1
|
Gubelin H, Osorio JC, Gaggero A, Gubelin W, Aguayo F. Human papillomaviruses in hand squamous cell carcinomas from Chilean patients. Infect Agent Cancer 2024; 19:48. [PMID: 39354509 PMCID: PMC11446095 DOI: 10.1186/s13027-024-00611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
INTRODUCTION Cutaneous squamous cell carcinoma (SCC) accounts for 20% of all skin cancers and its incidence continues to increase globally. It represents 75% of non-melanoma skin cancer (NMSC) mortality. Risk factors include ultraviolet radiation (UVR) exposure, advanced age, chemical exposure, fair skin types, and immunosuppression. While most human papillomavirus (HPV) infections are associated with the development of warts, a subgroup is potentially implicated in the development of cutaneous SCC. The prevalence of alpha, beta, and gamma-HPV in Chilean patients with hand SCCs has not been previously addressed. The objective of this study was to evaluate the presence of HPV and genotyping in hand SCC from Chilean patients. MATERIALS AND METHODS An observational, cross-sectional, descriptive study was conducted. Alpha (α), beta (β) and gamma (γ)-HPV detection was performed by conventional polymerase chain reaction (PCR) in paraffin-embedded tissue samples from 52 patients diagnosed with hand SCC from Santiago, Chile. HPV genotyping was carried out via direct amplicon sequencing by Sanger method. RESULTS The most frequent carcinoma site was the dorsum of the hands (52.5%). α-HPV was not detected in these specimens, whereas β-HPV and γ-HPV were detected in 25% of the analyzed samples. The most frequent genotypes found were β-HPV 100 (38%) and γ-HPV 178 (15%). Additionally, γ-HPV 101, 162, HPV-mSK_016, HPV-mSK_083, HPV-mSK_213 and HPV-mSK249nr genotypes were detected, none of which had been previously described in cutaneous SCC. CONCLUSION β-HPV and γ-HPV are detectable in 25% of hand SCCs from Chilean patients. It is important to conduct prospective studies to better elucidate the role of these viruses in the development of this disease.
Collapse
Affiliation(s)
- Hans Gubelin
- Departamento de Dermatología, Universidad de Los Andes, Santiago, Chile
- Centro Médico SkinMed, Santiago, Chile
| | - Julio C Osorio
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica, Chile
| | - Aldo Gaggero
- Virology Program, Instituto de Ciencias Biomédicas (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Walter Gubelin
- Departamento de Dermatología, Universidad de Los Andes, Santiago, Chile.
- Centro Médico SkinMed, Santiago, Chile.
| | - Francisco Aguayo
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica, Chile.
| |
Collapse
|
2
|
Vella L, Sternjakob A, Lohse S, Fingerle A, Sperling T, Wickenhauser C, Stöckle M, Vogt T, Roemer K, Ołdak M, Smola S. The cutaneous beta human papillomavirus type 8 E6 protein induces CCL2 through the CEBPα/miR-203/p63 pathway to support an inflammatory microenvironment in epidermodysplasia verruciformis skin lesions. Front Cell Infect Microbiol 2024; 14:1336492. [PMID: 38510961 PMCID: PMC10953690 DOI: 10.3389/fcimb.2024.1336492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Human papillomavirus type 8 (HPV8), a cutaneous genus beta HPV type, has co-carcinogenic potential at sun-exposed sites in patients suffering from the inherited skin disease epidermodysplasia verruciformis (EV). We had previously shown that Langerhans cells responsible for epithelial immunosurveillance were strongly reduced at infected sites and that the HPV8 E7 protein interferes with the CCAAT/enhancer-binding protein (C/EBP)β to suppress the Langerhans cell chemokine CCL20. At the same time, however, we observed that EV lesions are heavily infiltrated with inflammatory immune cells, which is similar to the situation in HPV8 E6 transgenic mice. To identify critical inflammatory factors, we used a broad multiplex approach and found that the monocyte attracting chemokine CCL2 was significantly and strongly induced by HPV8 E6 but not E7-expressing HaCaT cells, which were used as a model for UV-damaged skin keratinocytes. Conditioned media from HPV8 E6-expressing keratinocytes enhanced CCL2-receptor (CCR2)-dependent monocyte recruitment in vitro, and macrophages predominated in the stroma but were also detected in the epidermal compartment of EV lesions in vivo. CCL2 induction by HPV8 E6 was even stronger than stimulation with the proinflammatory cytokine TNF-α, and both HPV8 E6 and TNF-α resulted in substantial suppression of the transcription factor C/EBPα. Using RNAi-mediated knockdown and overexpression approaches, we demonstrated a mechanistic role of the recently identified C/EBPα/miR-203/p63 pathway for HPV8 E6-mediated CCL2 induction at protein and transcriptional levels. Epithelial co-expression of p63 and CCL2 was confirmed in HPV8 E6-expressing organotypic air-liquid interface cultures and in lesional EV epidermis in vivo. In summary, our data demonstrate that HPV8 oncoproteins actively deregulate epidermal immune homeostasis through modulation of C/EBP factor-dependent pathways. While HPV8 E7 suppresses immunosurveillance required for viral persistence, the present study provides evidence that E6 involves the stemness-promoting factor p63 to support an inflammatory microenvironment that may fuel carcinogenesis in EV lesions.
