human shoulder joints in healthy and in chronic pain shoulder syndromes. Ann Anat 2024; 252:152206. [PMID: 38154784 DOI: 10.1016/j.aanat.2023.152206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/22/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Afferent innervation of shoulder joints plays a fundamental role in nociception and mechanoception and its alteration result in shoulder´s disease that course with pain and functional disability. METHODS Joints shoulder from healthy subjects (n = 20) and with chronic pain shoulder syndromes (n = 17) were analyzed using immunohistochemistry for S100 protein to identify nerve structures (nerve fibers and sensory corpuscles), coupled with a quantification of the sensory formations. Sensory nerve formations were quantified in 13 distinct areas in healthy joint shoulder and in the available equivalent areas in the pathological joints. Statistical analyses were conducted to assess differences between healthy shoulder and pathological shoulder joint (p< 0.05). RESULTS All analyzed structures, i.e., glenohumeral capsule, acromioclavicular capsule, the extraarticular structures (subcoracoid region and subacromio-subdeltoid bursa) and intraarticular structures (biceps brachii tendon and labrum articulare) are variably innervated except the extrinsic coracoacromial ligament, which was aneural. The afferent innervation of healthy human shoulder joints consists of free nerve endings, simple lamellar corpuscles and Ruffini's corpuscles. Occasionally, Golgi-Mazzoni's and Pacinian corpuscles were found. However, the relative density of each one varied among joints and/or the different zones within the same joint. As a rule, the upper half and anterior half of healthy glenohumeral capsules have a higher innervation compared to the lower and posterior respectably. On the other hand, in joints from subjects suffering chronic shoulder pain, a reduced innervation was found, involving more the corpuscles than free nerve endings. CONCLUSIONS Our findings report a global innervation map of the human shoulder joints, especially the glenohumeral one, and this knowledge might be of interest for arthroscopic surgeons allowing to develop more selective and unhurt treatments, controlling the pain, and avoiding the loss of afferent innervation after surgical procedures. To the light of our results the postero-inferior glenohumeral capsular region seems to be the more adequate to be a surgical portal (surgical access area) to prevent nerve lesions.
Collapse
Affiliation(s)
- Abel Martínez-Gago
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Servicio de Cirugía Ortopédica y Traumatología, Hospital Vital Álvarez-Buylla, Mieres, Spain
| | - Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - Patricia Cuendias
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - José Martín-Cruces
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - Juan F Abellán
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Morales Meseguer, Murcia, Spain; Cátedra de Traumatología del Deporte, Universidad Católica San Antonio, Murcia, Spain
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Housley SN, Gardolinski EA, Nardelli P, Reed J, Rich MM, Cope TC. Mechanosensory encoding in ex vivo muscle-nerve preparations. Exp Physiol 2024; 109:35-44. [PMID: 37119460 PMCID: PMC10613129 DOI: 10.1113/ep090763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Our objective was to evaluate an ex vivo muscle-nerve preparation used to study mechanosensory signalling by low threshold mechanosensory receptors (LTMRs). Specifically, we aimed to assess how well the ex vivo preparation represents in vivo firing behaviours of the three major LTMR subtypes of muscle primary sensory afferents, namely type Ia and II muscle spindle (MS) afferents and type Ib tendon organ afferents. Using published procedures for ex vivo study of LTMRs in mouse hindlimb muscles, we replicated earlier reports on afferent firing in response to conventional stretch paradigms applied to non-contracting, that is passive, muscle. Relative to in vivo studies, stretch-evoked firing for confirmed MS afferents in the ex vivo preparation was markedly reduced in firing rate and deficient in encoding dynamic features of muscle stretch. These deficiencies precluded conventional means of discriminating type Ia and II afferents. Muscle afferents, including confirmed Ib afferents were often indistinguishable based on their similar firing responses to the same physiologically relevant stretch paradigms. These observations raise uncertainty about conclusions drawn from earlier ex vivo studies that either attribute findings to specific afferent types or suggest an absence of treatment effects on dynamic firing. However, we found that replacing the recording solution with bicarbonate buffer resulted in afferent firing rates and profiles more like those seen in vivo. Improving representation of the distinctive sensory encoding properties in ex vivo muscle-nerve preparations will promote accuracy in assigning molecular markers and mechanisms to heterogeneous types of muscle mechanosensory neurons.
Collapse
Affiliation(s)
- Stephen N. Housley
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | | | - Paul Nardelli
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - J'Ana Reed
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - Mark M. Rich
- Department of Neuroscience, Cell Biology and PhysiologyWright State UniversityDaytonOHUSA
| | - Timothy C. Cope
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
- W.H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of Technology, Georgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
6
|
Kröger S. Experimental Physiology special issue: 'Mechanotransduction, muscle spindles and proprioception'. Exp Physiol 2024; 109:1-5. [PMID: 38160398 PMCID: PMC10988673 DOI: 10.1113/ep091431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversitätPlanegg‐MartinsriedGermany
| |
Collapse
|
7
|
Jellad A, Kalai A, Abbes I, Jguirim M, Boudokhane S, Salah Frih ZB, Bedoui MH. The effect of cervical traction on stabilometric parameters in cervical radiculopathy patients: A randomized crossover study. J Back Musculoskelet Rehabil 2024; 37:1031-1040. [PMID: 38277282 DOI: 10.3233/bmr-230270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Cervical traction is effective on pain and function in patients with cervical radiculopathy but its effectiveness on balance disorders has not yet been studied. OBJECTIVE To evaluate the effect of mechanical intermittent cervical traction (MICT) on stabilometric parameters in patients with cervical radiculopathy. METHODS This randomized crossover study assigned 20 patients with cervical radiculopathy to one of the two groups: Group effective traction (ET)/sham traction (ST) (n= 10) treated firstly with ET (traction force of 12 Kg) then with ST (traction force of 2 Kg) with one-week interval and group ST/ET (n= 10) treated invertedly with a ST then ET. Each traction procedure was maintained for 10 minutes twice separated by 5 minutes of rest. Patients were assessed before and immediately after MICT procedure. Main outcome measures were stabilometric parameters: center of pressure, sway area and lateral and anteroposterior displacements using a force platform. Secondary outcome measures were pain intensity, grip strength and dizziness. RESULTS ET has provided a significantly greater improvement in both groups and in the total population in terms of stabilometric parameters (p< 0.01), pain intensity, and grip strength (p< 0.05), compared to ST. CONCLUSION MICT seems to have an immediate beneficial effect on stabilometric parameters, pain and grip strength in patients with cervical radiculopathy.
