1
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
2
|
Dixit T, Apostol AL, Chen KC, Fulford AJC, Town CP, Spottiswoode CN. Visual complexity of egg patterns predicts egg rejection according to Weber's law. Proc Biol Sci 2022; 289:20220710. [PMID: 35858060 PMCID: PMC9277300 DOI: 10.1098/rspb.2022.0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Visual complexity is ubiquitous in nature. Drivers of complexity include selection in coevolutionary arms races between antagonists. However, the causes and consequences of biological complexity and its perception are largely understudied, partly because complexity is difficult to quantify. Here, we address this by studying egg pattern complexity and its perception in hosts (tawny-flanked prinia Prinia subflava), which visually recognize and reject mimetic eggs of their virulent brood parasite (cuckoo finch Anomalospiza imberbis). Using field data and an optimization algorithm, we compute a complexity metric which predicts rejection of experimentally placed conspecific eggs in prinia nests. Real cuckoo finch eggs exhibit significantly lower pattern complexity than prinia eggs, suggesting that high complexity benefits hosts because it distinguishes host eggs from parasitic eggs. We show that prinias perceive complexity differences according to Weber's law of proportional processing (i.e. relative, rather than absolute, differences between stimuli are processed in discrimination, such that two eggs with simple patterns are more easily discriminable than two with complex patterns). This may influence coevolutionary trajectories of hosts and parasites. The new methods presented for quantifying complexity and its perception can help us to understand selection pressures driving the evolution of complexity and its consequences for species interactions.
Collapse
Affiliation(s)
- Tanmay Dixit
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Kuan-Chi Chen
- Computer Laboratory, University of Cambridge, Cambridge, UK
| | | | | | - Claire N. Spottiswoode
- Department of Zoology, University of Cambridge, Cambridge, UK,DST-NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
3
|
Spottiswoode CN, Tong W, Jamie GA, Stryjewski KF, DaCosta JM, Kuras ER, Green A, Hamama S, Taylor IG, Moya C, Sorenson MD. Genetic architecture facilitates then constrains adaptation in a host-parasite coevolutionary arms race. Proc Natl Acad Sci U S A 2022; 119:e2121752119. [PMID: 35412865 PMCID: PMC9170059 DOI: 10.1073/pnas.2121752119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
In coevolutionary arms races, interacting species impose selection on each other, generating reciprocal adaptations and counter adaptations. This process is typically enhanced by genetic recombination and heterozygosity, but these sources of evolutionary novelty may be secondarily lost when uniparental inheritance evolves to ensure the integrity of sex-linked adaptations. We demonstrate that host-specific egg mimicry in the African cuckoo finch Anomalospiza imberbis is maternally inherited, confirming the validity of an almost century-old hypothesis. We further show that maternal inheritance not only underpins the mimicry of different host species but also additional mimetic diversification that approximates the range of polymorphic egg “signatures” that have evolved within host species as an escalated defense against parasitism. Thus, maternal inheritance has enabled the evolution and maintenance of nested levels of mimetic specialization in a single parasitic species. However, maternal inheritance and the lack of sexual recombination likely disadvantage cuckoo finches by stifling further adaptation in the ongoing arms races with their individual hosts, which we show have retained biparental inheritance of egg phenotypes. The inability to generate novel genetic combinations likely prevents cuckoo finches from mimicking certain host phenotypes that are currently favored by selection (e.g., the olive-green colored eggs laid by some tawny-flanked prinia, Prinia subflava, females). This illustrates an important cost of coding coevolved adaptations on the nonrecombining sex chromosome, which may impede further coevolutionary change by effectively reversing the advantages of sexual reproduction in antagonistic coevolution proposed by the Red Queen hypothesis.