Collapse
Affiliation(s)
- Luca Vella
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Anna Sternjakob
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Stefan Lohse
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Alina Fingerle
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Tanya Sperling
- Institute of Virology, University of Cologne, Cologne, Germany
| | | | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University Medical Center, Homburg, Germany
| | - Thomas Vogt
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Klaus Roemer
- Jose Carreras Center for Immune and Gene Therapy, Saarland University Medical Center, Homburg, Germany
| | - Monika Ołdak
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
| |
Collapse
|
3
|
Ceraolo MG, Romero-Medina MC, Gobbato S, Melita G, Krynska H, Sirand C, Gupta P, Viarisio D, Robitaille A, Marvel J, Tommasino M, Venuti A, Gheit T. HPV38 impairs UV-induced transcriptional activation of the IL-18 pro-inflammatory cytokine. mSphere 2023; 8:e0045023. [PMID: 37877723 PMCID: PMC10732055 DOI: 10.1128/msphere.00450-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Here, we demonstrate that the direct binding of p53 on the IL-18 promoter region regulates its gene expression. However, the presence of E6 and E7 from human papillomavirus type 38 impairs this mechanism via a new inhibitory complex formed by DNA methyltransferase 1 (DNMT1)/PKR/ΔNp73α, which binds to the region formerly occupied by p53 in primary keratinocytes.
Collapse
Affiliation(s)
- Maria Grazia Ceraolo
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | | | - Simone Gobbato
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Giusi Melita
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Hanna Krynska
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| | - Cecilia Sirand
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Purnima Gupta
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | | | - Alexis Robitaille
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Jacqueline Marvel
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Université Lyon, Lyon, France
| | | | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Tarik Gheit
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| |
Collapse
|
4
|
Li T, Unger ER, Rajeevan MS. Broad-Spectrum Detection of HPV in Male Genital Samples Using Target-Enriched Whole-Genome Sequencing. Viruses 2023; 15:1967. [PMID: 37766373 PMCID: PMC10538195 DOI: 10.3390/v15091967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Most human papillomavirus (HPV) surveillance studies target 30-50 of the more than 200 known types. We applied our recently described enriched whole-genome sequencing (eWGS) assay to demonstrate the impact of detecting all known and novel HPV types in male genital samples (n = 50). HPV was detected in nearly all (82%) samples, (mean number of types/samples 13.6; range 1-85), and nearly all HPV-positive samples included types in multiple genera (88%). A total of 560 HPV detections (237 unique HPV types: 46 alpha, 55 beta, 135 gamma, and 1 mu types) were made. The most frequently detected HPV types were alpha (HPV90, 43, and 74), beta (HPV115, 195, and 120), and gamma (HPV134, mSD2, and HPV50). High-risk alpha types (HPV16, 18, 31, 39, 52, and 58) were not common. A novel gamma type was identified (now officially HPV229) along with 90 unclassified types. This pilot study demonstrates the utility of the eWGS assay for broad-spectrum type detection and suggests a significantly higher type diversity in males compared to females that warrants further study.