Collapse
Affiliation(s)
- Anis Jellad
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Monastir, Monastir, Tunisia
- Laboratory of Technology and Medical Imaging - LR12ES06, Center for Musculoskeletal Biomechanics Research, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Amine Kalai
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Monastir, Monastir, Tunisia
- Laboratory of Technology and Medical Imaging - LR12ES06, Center for Musculoskeletal Biomechanics Research, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Ilef Abbes
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Mahbouba Jguirim
- Laboratory of Technology and Medical Imaging - LR12ES06, Center for Musculoskeletal Biomechanics Research, Faculty of Medicine, University of Monastir, Monastir, Tunisia
- Department of Rheumatology, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Soumaya Boudokhane
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Zohra Ben Salah Frih
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Mohamed Hedi Bedoui
- Laboratory of Technology and Medical Imaging - LR12ES06, Center for Musculoskeletal Biomechanics Research, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
8
|
Santuz A, Zampieri N. Making sense of proprioception. Trends Genet 2024; 40:20-23. [PMID: 37926636 DOI: 10.1016/j.tig.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Proprioception - the sense of body position in space - is intimately linked to motor control. Here, we briefly review the current knowledge of the proprioceptive system and how advances in the genetic characterisation of proprioceptive sensory neurons in mice promise to dissect its role in health and disease.
Collapse
Affiliation(s)
- Alessandro Santuz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.
| | - Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.
| |
Collapse
|
9
|
Housley SN, Powers RK, Nardelli P, Lee S, Blum K, Bewick GS, Banks RW, Cope TC. Biophysical model of muscle spindle encoding. Exp Physiol 2024; 109:55-65. [PMID: 36966478 PMCID: PMC10988694 DOI: 10.1113/ep091099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
Muscle spindles encode mechanosensory information by mechanisms that remain only partially understood. Their complexity is expressed in mounting evidence of various molecular mechanisms that play essential roles in muscle mechanics, mechanotransduction and intrinsic modulation of muscle spindle firing behaviour. Biophysical modelling provides a tractable approach to achieve more comprehensive mechanistic understanding of such complex systems that would be difficult/impossible by more traditional, reductionist means. Our objective here was to construct the first integrative biophysical model of muscle spindle firing. We leveraged current knowledge of muscle spindle neuroanatomy and in vivo electrophysiology to develop and validate a biophysical model that reproduces key in vivo muscle spindle encoding characteristics. Crucially, to our knowledge, this is the first computational model of mammalian muscle spindle that integrates the asymmetric distribution of known voltage-gated ion channels (VGCs) with neuronal architecture to generate realistic firing profiles, both of which seem likely to be of great biophysical importance. Results predict that particular features of neuronal architecture regulate specific characteristics of Ia encoding. Computational simulations also predict that the asymmetric distribution and ratios of VGCs is a complementary and, in some instances, orthogonal means to regulate Ia encoding. These results generate testable hypotheses and highlight the integral role of peripheral neuronal structure and ion channel composition and distribution in somatosensory signalling.
Collapse
Affiliation(s)
| | - Randal K. Powers
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Paul Nardelli
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGA
| | - Sebinne Lee
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGA
| | - Kyle Blum
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Guy S. Bewick
- Institute of Medical ScienceUniversity of AberdeenAberdeenUK
| | | | - Timothy C. Cope
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGA
- W. H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of Technology, Georgia Institute of TechnologyAtlantaGA
| |
Collapse
|
10
|
Xu H, Dugué GP, Cantaut-Belarif Y, Lejeune FX, Gupta S, Wyart C, Lehtinen MK. SCO-spondin knockout mice exhibit small brain ventricles and mild spine deformation. Fluids Barriers CNS 2023; 20:89. [PMID: 38049798 PMCID: PMC10696872 DOI: 10.1186/s12987-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023] Open
Abstract
Reissner's fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo, an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Guillaume P Dugué
- Neurophysiology of Brain Circuits, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Yasmine Cantaut-Belarif
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France
| | - François-Xavier Lejeune
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France
| | - Suhasini Gupta
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France.
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
de Nooij JC, Zampieri N. The making of a proprioceptor: a tale of two identities. Trends Neurosci 2023; 46:1083-1094. [PMID: 37858440 DOI: 10.1016/j.tins.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Proprioception, the sense of body position in space, has a critical role in the control of posture and movement. Aside from skin and joint receptors, the main sources of proprioceptive information in tetrapods are mechanoreceptive end organs in skeletal muscle: muscle spindles (MSs) and Golgi tendon organs (GTOs). The sensory neurons that innervate these receptors are divided into subtypes that detect discrete aspects of sensory information from muscles with different biomechanical functions. Despite the importance of proprioceptive neurons in motor control, the developmental mechanisms that control the acquisition of their distinct functional properties and positional identity are not yet clear. In this review, we discuss recent findings on the development of mouse proprioceptor subtypes and challenges in defining them at the molecular and functional level.
Collapse
Affiliation(s)
- Joriene C de Nooij
- Department of Neurology, Division of Translational Neurobiology, Vagelos College of Physicians and Surgeons, 650 West 168th Street, New York, NY 10032, USA; Columbia University Motor Neuron Center, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| | - Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
12
|
Xu H, Dugué GP, Cantaut-Belarif Y, Lejeune FX, Gupta S, Wyart C, Lehtinen MK. SCO-spondin knockout mice exhibit small brain ventricles and mild spine deformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551512. [PMID: 37577601 PMCID: PMC10418289 DOI: 10.1101/2023.08.01.551512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Reissner's fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo , an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.