Collapse
Affiliation(s)
- Claire N. Spottiswoode
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- FitzPatrick Institute of African Ornithology, Department of Science and Technology–National Research Foundation Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - Wenfei Tong
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Gabriel A. Jamie
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- FitzPatrick Institute of African Ornithology, Department of Science and Technology–National Research Foundation Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Jeffrey M. DaCosta
- Department of Biology, Boston University, Boston, MA 02215
- Biology Department, Boston College, Chestnut Hill, MA 02467
| | - Evan R. Kuras
- Department of Biology, Boston University, Boston, MA 02215
| | - Ailsa Green
- Chenga Farm, Choma, Southern Province, Zambia
| | - Silky Hamama
- Musumanene Farm, Choma, Southern Province, Zambia
| | | | - Collins Moya
- Musumanene Farm, Choma, Southern Province, Zambia
| | | |
Collapse
|
4
|
Lentiviral Vectors for T Cell Engineering: Clinical Applications, Bioprocessing and Future Perspectives. Viruses 2021; 13:v13081528. [PMID: 34452392 PMCID: PMC8402758 DOI: 10.3390/v13081528] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lentiviral vectors have played a critical role in the emergence of gene-modified cell therapies, specifically T cell therapies. Tisagenlecleucel (Kymriah), axicabtagene ciloleucel (Yescarta) and most recently brexucabtagene autoleucel (Tecartus) are examples of T cell therapies which are now commercially available for distribution after successfully obtaining EMA and FDA approval for the treatment of blood cancers. All three therapies rely on retroviral vectors to transduce the therapeutic chimeric antigen receptor (CAR) into T lymphocytes. Although these innovations represent promising new therapeutic avenues, major obstacles remain in making them readily available tools for medical care. This article reviews the biological principles as well as the bioprocessing of lentiviral (LV) vectors and adoptive T cell therapy. Clinical and engineering successes, shortcomings and future opportunities are also discussed. The development of Good Manufacturing Practice (GMP)-compliant instruments, technologies and protocols will play an essential role in the development of LV-engineered T cell therapies.
Collapse
|
5
|
Caves EM, Dixit T, Colebrook-Robjent JFR, Hamusikili L, Stevens M, Thorogood R, Spottiswoode CN. Hosts elevate either within-clutch consistency or between-clutch distinctiveness of egg phenotypes in defence against brood parasites. Proc Biol Sci 2021; 288:20210326. [PMID: 34157874 PMCID: PMC8220279 DOI: 10.1098/rspb.2021.0326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In host-parasite arms races, hosts can evolve signatures of identity to enhance the detection of parasite mimics. In theory, signatures are most effective when within-individual variation is low ('consistency'), and between-individual variation is high ('distinctiveness'). However, empirical support for positive covariation in signature consistency and distinctiveness across species is mixed. Here, we attempt to resolve this puzzle by partitioning distinctiveness according to how it is achieved: (i) greater variation within each trait, contributing to elevated 'absolute distinctiveness' or (ii) combining phenotypic traits in unpredictable combinations ('combinatorial distinctiveness'). We tested how consistency covaries with each type of distinctiveness by measuring variation in egg colour and pattern in two African bird families (Cisticolidae and Ploceidae) that experience mimetic brood parasitism. Contrary to predictions, parasitized species, but not unparasitized species, exhibited a negative relationship between consistency and combinatorial distinctiveness. Moreover, regardless of parasitism status, consistency was negatively correlated with absolute distinctiveness across species. Together, these results suggest that (i) selection from parasites acts on how traits combine rather than absolute variation in traits, (ii) consistency and distinctiveness are alternative rather than complementary elements of signatures and (iii) mechanistic constraints may explain the negative relationship between consistency and absolute distinctiveness across species.
Collapse
Affiliation(s)
- Eleanor M Caves
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Tanmay Dixit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | | - Martin Stevens
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Rose Thorogood
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki FI-00011, Finland.,Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00011, Finland
| | - Claire N Spottiswoode
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
6
|
Busch R, Kollnberger S, Mellins ED. HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications. Nat Rev Rheumatol 2020; 15:364-381. [PMID: 31092910 DOI: 10.1038/s41584-019-0219-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our understanding of the mechanisms underlying HLA associations with inflammatory arthritis continues to evolve. Disease associations have been refined, and interactions of HLA genotype with other genes and environmental risk factors in determining disease risk have been identified. This Review provides basic information on the genetics and molecular function of HLA molecules, as well as general features of HLA associations with disease. Evidence is discussed regarding the various peptide-dependent and peptide-independent mechanisms by which HLA alleles might contribute to the pathogenesis of three types of inflammatory arthritis: rheumatoid arthritis, spondyloarthritis and systemic juvenile idiopathic arthritis. Also discussed are HLA allelic associations that shed light on the genetic heterogeneity of inflammatory arthritides and on the relationships between adult and paediatric forms of arthritis. Clinical implications range from improved diagnosis and outcome prediction to the possibility of using HLA associations in developing personalized strategies for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Robert Busch
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK.