Collapse
Affiliation(s)
| | | | - Mangalathu S. Rajeevan
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (T.L.); (E.R.U.)
| |
Collapse
|
5
|
Hasche D, Akgül B. Prevention and Treatment of HPV-Induced Skin Tumors. Cancers (Basel) 2023; 15:cancers15061709. [PMID: 36980594 PMCID: PMC10046090 DOI: 10.3390/cancers15061709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in humans with increasing incidence. Meanwhile, a growing body of evidence has provided a link between skin infections with HPV of the genus beta (betaHPV) and the development of cutaneous squamous cell carcinomas (cSCCs). Based on this association, the development of vaccines against betaHPV has become an important research topic. This review summarizes the current advances in prophylactic and therapeutic betaHPV vaccines, including progresses made in preclinical testing and clinical trials.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Baki Akgül
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
- Correspondence:
| |
Collapse
|
6
|
The Current Treatment Landscape of Cutaneous Squamous Cell Carcinoma. Am J Clin Dermatol 2023; 24:25-40. [PMID: 36512176 DOI: 10.1007/s40257-022-00742-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
Non-melanoma skin cancers (NMSCs) are the most common form of skin cancer worldwide. The global incidence of cutaneous squamous cell carcinoma (CSCC) is rising, with an estimated 2.4 million cases diagnosed in 2019. Chronic exposure to ultraviolet (UV) radiation is a major risk factor for developing CSCC. Most early-stage CSCCs are treated successfully with surgery or radiotherapy; however, locally advanced or metastatic disease can be associated with significant morbidity or mortality. Recently, the treatment paradigm for advanced CSCC has been revolutionised by the introduction of immunotherapy, which can achieve a response rate of approximately 50% with durable cancer control, and significant improvement in quality of life. With the regulatory approval of programmed death-1 (PD-1)-targeting drugs since 2018, immunotherapy is now recognised as the standard of care for first-line systemic therapy in advanced or metastatic CSCC.
Collapse
|
7
|
Hufbauer M, Rattay S, Hagen C, Quaas A, Pfister H, Hartmann G, Coch C, Akgül B. Poly(I:C) Treatment Prevents Skin Tumor Formation in the Preclinical HPV8 Transgenic Mouse Model. J Invest Dermatol 2022:S0022-202X(22)02900-1. [PMID: 36584911 DOI: 10.1016/j.jid.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022]
Abstract
Actinic keratoses and cutaneous squamous cell carcinomas are associated with infections with human papillomavirus of genus beta (betaHPV) in immunosuppressed patients. To date, targeted therapy against betaHPV-associated skin cancer does not exist because of the large number of betaHPV without defined high-risk types. In this study, we hypothesized that the activation of innate antiviral immunity in the skin, asymptomatically infected with betaHPV, induces an antitumor response by in situ autovaccination and prevents the formation of betaHPV-associated skin cancer. To test this, we used the preclinical keratin-14-HPV8 transgenic mouse model, which develops skin tumors after mechanical wounding. Remarkably, treatment with the antiviral immune response activating polyinosinic-polycytidylic acid (poly[I:C]) completely prevented cutaneous tumor growth. The induction of the IFN-induced genes Cxcl10 and Ifit1 by poly(I:C) depended on MDA5 activation. Increased numbers of total and activated CD4 and CD8 T cells were detected in poly(I:C)-treated skin. T cells were found in the skin of poly(I:C)-treated mice but not in the skin tumors of untreated mice. T-cell depletion showed a predominant role of CD4 T cells in poly(I:C)-mediated tumor prevention. Our findings identify the MDA5 ligand poly(I:C) as a promising candidate for in situ autovaccination approaches, which might serve as a treatment strategy against betaHPV-related skin diseases.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Stephanie Rattay
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Christian Hagen
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany; nextevidence GmbH, Munich, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Borgogna C, Martuscelli L, Olivero C, Lo Cigno I, De Andrea M, Caneparo V, Boldorini R, Patel G, Gariglio M. Enhanced Spontaneous Skin Tumorigenesis and Aberrant Inflammatory Response to UVB Exposure in Immunosuppressed Human Papillomavirus Type 8‒Transgenic Mice. J Invest Dermatol 2022; 143:740-750.e4. [PMID: 36481357 DOI: 10.1016/j.jid.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) from the beta genus are commensal viruses of the skin usually associated with asymptomatic infection in the general population. However, in individuals with specific genetic backgrounds, such as patients with epidermodysplasia verruciformis, or those with immune defects, such as organ transplant recipients, they are functionally involved in sunlight-induced skin cancer development, mainly keratinocyte carcinoma. Despite their well-established protumorigenic role, the cooperation between β-HPV infection, impaired host immunosurveillance, and UVB exposure has never been formally shown in animal models. In this study, by crossing skin-specific HPV8-transgenic mice with Rag2-deficient mice, we have generated a preclinical mouse model, named Rag2‒/‒:K14-HPV8. These mice display an unhealthy skin phenotype and spontaneously develop papilloma-like lesions spreading to the entire skin much more rapidly compared with Rag2+/+:K14-HPV8 mice. Exposure to low doses of UVB radiation is sufficient to trigger severe skin inflammation in Rag2‒/‒:K14-HPV8 but not in Rag2+/+:K14-HPV8 mice. Their inflamed skin very much resembled that observed in cutaneous field cancerization in organ transplant recipients, showing high levels of UVB-damaged cells, enhanced production of proinflammatory cytokines, and mast cell recruitment to the dermis. Overall, this immunocompromised HPV8-transgenic mouse model shows that the coexistence of immune defects, β-HPV, and UVB exposure promotes skin cancer development.