Collapse
|
13
|
Jacewicz J, Dziuba-Słonina A, Chwałczyńska A. Assessment of Balance Parameters in Children with Weakened Axial Muscle Tone Undergoing Sensory Integration Therapy. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050845. [PMID: 37238393 DOI: 10.3390/children10050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Children with weakened axial muscle tone face various problems every day. One is maintaining a stable body posture, which limits their participation in activities and games with peers. The study aimed to assess balance parameters in children with weakened axial muscle tone who underwent sensory integration therapy (SI). The study group consisted of 21 children (divided into three age groups) referred by a doctor for therapy. METHODS The ZEBRIS platform was used to measure the balance parameters (MCoCx, MCoCy, SPL, WoE, HoE, and AoE). The study was conducted twice: before and after two months of sensory integration therapy. The results were compiled using the TIBICO® Statistica software version 13.3.0. RESULTS After the SI program, statistically significant changes were observed in the values of MCoCy_oe, WoE_oe, AoE_oe in the group of four-year-olds, MCoCX_ce in the group of five-year-olds, and in SPL_ce and AoE_ce in six-year-olds. A statistically significant, highly positive correlation was observed between body height and changes in SPL_oe, HoE_oe, and AoE_oe in the group of six-year-olds, as well as in the case of changes in SPL_oe in the group of five-year-olds. In the group of four-year-olds, a statistically significant correlation occurred only between body height and the change in the MCoCx_oe value. CONCLUSIONS the sensory integration therapy used in the study group of 4-6-year-old children with reduced muscle tone gave positive results in the form of improved static balance and balance.
Collapse
Affiliation(s)
- Jadwiga Jacewicz
- Department of Physiotherapy in Neurology and Pediatrics, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Alicja Dziuba-Słonina
- Department of Physiotherapy in Neurology and Pediatrics, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Agnieszka Chwałczyńska
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| |
Collapse
|
14
|
Santuz A, Akay T. Muscle spindles and their role in maintaining robust locomotion. J Physiol 2023; 601:275-285. [PMID: 36510697 PMCID: PMC10483674 DOI: 10.1113/jp282563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Muscle spindles, one of the two main classes of proprioceptors together with Golgi tendon organs, are sensory structures that keep the central nervous system updated about the position and movement of body parts. Although they were discovered more than 150 years ago, their function during movement is not yet fully understood. Here, we summarize the morphology and known functions of muscle spindles, with a particular focus on locomotion. Although certain properties such as the sensitivity to dynamic and static muscle stretch are long known, recent advances in molecular biology have allowed the characterization of the molecular mechanisms for signal transduction in muscle spindles. Building upon classic literature showing that a lack of sensory feedback is deleterious to locomotion, we bring to the discussion more recent findings that support a pivotal role of muscle spindles in maintaining murine and human locomotor robustness, defined as the ability to cope with perturbations. Yet, more research is needed to expand the existing mechanistic understanding of how muscle spindles contribute to the production of robust, functional locomotion in real world settings. Future investigations should focus on combining different animal models to identify, in health and disease, those peripheral, spinal and brain proprioceptive structures involved in the fine tuning of motor control when locomotion happens in challenging conditions.
Collapse
Affiliation(s)
- Alessandro Santuz
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Life Sciences Research Institute, Dalhousie University, Halifax, NS, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Life Sciences Research Institute, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
15
|
Current models to understand the onset and progression of scoliotic deformities in adolescent idiopathic scoliosis: a systematic review. Spine Deform 2022; 11:545-558. [PMID: 36454530 DOI: 10.1007/s43390-022-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE To create an updated and comprehensive overview of the modeling studies that have been done to understand the mechanics underlying deformities of adolescent idiopathic scoliosis (AIS), to predict the risk of curve progression and thereby substantiate etiopathogenetic theories. METHODS In this systematic review, an online search in Scopus and PubMed together with an analysis in secondary references was done, which yielded 86 studies. The modeling types were extracted and the studies were categorized accordingly. RESULTS Animal modeling, together with machine learning modeling, forms the category of black box models. This category is perceived as the most clinically relevant. While animal models provide a tangible idea of the biomechanical effects in scoliotic deformities, machine learning modeling was found to be the best curve-progression predictor. The second category, that of artificial models, has, just as animal modeling, a tangible model as a result, but focusses more on the biomechanical process of the scoliotic deformity. The third category is formed by computational models, which are very popular in etiopathogenetic parameter-based studies. They are also the best in calculating stresses and strains on vertebrae, intervertebral discs, and other surrounding tissues. CONCLUSION This study presents a comprehensive overview of the current modeling techniques to understand the mechanics of the scoliotic deformities, predict the risk of curve progression in AIS and thereby substantiate etiopathogenetic theories. Although AIS remains to be seen as a complex and multifactorial problem, the progression of its deformity can be predicted with good accuracy. Modeling of AIS develops rapidly and may lead to the identification of risk factors and mitigation strategies in the near future. The overview presented provides a basis to follow this development.
Collapse
|
16
|
Klinge PM, McElroy A, Leary OP, Donahue JE, Mumford A, Brinker T, Gokaslan ZL. Not Just an Anchor: The Human Filum Terminale Contains Stretch Sensitive and Nociceptive Nerve Endings and Responds to Electrical Stimulation With Paraspinal Muscle Activation. Neurosurgery 2022; 91:618-624. [PMID: 35852974 PMCID: PMC9447435 DOI: 10.1227/neu.0000000000002081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Neural components of the fibrous filum terminale (FT) are well known but are considered as embryonic remnants without functionality. OBJECTIVE To investigate the ultrastructure of human FT specimens for sensory nerve endings and record paraspinal muscle activity on electrostimulation of the FT. METHODS We prospectively investigated a cohort of 53 patients who underwent excision of the FT for the treatment of tethered cord syndrome. Surgical FT specimens were investigated by light and transmission electron microscopy. Intraoperative electrophysiological routine monitoring was extended by recording paraspinal muscles above and below the laminotomy level. RESULTS Light microscopy revealed tiny peripheral nerves piercing the pia mater of the FT and entering its fibrous core. Transmission electron microscopy unveiled within the fibrous core of the FT myelinated nerve structures in 8 of the 53 patients and unmyelinated ones in 10 of the 53 patients. Both nerve endings encapsulated in fibrous tissue or unencapsulated nonmyelinated Schwann cell nerve bundles, that is, Remak cells, were found. Those nerve endings resembled mechanoreceptor and nociceptive receptor structures found in human skin, muscle tendons, and skeletal ligaments. Specifically, we found Ruffini mechanoreceptors and in addition nerve endings which resembled nociceptive glioneural structures of the skin. Bipolar electrostimulation of the FT was associated with paraspinal muscle activity above and below the spinal segment at which the FT was stimulated. CONCLUSION Morphological and electrophysiological results indicate the presence of functional sensory nerve endings in the FT. Like other spine ligaments, the FT may serve as a proprioceptive element but may also contribute to back pain in spine disorders.
