1
|
Vaz AP, Wittig JH, Inati SK, Zaghloul KA. Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex. Nat Commun 2023; 14:4723. [PMID: 37550285 PMCID: PMC10406814 DOI: 10.1038/s41467-023-40440-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Sequences of spiking activity have been heavily implicated as potential substrates of memory formation and retrieval across many species. A parallel line of recent evidence also asserts that sequential activity may arise from and be constrained by pre-existing network structure. Here we reconcile these two lines of research in the human brain by measuring single unit spiking sequences in the temporal lobe cortex as participants perform an episodic memory task. We find the presence of an average backbone spiking sequence identified during pre-task rest that is stable over time and different cognitive states. We further demonstrate that these backbone sequences are composed of both rigid and flexible sequence elements, and that flexible elements within these sequences serve to promote memory specificity when forming and retrieving new memories. These results support the hypothesis that pre-existing network dynamics serve as a scaffold for ongoing neural activity in the human cortex.
Collapse
Affiliation(s)
- Alex P Vaz
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - John H Wittig
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara K Inati
- Office of the Clinical Director, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Sherif MA, Khalil MZ, Shukla R, Brown JC, Carpenter LL. Synapses, predictions, and prediction errors: A neocortical computational study of MDD using the temporal memory algorithm of HTM. Front Psychiatry 2023; 14:976921. [PMID: 36911109 PMCID: PMC9995817 DOI: 10.3389/fpsyt.2023.976921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION Synapses and spines play a significant role in major depressive disorder (MDD) pathophysiology, recently highlighted by the rapid antidepressant effect of ketamine and psilocybin. According to the Bayesian brain and interoception perspectives, MDD is formalized as being stuck in affective states constantly predicting negative energy balance. To understand how spines and synapses relate to the predictive function of the neocortex and thus to symptoms, we used the temporal memory (TM), an unsupervised machine-learning algorithm. TM models a single neocortical layer, learns in real-time, and extracts and predicts temporal sequences. TM exhibits neocortical biological features such as sparse firing and continuous online learning using local Hebbian-learning rules. METHODS We trained a TM model on random sequences of upper-case alphabetical letters, representing sequences of affective states. To model depression, we progressively destroyed synapses in the TM model and examined how that affected the predictive capacity of the network. We found that the number of predictions decreased non-linearly. RESULTS Destroying 50% of the synapses slightly reduced the number of predictions, followed by a marked drop with further destruction. However, reducing the synapses by 25% distinctly dropped the confidence in the predictions. Therefore, even though the network was making accurate predictions, the network was no longer confident about these predictions. DISCUSSION These findings explain how interoceptive cortices could be stuck in limited affective states with high prediction error. Connecting ketamine and psilocybin's proposed mechanism of action to depression pathophysiology, the growth of new synapses would allow representing more futuristic predictions with higher confidence. To our knowledge, this is the first study to use the TM model to connect changes happening at synaptic levels to the Bayesian formulation of psychiatric symptomatology. Linking neurobiological abnormalities to symptoms will allow us to understand the mechanisms of treatments and possibly, develop new ones.
Collapse
Affiliation(s)
- Mohamed A Sherif
- Lifespan Physician Group, Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Carney Institute for Brain Science, Norman Prince Neurosciences Institute, Providence, RI, United States
| | - Mostafa Z Khalil
- Department of Psychiatry and Behavioral Health, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
| | - Rammohan Shukla
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Joshua C Brown
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI, United States
| | - Linda L Carpenter
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI, United States
| |
Collapse
|
3
|
Gidon A, Aru J, Larkum ME. Does brain activity cause consciousness? A thought experiment. PLoS Biol 2022; 20:e3001651. [PMID: 35687582 PMCID: PMC9187086 DOI: 10.1371/journal.pbio.3001651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rapid advances in neuroscience have provided remarkable breakthroughs in understanding the brain on many fronts. Although promising, the role of these advancements in solving the problem of consciousness is still unclear. Based on technologies conceivably within the grasp of modern neuroscience, we discuss a thought experiment in which neural activity, in the form of action potentials, is initially recorded from all the neurons in a participant's brain during a conscious experience and then played back into the same neurons. We consider whether this artificial replay can reconstitute a conscious experience. The possible outcomes of this experiment unravel hidden costs and pitfalls in understanding consciousness from the neurosciences' perspective and challenge the conventional wisdom that causally links action potentials and consciousness.