Collapse
Affiliation(s)
- Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Licia Martuscelli
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Marco De Andrea
- Virology Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Valeria Caneparo
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Girish Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy.
| |
Collapse
|
9
|
Rattay S, Hufbauer M, Hagen C, Putschli B, Coch C, Akgül B, Hartmann G. Human Beta Papillomavirus Type 8 E1 and E2 Proteins Suppress the Activation of the RIG-I-like Receptor MDA5. Viruses 2022; 14:v14071361. [PMID: 35891343 PMCID: PMC9317666 DOI: 10.3390/v14071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022] Open
Abstract
Persistent infections of the skin with the human papillomavirus of genus beta (β-HPV) in immunocompetent individuals are asymptomatic, but in immunosuppressed patients, β-HPV infections exhibit much higher viral loads on the skin and are associated with an increased risk of skin cancer. Unlike with HPV16, a high-risk α-HPV, the impact of β-HPV early genes on the innate immune sensing of viral nucleic acids has not been studied. Here, we used primary skin keratinocytes and U2OS cells expressing HPV8 or distinct HPV8 early genes and well-defined ligands of the nucleic-acid-sensing receptors RIG-I, MDA5, TLR3, and STING to analyze a potential functional interaction. We found that primary skin keratinocytes and U2OS cells expressed RIG-I, MDA5, TLR3, and STING, but not TLR7, TLR8, or TLR9. While HPV16-E6 downregulated the expression of RIG-I, MDA5, TLR3, and STING and, in conjunction with HPV16-E7, effectively suppressed type I IFN in response to MDA5 activation, the presence of HPV8 early genes showed little effect on the expression of these immune receptors, except for HPV8-E2, which was associated with an elevated expression of TLR3. Nevertheless, whole HPV8 genome expression, as well as the selective expression of HPV8-E1 or HPV8-E2, was found to suppress MDA5-induced type I IFN and the proinflammatory cytokine IL-6. Furthermore, RNA isolated from HPV8-E2 expressing primary human keratinocytes, but not control cells, stimulated a type I IFN response in peripheral blood mononuclear cells, indicating that the expression of HPV8-E2 in keratinocytes leads to the formation of stimulatory RNA ligands that require the active suppression of immune recognition. These results identify HPV8-E1 and HPV8-E2 as viral proteins that are responsible for the immune escape of β-HPV from the innate recognition of viral nucleic acids, a mechanism that may be necessary for establishing persistent β-HPV infections.
