1
|
Liu X, Guo X, Zhang T, Duan J, Zhang L, Wang M, Li Y, Shen Z, Mao J. Testosterone maintains male longevity and female reproduction in Chrysopa pallens. Heliyon 2024; 10:e32478. [PMID: 38933978 PMCID: PMC11201114 DOI: 10.1016/j.heliyon.2024.e32478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Vertebrate testosterone, an androgen present in the testes, is essential for male fertility. Vertebrate-type steroid hormones have been identified in insects, but their function remains unknown. Insect vitellogenin (Vg) is usually a female-specific protein involved in reproductive processes. However, males of some species, such as the green lacewing Chrysopa pallens, have Vg. Here, we demonstrated that the knockdown of C. pallens male Vg by RNAi significantly shortened the lifespan of males, suppressed the reproduction of post-mating females, and strikingly reduced the abundance of several immune-related compounds, including testosterone. LC-MS/MS revealed that C. pallens male testosterone had the same structure and molecular mass as vertebrate testosterone. Topical testosterone application partially restored the lifespan of Vg-deficient males and the reproduction of post-mating females. These results suggest that vertebrate-type testosterone maintains male longevity and female reproduction under the control of the male Vg in C. pallens.
Collapse
Affiliation(s)
- Xiaoping Liu
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xingkai Guo
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Tingting Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362251, PR China
| | - Jiaqi Duan
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Lisheng Zhang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mengqing Wang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yuyan Li
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhongjian Shen
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jianjun Mao
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
2
|
Cayuela H, Lackey ACR, Ronget V, Monod-Broca B, Whiteman HH. Polyphenism predicts actuarial senescence and lifespan in tiger salamanders. J Anim Ecol 2024; 93:333-347. [PMID: 38279640 DOI: 10.1111/1365-2656.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/08/2023] [Indexed: 01/28/2024]
Abstract
Actuarial senescence (called 'senescence' hereafter) often shows broad variation at the intraspecific level. Phenotypic plasticity likely plays a central role in among-individual heterogeneity in senescence rate (i.e. the rate of increase in mortality with age), although our knowledge on this subject is still very fragmentary. Polyphenism-the unique sub-type of phenotypic plasticity where several discrete phenotypes are produced by the same genotype-may provide excellent study systems to investigate if and how plasticity affects the rate of senescence in nature. In this study, we investigated whether facultative paedomorphosis influences the rate of senescence in a salamander, Ambystoma mavortium nebulosum. Facultative paedomorphosis, a unique form of polyphenism found in dozens of urodele species worldwide, leads to the production of two discrete, environmentally induced phenotypes: metamorphic and paedomorphic individuals. We leveraged an extensive set of capture-recapture data (8948 individuals, 24 years of monitoring) that were analysed using multistate capture-recapture models and Bayesian age-dependent survival models. Multistate models revealed that paedomorphosis was the most common developmental pathway used by salamanders in our study system. Bayesian age-dependent survival models then showed that paedomorphs have accelerated senescence in both sexes and shorter adult lifespan (in females only) compared to metamorphs. In paedomorphs, senescence rate and adult lifespan also varied among ponds and individuals. Females with good body condition and high lifetime reproductive success had slower senescence and longer lifespan. Late-breeding females also lived longer but showed a senescence rate similar to that of early-breeding females. Moreover, males with good condition had longer lifespan than males with poor body condition, although they had similar senescence rates. In addition, late-breeding males lived longer but, unexpectedly, had higher senescence than early-breeding males. Overall, our work provides one of the few empirical cases suggesting that environmentally cued polyphenism could affect the senescence of a vertebrate in nature, thus providing insights on the ecological and evolutionary consequences of developmental plasticity on ageing.