Collapse
Affiliation(s)
- Petra M. Klinge
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Abigail McElroy
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Owen P. Leary
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - John E. Donahue
- Department of Pathology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Andrew Mumford
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Thomas Brinker
- Department of Neurosurgery, Medical School Hannover, Hannover, Germany
| | - Ziya L. Gokaslan
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Spinal Cord Circuits: Models and Reality. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Sonkodi B, Bardoni R, Poór G. Osteoporosis in Light of a New Mechanism Theory of Delayed Onset Muscle Soreness and Non-Contact Anterior Cruciate Ligament Injury. Int J Mol Sci 2022; 23:ijms23169046. [PMID: 36012312 PMCID: PMC9408966 DOI: 10.3390/ijms23169046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a disorder, with a largely unknown pathomechanism, that is often marked as a “silent thief”, because it usually only becomes undisguised when fractures occur. This implies that the pathological damage occurs earlier than the sensation of pain. The current authors put forward a non-contact injury model in which the chronic overloading of an earlier autologously microinjured Piezo2 ion channel of the spinal proprioceptor terminals could lead the way to re-injury and earlier aging in a dose-limiting and threshold-driven way. As a result, the aging process could eventually lead the way to the metabolic imbalance of primary osteoporosis in a quad-phasic non-contact injury pathway. Furthermore, it is emphasised that delayed onset muscle soreness, non-contact anterior cruciate injury and osteoporosis could have the same initiating proprioceptive non-contact Piezo2 channelopathy, at different locations, however, with different environmental risk factors and a different genetic predisposition, therefore producing different outcomes longitudinally. The current injury model does not intend to challenge any running pathogenic theories or findings, but rather to highlight a principal injury mechanism.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Correspondence:
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Gyula Poór
- National Institute of Locomotor Diseases and Disabilities, 1023 Budapest, Hungary
- Section of Rheumatology and Physiotherapy, Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
19
|
Treatment with platelet-rich plasma attenuates proprioceptor abnormalities in a rat model of postpartum stress urinary incontinence. Int Urogynecol J 2022; 33:2159-2167. [PMID: 35195739 DOI: 10.1007/s00192-022-05112-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Stress urinary incontinence (SUI) is the most prevalent form of urinary incontinence, and vaginal delivery is a major risk factor for developing SUI. We evaluated the hypothesis that applying the autologous platelet rich plasma (PRP) to the pelvic floor muscles via injection affects expression of proprioceptors and improves postpartum stress urinary incontinence (PSUI) in rats. METHODS Virgin female Sprague-Dawley rats were divided into control (n = 10) and experimental group(n = 20). Vaginal dilation was used to establish PSUI, and the rats in the experimental group were further divided into the PSUI group (n = 10) and PSUI+PRP group (n = 10). Pelvic floor muscles from rats in the PSUI+PRP group were positioned under ultrasound guidance for PRP injection. The morphology and number of pelvic floor muscle spindles were assessed using H&E staining, proprioceptors evaluated by gold chloride staining, and changes in the expression of neurotrophin-3 (NT-3) and skeletal myosin MY-32 determined by immunohistochemistry. RESULTS After 28 days,bladder leak point pressure (BLPP) and abdominal leaking-urine point pressure (ALPP) in rats with PSUI were significantly lower than in control animals (P<0.01). Both BLPP and ALPP increased significantly in the PSUI+PRP group (P<0.01). Compared with the control group, muscle spindle morphology and structure in the PSUI and PSUI+PRP groups had different pathological changes,with higher variations in the PSUI group. The positive signals for NT-3/MY-32 expression in control rats were higher than those from PSUI or PSUI+PRP groups, however, the expression for NT-3/MY-32 in PSUI+PRP animals was higher than that seen in the PSUI group (P < 0.01). CONCLUSIONS PSUI rats have an abnormal expression of pelvic proprioceptors, which affect proprioceptive function, and further the contractibility of pelvic floor muscles. A PRP injection may restore the sensory function of pelvic proprioceptors, thus improving urine leakage in PSUI rats.
Collapse
|
20
|
Nims RJ, Pferdehirt L, Guilak F. Mechanogenetics: harnessing mechanobiology for cellular engineering. Curr Opin Biotechnol 2022; 73:374-379. [PMID: 34735987 PMCID: PMC10061441 DOI: 10.1016/j.copbio.2021.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/28/2023]
Abstract
'Mechanogenetics,' a new field at the convergence of mechanobiology and synthetic biology, presents an innovative strategy to treat, repair, or restore diseased cells and tissues by harnessing mechanical signal transduction pathways to control gene expression. While the role of mechanical forces in regulating development, homeostasis, and disease is well established, only recently have we identified the specific mechanosensors and downstream signaling pathways involved in these processes. Simultaneously, synthetic biological systems are developing increasingly sophisticated approaches of controlling mammalian cellular responses. Continued mechanistic refinement and identification of how cellular mechanosensors respond to homeostatic and pathological mechanical forces, combined with synthetic tools to integrate and respond to these inputs, promises to extend the development of new therapeutic approaches for treating disease.