Collapse
Affiliation(s)
- Stephanie Rattay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
- Correspondence: ; Tel.: +49-221-478-85821; Fax: +49-221-478-85802
| | - Martin Hufbauer
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Christian Hagen
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Bastian Putschli
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Baki Akgül
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| |
Collapse
|
10
|
Hu C, Wallace N. Beta HPV Deregulates Double-Strand Break Repair. Viruses 2022; 14:948. [PMID: 35632690 PMCID: PMC9146468 DOI: 10.3390/v14050948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Beta human papillomavirus (beta HPV) infections are common in adults. Certain types of beta HPVs are associated with nonmelanoma skin cancer (NMSC) in immunocompromised individuals. However, whether beta HPV infections promote NMSC in the immunocompetent population is unclear. They have been hypothesized to increase genomic instability stemming from ultraviolet light exposure by disrupting DNA damage responses. Implicit in this hypothesis is that the virus encodes one or more proteins that impair DNA repair signaling. Fluorescence-based reporters, next-generation sequencing, and animal models have been used to test this primarily in cells expressing beta HPV E6/E7. Of the two, beta HPV E6 appears to have the greatest ability to increase UV mutagenesis, by attenuating two major double-strand break (DSB) repair pathways, homologous recombination, and non-homologous end-joining. Here, we review this dysregulation of DSB repair and emerging approaches that can be used to further these efforts.
Collapse
Affiliation(s)
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
11
|
Ursu RG, Damian C, Porumb-Andrese E, Ghetu N, Cobzaru RG, Lunca C, Ripa C, Costin D, Jelihovschi I, Petrariu FD, Iancu LS. Merkel Cell Polyoma Virus and Cutaneous Human Papillomavirus Types in Skin Cancers: Optimal Detection Assays, Pathogenic Mechanisms, and Therapeutic Vaccination. Pathogens 2022; 11:pathogens11040479. [PMID: 35456154 PMCID: PMC9032856 DOI: 10.3390/pathogens11040479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Oncogenic viruses are recognized to be involved in some cancers, based on very well-established criteria of carcinogenicity. For cervical cancer and liver cancer, the responsible viruses are well-known (e.g., HPV, HBV); in the case of skin cancer, there are still many studies which are trying to identify the possible viral etiologic agents as principal co-factors in the oncogenic process. We analysed scientific literature published in the last 5 years regarding mechanisms of carcinogenicity, methods of detection, available targeted therapy, and vaccination for Merkel cell polyomavirus, and beta human papillomavirus types, in relation to skin cancer. This review is targeted at presenting the recent findings which support the involvement of these viruses in the development of some types of skin cancers. In order to optimize the management of skin cancer, a health condition of very high importance, it would be ideal that the screening of skin cancer for these two analysed viruses (MCPyV and beta HPV types) to be implemented in each region's/country's cancer centres' molecular detection diagnostic platforms, with multiplex viral capability, optimal sensitivity, and specificity; clinically validated, and if possible, at acceptable costs. For confirmatory diagnosis of skin cancer, another method should be used, with a different principle, such as immunohistochemistry, with specific antibodies for each virus.
Collapse
Affiliation(s)
- Ramona Gabriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Costin Damian
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Elena Porumb-Andrese
- Department of Medical Specialties (III)—Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Nicolae Ghetu
- Department of Plastic Surgery, Regional Oncology Institute, 700483 Iasi, Romania
- Correspondence:
| | - Roxana Gabriela Cobzaru
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Catalina Lunca
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Carmen Ripa
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Diana Costin
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Igor Jelihovschi
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Florin Dumitru Petrariu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Luminita Smaranda Iancu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| |
Collapse
|
12
|
Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol 2021; 20:95-108. [PMID: 34522050 DOI: 10.1038/s41579-021-00617-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) are an ancient and highly successful group of viruses that have co-evolved with their host to replicate in specific anatomical niches of the stratified epithelia. They replicate persistently in dividing cells, hijack key host cellular processes to manipulate the cellular environment and escape immune detection, and produce virions in terminally differentiated cells that are shed from the host. Some HPVs cause benign, proliferative lesions on the skin and mucosa, and others are associated with the development of cancer. However, most HPVs cause infections that are asymptomatic and inapparent unless the immune system becomes compromised. To date, the genomes of almost 450 distinct HPV types have been isolated and sequenced. In this Review, I explore the diversity, evolution, infectious cycle, host interactions and disease association of HPVs.