| | - Simon Kollnberger
- School of Medicine, Cardiff University, UHW Main Building, Heath Park, Cardiff, UK
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
7
|
Del Giudice M. Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation. QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/705038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Cotter SC, Pincheira-Donoso D, Thorogood R. Defences against brood parasites from a social immunity perspective. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180207. [PMID: 30967090 PMCID: PMC6388036 DOI: 10.1098/rstb.2018.0207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
Parasitic interactions are so ubiquitous that all multicellular organisms have evolved a system of defences to reduce their costs, whether the parasites they encounter are the classic parasites which feed on the individual, or brood parasites which usurp parental care. Many parallels have been drawn between defences deployed against both types of parasite, but typically, while defences against classic parasites have been selected to protect survival, those against brood parasites have been selected to protect the parent's inclusive fitness, suggesting that the selection pressures they impose are fundamentally different. However, there is another class of defences against classic parasites that have specifically been selected to protect an individual's inclusive fitness, known as social immunity. Social immune responses include the anti-parasite defences typically provided for others in kin-structured groups, such as the antifungal secretions produced by termite workers to protect the brood. Defences against brood parasites, therefore, are more closely aligned with social immune responses. Much like social immunity, host defences against brood parasitism are employed by a donor (a parent) for the benefit of one or more recipients (typically kin), and as with social defences against classic parasites, defences have therefore evolved to protect the donor's inclusive fitness, not the survival or ultimately the fitness of individual recipients This can lead to severe conflicts between the different parties, whose interests are not always aligned. Here, we consider defences against brood parasitism in the light of social immunity, at different stages of parasite encounter, addressing where conflicts occur and how they might be resolved. We finish with considering how this approach could help us to address longstanding questions in our understanding of brood parasitism. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- S. C. Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, UK
| | - D. Pincheira-Donoso
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, Nottinghamshire NG1 8NS, UK
| | - R. Thorogood
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Research Programme in Organismal and Evolutionary Biology, Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
9
|
Thorogood R, Spottiswoode CN, Portugal SJ, Gloag R. The coevolutionary biology of brood parasitism: a call for integration. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180190. [PMID: 30967086 PMCID: PMC6388032 DOI: 10.1098/rstb.2018.0190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 11/12/2022] Open
Abstract
Obligate brood-parasitic cheats have fascinated natural historians since ancient times. Passing on the costs of parental care to others occurs widely in birds, insects and fish, and often exerts selection pressure on hosts that in turn evolve defences. Brood parasites have therefore provided an illuminating system for researching coevolution. Nevertheless, much remains unknown about how ecology and evolutionary history constrain or facilitate brood parasitism, or the mechanisms that shape or respond to selection. In this special issue, we bring together examples from across the animal kingdom to illustrate the diverse ways in which recent research is addressing these gaps. This special issue also considers how research on brood parasitism may benefit from, and in turn inform, related fields such as social evolution and immunity. Here, we argue that progress in our understanding of coevolution would benefit from the increased integration of ideas across taxonomic boundaries and across Tinbergen's Four Questions: mechanism, ontogeny, function and phylogeny of brood parasitism. We also encourage renewed vigour in uncovering the natural history of the majority of the world's brood parasites that remain little-known. Indeed, it seems very likely that some of nature's brood parasites remain entirely unknown, because otherwise we are left with a puzzle: if parental care is so costly, why is brood parasitism not more common? This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- Rose Thorogood
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Research Program in Organismal and Evolutionary Biology, Faculty of Environmental and Biological Sciences, University of Helsinki, Helsinki 00014, Finland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Claire N. Spottiswoode
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - Steven J. Portugal
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Ros Gloag
- School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|