Collapse
Affiliation(s)
- Albert Gidon
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Matthew Evan Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Kudithipudi D, Aguilar-Simon M, Babb J, Bazhenov M, Blackiston D, Bongard J, Brna AP, Chakravarthi Raja S, Cheney N, Clune J, Daram A, Fusi S, Helfer P, Kay L, Ketz N, Kira Z, Kolouri S, Krichmar JL, Kriegman S, Levin M, Madireddy S, Manicka S, Marjaninejad A, McNaughton B, Miikkulainen R, Navratilova Z, Pandit T, Parker A, Pilly PK, Risi S, Sejnowski TJ, Soltoggio A, Soures N, Tolias AS, Urbina-Meléndez D, Valero-Cuevas FJ, van de Ven GM, Vogelstein JT, Wang F, Weiss R, Yanguas-Gil A, Zou X, Siegelmann H. Biological underpinnings for lifelong learning machines. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00452-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Mofrad AA, Yazidi A, Mofrad SA, Hammer HL, Arntzen E. Enhanced Equivalence Projective Simulation: A Framework for Modeling Formation of Stimulus Equivalence Classes. Neural Comput 2020; 33:483-527. [PMID: 33253033 DOI: 10.1162/neco_a_01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Formation of stimulus equivalence classes has been recently modeled through equivalence projective simulation (EPS), a modified version of a projective simulation (PS) learning agent. PS is endowed with an episodic memory that resembles the internal representation in the brain and the concept of cognitive maps. PS flexibility and interpretability enable the EPS model and, consequently the model we explore in this letter, to simulate a broad range of behaviors in matching-to-sample experiments. The episodic memory, the basis for agent decision making, is formed during the training phase. Derived relations in the EPS model that are not trained directly but can be established via the network's connections are computed on demand during the test phase trials by likelihood reasoning. In this letter, we investigate the formation of derived relations in the EPS model using network enhancement (NE), an iterative diffusion process, that yields an offline approach to the agent decision making at the testing phase. The NE process is applied after the training phase to denoise the memory network so that derived relations are formed in the memory network and retrieved during the testing phase. During the NE phase, indirect relations are enhanced, and the structure of episodic memory changes. This approach can also be interpreted as the agent's replay after the training phase, which is in line with recent findings in behavioral and neuroscience studies. In comparison with EPS, our model is able to model the formation of derived relations and other features such as the nodal effect in a more intrinsic manner. Decision making in the test phase is not an ad hoc computational method, but rather a retrieval and update process of the cached relations from the memory network based on the test trial. In order to study the role of parameters on agent performance, the proposed model is simulated and the results discussed through various experimental settings.
Collapse
Affiliation(s)
| | - Anis Yazidi
- Department of Computer Science, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Samaneh Abolpour Mofrad
- Department of Computer Science, Electrical Engineering, and Mathematical Sciences, Western Norway University of Applied Sciences, 5063 Bergen, Norway, and Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Hugo L Hammer
- Department of Computer Science, Oslo Metropolitan University, 0130 Oslo, Norway, and Simula Metropolitan Center, 1325 Oslo, Norway
| | - Erik Arntzen
- Department of Behavioral Science, Oslo Metropolitan University, 0130 Oslo, Norway
| |
Collapse
|
6
|
Robertson EM, Genzel L. Memories replayed: reactivating past successes and new dilemmas. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190226. [PMID: 32248775 DOI: 10.1098/rstb.2019.0226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Our experiences continue to be processed 'offline' in the ensuing hours of both wakefulness and sleep. During these different brain states, the memory formed during our experience is replayed or reactivated. Here, we discuss the unique challenges in studying offline reactivation, the growth in both the experimental and analytical techniques available across different animals from rodents to humans to capture these offline events, the important challenges this innovation has brought, our still modest understanding of how reactivation drives diverse synaptic changes across circuits, and how these changes differ (if at all), and perhaps complement, those at memory formation. Together, these discussions highlight critical emerging issues vital for identifying how reactivation affects circuits, and, in turn, behaviour, and provides a broader context for the contributions in this special issue. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Edwin M Robertson
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|