Collapse
|
13
|
Zhao Z, Wu Y, Zhou Z, Zhao Y, Sun X, Hu C, Wang X, Zhang G. ALA-PDT successfully treated multiple cSCC in situ and AK in a patient with Epidermodysplasia verruciformis. Photodiagnosis Photodyn Ther 2021; 35:102395. [PMID: 34126243 DOI: 10.1016/j.pdpdt.2021.102395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 11/15/2022]
Abstract
5-aminolaevulinic acid photodynamic therapy (ALA-PDT) has emerged as a non-invasive treatment modality for premalignant and malignant skin lesions. It has the advantage of better tolerance and providing better cosmetic outcomes than conventional treatment methods. Herein, we report a patient who suffered from multiple cutaneous squamous cell carcinoma (cSCC) in situ and actinic keratosis (AK) scattered in the body's sun-exposed areas, which had led him to undergo multiple surgical resections since the age of 16. Next-generation sequencing-based on a targeted gene capture panel revealed compound heterozygous mutations c.G559A and c.G1389A in the TMC8 gene. Combined with the typical clinical manifestations and mutation analysis, the patient was diagnosed with Epidermodysplasia verruciformis (EV). Due to the multiple AK and cSCC in situ lesions, ALA-PDT was applied. After 8 courses of ALA-PDT all lesions were successfully cleared without causing any scarring. Therefore, the use of ALA-PDT treatment may constitute a very promising and effective therapeutic modality for multiple cSCC in situ and AK secondary to EV.
Collapse
Affiliation(s)
- Zijun Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuhao Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongxia Zhou
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaofei Sun
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chan Hu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
14
|
Beta-Genus Human Papillomavirus 8 E6 Destabilizes the Host Genome by Promoting p300 Degradation. Viruses 2021; 13:v13081662. [PMID: 34452526 PMCID: PMC8402844 DOI: 10.3390/v13081662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023] Open
Abstract
The beta genus of human papillomaviruses infects cutaneous keratinocytes. Their replication depends on actively proliferating cells and, thus, they conflict with the cellular response to the DNA damage frequently encountered by these cells. This review focus on one of these viruses (HPV8) that counters the cellular response to damaged DNA and mitotic errors by expressing a protein (HPV8 E6) that destabilizes a histone acetyltransferase, p300. The loss of p300 results in broad dysregulation of cell signaling that decreases genome stability. In addition to discussing phenotypes caused by p300 destabilization, the review contains a discussion of the extent to which E6 from other β-HPVs destabilizes p300, and provides a discussion on dissecting HPV8 E6 biology using mutants.
Collapse
|
15
|
Lambert PF, Münger K, Rösl F, Hasche D, Tommasino M. Beta human papillomaviruses and skin cancer. Nature 2020; 588:E20-E21. [PMID: 33328661 DOI: 10.1038/s41586-020-3023-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
| | - Karl Münger
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hasche
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France.
| |
Collapse
|
16
|
Tampa M, Mitran CI, Mitran MI, Nicolae I, Dumitru A, Matei C, Manolescu L, Popa GL, Caruntu C, Georgescu SR. The Role of Beta HPV Types and HPV-Associated Inflammatory Processes in Cutaneous Squamous Cell Carcinoma. J Immunol Res 2020; 2020:5701639. [PMID: 32322596 PMCID: PMC7165336 DOI: 10.1155/2020/5701639] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 11/21/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer with a complex but not fully understood pathogenesis. Recent research suggests the role of beta human papillomavirus (HPV) types and HPV-associated inflammatory processes in cSCC development. Beta HPV types are components of the normal flora; however, under the influence of certain cofactors, the virus may trigger a malignant process. Dysregulation of the immune system (chronic inflammation and immunosuppression), environmental factors (ultraviolet radiation), and genetic factors are the most important cofactors involved in beta HPV-related carcinogenesis. In addition, the oncoproteins E6 and E7 of beta HPV types differ biochemically from their counterparts in the structure of alpha HPV types, resulting in different mechanisms of action in carcinogenesis. The aim of our manuscript is to present an updated point of view on the involvement of beta HPV types in cSCC pathogenesis.