Collapse
Affiliation(s)
- Robert J Nims
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lara Pferdehirt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63105, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63105, USA.
| |
Collapse
|
21
|
García-Martínez I, García-Mesa Y, García-Piqueras J, Martínez-Pubil A, Cobo JL, Feito J, García-Suárez O, Vega JA. Sensory innervation of the human palmar aponeurosis in healthy individuals and patients with palmar fibromatosis. J Anat 2021; 240:972-984. [PMID: 34881452 PMCID: PMC9005682 DOI: 10.1111/joa.13609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/31/2023] Open
Abstract
The human palmar aponeurosis is involved in hand proprioception, and it contains different sensory corpuscle morphotypes that serve this role. In palmar fibromatosis (classically referred to as Dupuytren's disease), the palmar aponeurosis undergoes fibrous structural changes that, presumably, also affect the nervous system, causing altered perception. We analysed the various sensory nerve formation morphotypes in the palmar aponeuroses of healthy subjects and patients with palmar fibromatosis. To do this, we used immunohistochemistry for corpuscular constituents and the putative mechanoproteins PIEZO2 and acid‐sensing ion channel 2. Free nerve endings and Golgi‐Mazzoni, Ruffini, paciniform and Pacinian corpuscles were identified in both the healthy and the pathological conditions. The densities of the free nerve endings and Golgi‐Mazzoni corpuscles were slightly increased in the pathological tissues. Furthermore, the Pacinian corpuscles were enlarged and displayed an altered shape. Finally, there was also morphological and immunohistochemical evidence of occasional denervation of the Pacinian corpuscles, although no increase in their number was observed. Both PIEZO2 and acid‐sensing ion channel 2 were absent from the altered corpuscles. These results indicate that the human palmar aponeurosis is richly innervated, and the free nerve endings and sensory corpuscles within the palmar aponeurosis undergo quantitative and qualitative changes in patients with palmar fibromatosis, which may explain the sensory alterations occasionally reported for this pathology.
Collapse
Affiliation(s)
| | - Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Antonio Martínez-Pubil
- Instituto de Investigación Sanitaria del Principado de Asturias, and Hospital Universitario Central de Asturias, Oviedo, Spain.,Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain
| | - Juan L Cobo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain.,Instututo Asturiano de Odontología, Oviedo, Spain
| | - Jorge Feito
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain.,Servicio de Anatomía Patológica, Hospital Clínico - Complejo Hospitalario Universitario, Salamanca, Spain
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
22
|
Lv X, Xu J, Jiang J, Wu P, Tan R, Wang B. Genetic animal models of scoliosis: A systematical review. Bone 2021; 152:116075. [PMID: 34174503 DOI: 10.1016/j.bone.2021.116075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Scoliosis is a complex disease with undetermined pathogenesis and has a strong relationship with genetics. Models of scoliosis in animals have been established for better comprehending its pathogenesis and treatment. In this review, we searched all the genetic animal models with body curvature in databases, and reviewed the related genes and scoliosis types. Meanwhile, we also summarized the pathogenesis of scoliosis reported so far. Summarizing the positive phenotypic animal models contributes to a better understanding on the pathogenesis of scoliosis and facilitates the selection of experimental models when a possible pathogenic factor is concerned.
Collapse
Affiliation(s)
- Xin Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jinghong Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jiajiong Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Pengfei Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Renchun Tan
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
23
|
Shahidi B, Yoo A, Farnsworth C, Newton PO, Ward SR. Paraspinal muscle morphology and composition in adolescent idiopathic scoliosis: A histological analysis. JOR Spine 2021; 4:e1169. [PMID: 34611591 PMCID: PMC8479518 DOI: 10.1002/jsp2.1169] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/02/2021] [Accepted: 08/21/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is a condition resulting in spinal deformity and tissue adaptation of the paraspinal muscles. Although prior studies have demonstrated asymmetries in fiber type and other energetic features of muscle on the concave side of the curve, muscle morphology, architecture, and composition have not been evaluated. Therefore, the purpose of this study was to compare differences in paraspinal muscle microarchitecture and composition between concave and convex sides of a scoliotic curve in individuals with AIS. METHODS Paraspinal muscle biopsies were obtained at the apex of the scoliotic curve in 29 individuals with AIS undergoing surgical deformity correction. Histological assays were performed to quantify fiber size, evidence of muscle degeneration and regeneration, and tissue composition (proportion of muscle, collagen, and fat). Differences between contralateral muscle samples were compared using two-tailed paired Student's t tests, and relationships between clinical characteristics (age and curve severity) and muscle characteristics were investigated using Pearson correlations. RESULTS Muscle fibers were significantly larger on the convex side of the curve apex (P = .001), but were lower than literature-based norms for healthy paraspinal muscle. There were no differences in amount of degeneration/regeneration (P = .490) or the proportion of muscle and collagen (P > .350) between the concave and convex sides, but high levels of collagen were observed. There was a trend toward higher fat content on the concave side (P = .074). Larger fiber size asymmetries were associated with greater age (r = .43, P = .046), and trended toward an association with greater curve severity (r = .40, P = .069). CONCLUSIONS This study demonstrates that although muscle fibers are larger on the convex side of the scoliotic curve in AIS, muscles on both sides are atrophic compared to non-scoliotic individuals, and demonstrate levels of collagen similar to severe degenerative spinal pathologies. These findings provide insight into biological maladaptations occurring in paraspinal muscle in the presence of AIS.