Collapse
Affiliation(s)
- Mircea Tampa
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Madalina Irina Mitran
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Ilinca Nicolae
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| | - Adrian Dumitru
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Emergency University Hospital Bucharest, 169 Splaiul Independenței, 050098 Bucharest, Romania
| | - Clara Matei
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Loredana Manolescu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Gabriela Loredana Popa
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Colentina Clinical Hospital, 19-21 Ștefan cel Mare, 020125 Bucharest, Romania
| | - Constantin Caruntu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 22-24 Gr. Manolescu, Bucharest 011233, Romania
| | - Simona Roxana Georgescu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| |
Collapse
|
17
|
Alizon S, Bravo IG, Farrell PJ, Roberts S. Towards a multi-level and a multi-disciplinary approach to DNA oncovirus virulence. Philos Trans R Soc Lond B Biol Sci 2020; 374:20190041. [PMID: 30955496 DOI: 10.1098/rstb.2019.0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One out of 10 cancers is estimated to arise from infections by a handful of oncogenic viruses. These infectious cancers constitute an opportunity for primary prevention through immunization against the viral infection, for early screening through molecular detection of the infectious agent, and potentially for specific treatments, by targeting the virus as a marker of cancer cells. Accomplishing these objectives will require a detailed understanding of the natural history of infections, the mechanisms by which the viruses contribute to disease, the mutual adaptation of viruses and hosts, and the possible viral evolution in the absence and in the presence of the public health interventions conceived to target them. This issue showcases the current developments in experimental tissue-like and animal systems, mathematical models and evolutionary approaches to understand DNA oncoviruses. Our global aim is to provide proximate explanations to the present-day interface and interactions between virus and host, as well as ultimate explanations about the adaptive value of these interactions and about the evolutionary pathways that have led to the current malignant phenotype of oncoviral infections. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Samuel Alizon
- 1 French National Center for Scientific Research (CNRS), Laboratory MIVEGEC (CNRS, IRD, UM) , 34394 Montpellier , France
| | - Ignacio G Bravo
- 1 French National Center for Scientific Research (CNRS), Laboratory MIVEGEC (CNRS, IRD, UM) , 34394 Montpellier , France
| | | | - Sally Roberts
- 3 Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham B15 2SY , UK
| |
Collapse
|
18
|
Human Papillomavirus and carcinogenesis: Novel mechanisms of cell communication involving extracellular vesicles. Cytokine Growth Factor Rev 2020; 51:92-98. [PMID: 31973992 PMCID: PMC7108386 DOI: 10.1016/j.cytogfr.2019.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
A group of mucosal HPVs are the causative agents of cervical cancer and are associated to other cancers. Certain cutaneous HPVs are involved in the development of cutaneous squamous cell carcinoma. EVs released by HPV+ cells convey a specific cargo of mRNAs and microRNAs. The EV delivery from HPV+ cells to non-infected recipient cells may represent a novel mechanism of tumorigenesis promotion.
A small group of mucosal Human Papillomaviruses are the causative agents of cervical cancer and are also associated with other types of cancers. Certain cutaneous Human Papillomaviruses seem to have a role as co-factors in the UV-induced carcinogenesis of the skin. The main mechanism of the tumorigenesis induced by Human Papillomaviruses is linked to the transforming activity of the viral E6 and E7 oncoproteins. However, other mechanisms, such as the gene expression control by specific microRNAs expression and deregulation of immune inflammatory mediators, may be important in the process of transformation. In this context, the release of Extracellular Vesicles with a specific cargo (microRNAs involved in tumorigenesis, mRNAs of viral oncoproteins, cytokines, chemokines) appears to play a key role.
Collapse
|
19
|
Abstract
Human papillomaviruses (HPVs) infect squamous epithelia and can induce hyperproliferative lesions. More than 220 different HPV types have been characterized and classified into five different genera. While mucosal high-risk HPVs have a well-established causal role in anogenital carcinogenesis, the biology of cutaneous HPVs is less well understood.From patients with the rare genetic disorder epidermodysplasia verruciformis (EV) and animal models, evidence is accumulating that cutaneous PV of genus β synergize with ultraviolet (UV) radiation in the development of cutaneous squamous cell carcinoma (cSCC). In 2009, the International Agency for Research on Cancer (IARC) classified the genus β-HPV types 5 and 8 as "possible carcinogenic" biological agents (group 2B) in EV disease. Epidemiological and biological studies indicate that genus β-PV infection may also play a role in UV-mediated skin carcinogenesis in non-EV patients. However, they rather act at early stages of carcinogenesis and become dispensable for the maintenance of the malignant phenotype, compatible with a "hit-and-run" mechanism.This chapter will give an overview on genus β-PV infections and discuss similarities and differences of cutaneous and genus α mucosal high-risk HPV in epithelial carcinogenesis.
Collapse
|