Collapse
Affiliation(s)
- Bahar Shahidi
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Andrew Yoo
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Peter O. Newton
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
- Rady Children's HospitalSan DiegoCaliforniaUSA
| | - Samuel R. Ward
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
24
|
Macefield VG. The roles of mechanoreceptors in muscle and skin in human proprioception. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Sonkodi B, Bardoni R, Hangody L, Radák Z, Berkes I. Does Compression Sensory Axonopathy in the Proximal Tibia Contribute to Noncontact Anterior Cruciate Ligament Injury in a Causative Way?-A New Theory for the Injury Mechanism. Life (Basel) 2021; 11:443. [PMID: 34069060 PMCID: PMC8157175 DOI: 10.3390/life11050443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Anterior cruciate ligament injury occurs when the ligament fibers are stretched, partially torn, or completely torn. The authors propose a new injury mechanism for non-contact anterior cruciate ligament injury of the knee. Accordingly, non-contact anterior cruciate ligament injury could not happen without the acute compression microinjury of the entrapped peripheral proprioceptive sensory axons of the proximal tibia. This would occur under an acute stress response when concomitant microcracks-fractures in the proximal tibia evolve due to the same excessive and repetitive compression forces. The primary damage may occur during eccentric contractions of the acceleration and deceleration moments of strenuous or unaccustomed fatiguing exercise bouts. This primary damage is suggested to be an acute compression/crush axonopathy of the proprioceptive sensory neurons in the proximal tibia. As a result, impaired proprioception could lead to injury of the anterior cruciate ligament as a secondary damage, which is suggested to occur during the deceleration phase. Elevated prostaglandin E2, nitric oxide and glutamate may have a critical neuro-modulatory role in the damage signaling in this dichotomous neuronal injury hypothesis that could lead to mechano-energetic failure, lesion and a cascade of inflammatory events. The presynaptic modulation of the primary sensory axons by the fatigued and microdamaged proprioceptive sensory fibers in the proximal tibia induces the activation of N-methyl-D-aspartate receptors in the dorsal horn of the spinal cord, through a process that could have long term relevance due to its contribution to synaptic plasticity. Luteinizing hormone, through interleukin-1β, stimulates the nerve growth factor-tropomyosin receptor kinase A axis in the ovarian cells and promotes tropomyosin receptor kinase A and nerve growth factor gene expression and prostaglandin E2 release. This luteinizing hormone induced mechanism could further elevate prostaglandin E2 in excess of the levels generated by osteocytes, due to mechanical stress during strenuous athletic moments in the pre-ovulatory phase. This may explain why non-contact anterior cruciate ligament injury is at least three-times more prevalent among female athletes.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, University of Physical Education, 1123 Budapest, Hungary;
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - László Hangody
- Department of Traumatology, Semmelweis University, 1145 Budapest, Hungary;
| | - Zsolt Radák
- Research Center for Molecular Exercise Science, University of Physical Education, 1123 Budapest, Hungary;
| | - István Berkes
- Department of Health Sciences and Sport Medicine, University of Physical Education, 1123 Budapest, Hungary;
| |
Collapse
|
26
|
Serrancolí G, Alessandro C, Tresch MC. The Effects of Mechanical Scale on Neural Control and the Regulation of Joint Stability. Int J Mol Sci 2021; 22:ijms22042018. [PMID: 33670603 PMCID: PMC7922058 DOI: 10.3390/ijms22042018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Recent work has demonstrated how the size of an animal can affect neural control strategies, showing that passive viscoelastic limb properties have a significant role in determining limb movements in small animals but are less important in large animals. We extend that work to consider effects of mechanical scaling on the maintenance of joint integrity; i.e., the prevention of aberrant contact forces within joints that might lead to joint dislocation or cartilage degradation. We first performed a literature review to evaluate how properties of ligaments responsible for joint integrity scale with animal size. Although we found that the cross-sectional area of the anterior cruciate ligament generally scaled with animal size, as expected, the effects of scale on the ligament’s mechanical properties were less clear, suggesting potential adaptations in passive contributions to the maintenance of joint integrity across species. We then analyzed how the neural control of joint stability is altered by body scale. We show how neural control strategies change across mechanical scales, how this scaling is affected by passive muscle properties and the cost function used to specify muscle activations, and the consequences of scaling on internal joint contact forces. This work provides insights into how scale affects the regulation of joint integrity by both passive and active processes and provides directions for studies examining how this regulation might be accomplished by neural systems.
Collapse
Affiliation(s)
- Gil Serrancolí
- Department of Mechanical Engineering, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
- Correspondence:
| | - Cristiano Alessandro
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, 27100 Pavia, Italy;
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA;
| | - Matthew C. Tresch
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA;
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| |
Collapse
|
27
|
Luo M, Zhang Y, Huang S, Song Y. The Susceptibility and Potential Functions of the LBX1 Gene in Adolescent Idiopathic Scoliosis. Front Genet 2021; 11:614984. [PMID: 33537061 PMCID: PMC7848184 DOI: 10.3389/fgene.2020.614984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies have identified many susceptibility genes for adolescent idiopathic scoliosis (AIS). However, most of the results are hard to be replicated in multi-ethnic populations. LBX1 is the most promising candidate gene in the etiology of AIS. We aimed to appraise the literature for the association of LBX1 gene polymorphisms with susceptibility and curve progression in AIS. We also reviewed the function of the LBX1 gene in muscle progenitor cell migration and neuronal determination processes. Three susceptibility loci (rs11190870, rs625039, and rs11598564) near the LBX1 gene, as well as another susceptibility locus (rs678741), related to LBX1 regulation, have been successfully verified to have robust associations with AIS in multi-ethnic populations. The LBX1 gene plays an essential role in regulating the migration and proliferation of muscle precursor cells, and it is known to play a role in neuronal determination processes, especially for the fate of somatosensory relay neurons. The LBX1 gene is the most promising candidate gene in AIS susceptibility due to its position and possible functions in muscle progenitor cell migration and neuronal determination processes. The causality between susceptibility loci related to the LBX1 gene and the pathogenesis of AIS deserves to be explored with further integrated genome-wide and epigenome-wide association studies.
Collapse
Affiliation(s)
- Ming Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiao Zhang
- West China Hospital and West China School of Medicine, Sichuan University, Chengdu, China
| | - Shishu Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yueming Song
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Kröger S, Watkins B. Muscle spindle function in healthy and diseased muscle. Skelet Muscle 2021; 11:3. [PMID: 33407830 PMCID: PMC7788844 DOI: 10.1186/s13395-020-00258-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies.
Collapse
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| | - Bridgette Watkins
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
29
|
Barrett P, Quick TJ, Mudera V, Player DJ. Generating intrafusal skeletal muscle fibres in vitro: Current state of the art and future challenges. J Tissue Eng 2020; 11:2041731420985205. [PMID: 34956586 PMCID: PMC8693220 DOI: 10.1177/2041731420985205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023] Open
Abstract
Intrafusal fibres are a specialised cell population in skeletal muscle, found within the muscle spindle. These fibres have a mechano-sensory capacity, forming part of the monosynaptic stretch-reflex arc, a key component responsible for proprioceptive function. Impairment of proprioception and associated dysfunction of the muscle spindle is linked with many neuromuscular diseases. Research to-date has largely been undertaken in vivo or using ex vivo preparations. These studies have provided a foundation for our understanding of muscle spindle physiology, however, the cellular and molecular mechanisms which underpin physiological changes are yet to be fully elucidated. Therefrom, the use of in vitro models has been proposed, whereby intrafusal fibres can be generated de novo. Although there has been progress, it is predominantly a developing and evolving area of research. This narrative review presents the current state of art in this area and proposes the direction of future work, with the aim of providing novel pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
30
|
Does spinal fusion influence lateral oscillations in scoliosis patients? Unstable equilibrium analysis. J Orthop 2020; 21:395-400. [PMID: 32921948 DOI: 10.1016/j.jor.2020.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022] Open
Abstract
Background Patients with Idiopathic Scoliosis demonstrate vestibular and proprioceptive system perturbations. Scoliosis can be treated through spinal fusion. Does spinal fusion present significant effect of dynamic equilibrium in case of lateral oscillations? Methods Using an unstable platform in frontal plane, dynamic equilibrium in patients with idiopathic scoliosis (before and one year after spinal fusion) was analyzed against a population of asymptomatic subjects. Results A significant group effect was observed on Center of Mass in case of Eyes Opened. Conclusion In relation to sensory integration, spinal fusion coupled to rehabilitation program is associated to better dynamic equilibrium.
Collapse
|
31
|
Bearce EA, Grimes DT. On being the right shape: Roles for motile cilia and cerebrospinal fluid flow in body and spine morphology. Semin Cell Dev Biol 2020; 110:104-112. [PMID: 32693941 DOI: 10.1016/j.semcdb.2020.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
How developing and growing organisms attain their proper shape is a central problem of developmental biology. In this review, we investigate this question with respect to how the body axis and spine form in their characteristic linear head-to-tail fashion in vertebrates. Recent work in the zebrafish has implicated motile cilia and cerebrospinal fluid flow in axial morphogenesis and spinal straightness. We begin by introducing motile cilia, the fluid flows they generate and their roles in zebrafish development and growth. We then describe how cilia control body and spine shape through sensory cells in the spinal canal, a thread-like extracellular structure called the Reissner fiber, and expression of neuropeptide signals. Last, we discuss zebrafish mutants in which spinal straightness breaks down and three-dimensional curves form. These curves resemble the common but little-understood human disease Idiopathic Scoliosis. Zebrafish research is therefore poised to make progress in our understanding of this condition and, more generally, how body and spine shape is acquired and maintained through development and growth.
Collapse
Affiliation(s)
- Elizabeth A Bearce
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| | - Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
32
|
Brzoska E, Kalkowski L, Kowalski K, Michalski P, Kowalczyk P, Mierzejewski B, Walczak P, Ciemerych MA, Janowski M. Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells Dev 2020; 28:1059-1077. [PMID: 31170887 DOI: 10.1089/scd.2019.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a relatively frequent disease within a range 0.5%-5.0% of population, with higher frequency in females. While a resultant spinal deformity is usually medically benign condition, it produces far going psychosocial consequences, which warrant attention. The etiology of AIS is unknown and current therapeutic approaches are symptomatic only, and frequently inconvenient or invasive. Muscular contribution to AIS is widely recognized, although it did not translate to clinical routine as yet. Muscle asymmetry has been documented by pathological examinations as well as systemic muscle disorders frequently leading to scoliosis. It has been also reported numerous genetic, metabolic and radiological alterations in patients with AIS, which are linked to muscular and neuromuscular aspects. Therefore, muscles might be considered an attractive and still insufficiently exploited therapeutic target for AIS. Stem cell-based regenerative medicine is rapidly gaining momentum based on the tremendous progress in understanding of developmental biology. It comes also with a toolbox of various stem cells such as satellite cells or mesenchymal stem cells, which could be transplanted; also, the knowledge acquired in research on regenerative medicine can be applied to manipulation of endogenous stem cells to obtain desired therapeutic goals. Importantly, paravertebral muscles are located relatively superficially; therefore, they can be an easy target for minimally invasive approaches to treatment of AIS. It comes in pair with a fast progress in image guidance, which allows for precise delivery of therapeutic agents, including stem cells to various organs such as brain, muscles, and others. Summing up, it seems that there is a link between AIS, muscles, and stem cells, which might be worth of further investigations with a long-term goal of setting foundations for eventual bench-to-bedside translation.
Collapse
Affiliation(s)
- Edyta Brzoska
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Kalkowski
- 2Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Kowalski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel Michalski
- 3Spine Surgery Department, Institute of Mother and Child, Warsaw, Poland
| | - Pawel Kowalczyk
- 4Department of Neurosurgery, Children's Memorial Health Institute, Warsaw, Poland
| | - Bartosz Mierzejewski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Walczak
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Ciemerych
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Miroslaw Janowski
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
33
|
Assaraf E, Blecher R, Heinemann-Yerushalmi L, Krief S, Carmel Vinestock R, Biton IE, Brumfeld V, Rotkopf R, Avisar E, Agar G, Zelzer E. Piezo2 expressed in proprioceptive neurons is essential for skeletal integrity. Nat Commun 2020; 11:3168. [PMID: 32576830 PMCID: PMC7311488 DOI: 10.1038/s41467-020-16971-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/26/2020] [Indexed: 11/24/2022] Open
Abstract
In humans, mutations in the PIEZO2 gene, which encodes for a mechanosensitive ion channel, were found to result in skeletal abnormalities including scoliosis and hip dysplasia. Here, we show in mice that loss of Piezo2 expression in the proprioceptive system recapitulates several human skeletal abnormalities. While loss of Piezo2 in chondrogenic or osteogenic lineages does not lead to human-like skeletal abnormalities, its loss in proprioceptive neurons leads to spine malalignment and hip dysplasia. To validate the non-autonomous role of proprioception in hip joint morphogenesis, we studied this process in mice mutant for proprioceptive system regulators Runx3 or Egr3. Loss of Runx3 in the peripheral nervous system, but not in skeletal lineages, leads to similar joint abnormalities, as does Egr3 loss of function. These findings expand the range of known regulatory roles of the proprioception system on the skeleton and provide a central component of the underlying molecular mechanism, namely Piezo2.
Collapse
Affiliation(s)
- Eran Assaraf
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Orthopedic Surgery, Assaf HaRofeh Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Zerrifin, 70300, Israel
| | - Ronen Blecher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Orthopedic Surgery, Assuta Ashdod University Hospital, Ashdod, 7747629, Israel
- Ben Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | | | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ron Carmel Vinestock
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Inbal E Biton
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ron Rotkopf
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Erez Avisar
- Department of Orthopedic Surgery, Assaf HaRofeh Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Zerrifin, 70300, Israel
| | - Gabriel Agar
- Department of Orthopedic Surgery, Assaf HaRofeh Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Zerrifin, 70300, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
34
|
A fellowship of firsts: report of the 2019 SRS traveling fellowship. Spine Deform 2020; 8:157-164. [PMID: 32052356 DOI: 10.1007/s43390-020-00062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Coordination amongst quadriceps muscles suggests neural regulation of internal joint stresses, not simplification of task performance. Proc Natl Acad Sci U S A 2020; 117:8135-8142. [PMID: 32205442 DOI: 10.1073/pnas.1916578117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many studies have demonstrated covariation between muscle activations during behavior, suggesting that muscles are not controlled independently. According to one common proposal, this covariation reflects simplification of task performance by the nervous system so that muscles with similar contributions to task variables are controlled together. Alternatively, this covariation might reflect regulation of low-level aspects of movements that are common across tasks, such as stresses within joints. We examined these issues by analyzing covariation patterns in quadriceps muscle activity during locomotion in rats. The three monoarticular quadriceps muscles (vastus medialis [VM], vastus lateralis [VL], and vastus intermedius [VI]) produce knee extension and so have identical contributions to task performance; the biarticular rectus femoris (RF) produces an additional hip flexion. Consistent with the proposal that muscle covariation is related to similarity of muscle actions on task variables, we found that the covariation between VM and VL was stronger than their covariations with RF. However, covariation between VM and VL was also stronger than their covariations with VI. Since all vastii have identical actions on task variables, this finding suggests that covariation between muscle activity is not solely driven by simplification of overt task performance. Instead, the preferentially strong covariation between VM and VL is consistent with the control of internal joint stresses: Since VM and VL produce opposing mediolateral forces on the patella, the high positive correlation between their activation minimizes the net mediolateral patellar force. These results provide important insights into the interpretation of muscle covariations and their role in movement control.
Collapse
|
36
|
Gerwin L, Rossmanith S, Haupt C, Schultheiß J, Brinkmeier H, Bittner RE, Kröger S. Impaired muscle spindle function in murine models of muscular dystrophy. J Physiol 2020; 598:1591-1609. [PMID: 32003874 DOI: 10.1113/jp278563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Muscular dystrophy patients suffer from progressive degeneration of skeletal muscle fibres, sudden spontaneous falls, balance problems, as well as gait and posture abnormalities. Dystrophin- and dysferlin-deficient mice, models for different types of muscular dystrophy with different aetiology and molecular basis, were characterized to investigate if muscle spindle structure and function are impaired. The number and morphology of muscle spindles were unaltered in both dystrophic mouse lines but muscle spindle resting discharge and their responses to stretch were altered. In dystrophin-deficient muscle spindles, the expression of the paralogue utrophin was substantially upregulated, potentially compensating for the dystrophin deficiency. The results suggest that muscle spindles might contribute to the motor problems observed in patients with muscular dystrophy. ABSTRACT Muscular dystrophies comprise a heterogeneous group of hereditary diseases characterized by progressive degeneration of extrafusal muscle fibres as well as unstable gait and frequent falls. To investigate if muscle spindle function is impaired, we analysed their number, morphology and function in wildtype mice and in murine model systems for two distinct types of muscular dystrophy with very different disease aetiology, i.e. dystrophin- and dysferlin-deficient mice. The total number and the overall structure of muscle spindles in soleus muscles of both dystrophic mouse mutants appeared unchanged. Immunohistochemical analyses of wildtype muscle spindles revealed a concentration of dystrophin and β-dystroglycan in intrafusal fibres outside the region of contact with the sensory neuron. While utrophin was absent from the central part of intrafusal fibres of wildtype mice, it was substantially upregulated in dystrophin-deficient mice. Single-unit extracellular recordings of sensory afferents from muscle spindles of the extensor digitorum longus muscle revealed that muscle spindles from both dystrophic mouse strains have an increased resting discharge and a higher action potential firing rate during sinusoidal vibrations, particularly at low frequencies. The response to ramp-and-hold stretches appeared unaltered compared to the respective wildtype mice. We observed no exacerbated functional changes in dystrophin and dysferlin double mutant mice compared to the single mutant animals. These results show alterations in muscle spindle afferent responses in both dystrophic mouse lines, which might cause an increased muscle tone, and might contribute to the unstable gait and frequent falls observed in patients with muscular dystrophy.
Collapse
Affiliation(s)
- Laura Gerwin
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany.,Institute for Stem Cell Research, German Research Center for Environmental Health, Helmholtz Centre Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Sarah Rossmanith
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany
| | - Corinna Haupt
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany
| | - Jürgen Schultheiß
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany
| | - Heinrich Brinkmeier
- Institute for Pathophysiology, University Medicine Greifswald, Martin-Luther-Str. 6, 17489, Greifswald, Germany
| | - Reginald E Bittner
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Waehringerstrasse 13, 1090, Vienna, Austria
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany
| |
Collapse
|
37
|
Smith DL, Haug MJ, Walsh MS. The effect of posture on neck proprioception and head/neck stabilization in asymptomatic participants. THE JOURNAL OF THE CANADIAN CHIROPRACTIC ASSOCIATION 2019; 63:100-110. [PMID: 31564748 PMCID: PMC6743652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE We sought to determine the effect of different body postures on neck proprioception and head/neck stabilization. METHODS Twelve healthy college students completed a head repositioning task and a 'head still' task while wearing a headpiece (helmet) with laser fixed on top during standing, kneeling, sitting, and sitting with stabilization. Video data of the laser dot coordinates on a projection screen were obtained to examine the accuracy of the two tasks. RESULTS There was a significant effect of both posture and vision for both vertical and horizontal head movements during the head still task. Standing and kneeling generated more variable head movement than sitting with or without stabilization. Posture did not significantly affect head repositioning accuracy. CONCLUSION For healthy young adults, clinicians and researchers need to be concerned with postural influences on tasks that involve head/cervical spine stabilization, but not head repositioning accuracy.
Collapse
Affiliation(s)
- Dean L. Smith
- Department of Kinesiology and Health, Miami University, Oxford, Ohio
- Essence of Wellness Chiropractic Center, Eaton, Ohio
| | | | - Mark S. Walsh
- Department of Kinesiology and Health, Miami University, Oxford, Ohio
| |
Collapse
|
38
|
Nowlan NC, Francis-West P, Nelson C. Mechanics of development. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0316. [PMID: 30249768 DOI: 10.1098/rstb.2017.0316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, King's College London, London WC2R 2LS, UK
| | - Celeste Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|