Collapse
Affiliation(s)
- Hugo Cayuela
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| | - Alycia C R Lackey
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
- Department of Biological Sciences and Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
| | - Victor Ronget
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Benjamin Monod-Broca
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Howard H Whiteman
- Department of Biological Sciences and Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, USA
| |
Collapse
|
3
|
Hernández-Pacheco R, Steiner UK, Rosati AG, Tuljapurkar S. Advancing methods for the biodemography of aging within social contexts. Neurosci Biobehav Rev 2023; 153:105400. [PMID: 37739326 PMCID: PMC10591901 DOI: 10.1016/j.neubiorev.2023.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Several social dimensions including social integration, status, early-life adversity, and their interactions across the life course can predict health, reproduction, and mortality in humans. Accordingly, the social environment plays a fundamental role in the emergence of phenotypes driving the evolution of aging. Recent work placing human social gradients on a biological continuum with other species provides a useful evolutionary context for aging questions, but there is still a need for a unified evolutionary framework linking health and aging within social contexts. Here, we summarize current challenges to understand the role of the social environment in human life courses. Next, we review recent advances in comparative biodemography and propose a biodemographic perspective to address socially driven health phenotype distributions and their evolutionary consequences using a nonhuman primate population. This new comparative approach uses evolutionary demography to address the joint dynamics of populations, social dimensions, phenotypes, and life history parameters. The long-term goal is to advance our understanding of the link between individual social environments, population-level outcomes, and the evolution of aging.
Collapse
Affiliation(s)
- Raisa Hernández-Pacheco
- Department of Biological Sciences, California State University, Long Beach, 1250 N Bellflower Blvd, Long Beach, CA 90840-0004, USA.
| | - Ulrich K Steiner
- Freie Universität Berlin, Biological Institute, Königin-Luise Str. 1-3, 14195 Berlin, Germany
| | - Alexandra G Rosati
- Departments of Psychology and Anthropology, University of Michigan, 530 Church St, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
4
|
Hammer TJ, Easton-Calabria A, Moran NA. Microbiome assembly and maintenance across the lifespan of bumble bee workers. Mol Ecol 2023; 32:724-740. [PMID: 36333950 PMCID: PMC9871002 DOI: 10.1111/mec.16769] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
How a host's microbiome changes over its lifespan can influence development and ageing. As these temporal patterns have only been described in detail for a handful of hosts, an important next step is to compare microbiome succession more broadly and investigate why it varies. Here we characterize the temporal dynamics and stability of the bumble bee worker gut microbiome. Bumble bees have simple and host-specific gut microbiomes, and their microbial dynamics may influence health and pollination services. We used 16S rRNA gene sequencing, quantitative PCR and metagenomics to characterize gut microbiomes over the lifespan of Bombus impatiens workers. We also sequenced gut transcriptomes to examine host factors that may control the microbiome. At the community level, microbiome assembly is highly predictable and similar to patterns of primary succession observed in the human gut. However, at the strain level, partitioning of bacterial variants among colonies suggests stochastic colonization events similar to those observed in flies and nematodes. We also find strong differences in temporal dynamics among symbiont species, suggesting ecological differences among microbiome members in colonization and persistence. Finally, we show that both the gut microbiome and host transcriptome-including expression of key immunity genes-stabilize, as opposed to senesce, with age. We suggest that in highly social groups such as bumble bees, maintenance of both microbiomes and immunity contribute to inclusive fitness, and thus remain under selection even in old age. Our findings provide a foundation for exploring the mechanisms and functional outcomes of bee microbiome succession.
Collapse
Affiliation(s)
- Tobin J. Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697,Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703,Corresponding author:
| | | | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
| |
Collapse
|
5
|
Shell WA, Rehan SM. Social divergence: molecular pathways underlying castes and longevity in a facultatively eusocial small carpenter bee. Proc Biol Sci 2022; 289:20212663. [PMID: 35317677 PMCID: PMC8941392 DOI: 10.1098/rspb.2021.2663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Unravelling the evolutionary origins of eusocial life is a longstanding endeavour in the field of evolutionary-developmental biology. Descended from solitary ancestors, eusocial insects such as honeybees have evolved ontogenetic division of labour in which short-lived workers perform age-associated tasks, while a long-lived queen produces brood. It is hypothesized that (i) eusocial caste systems evolved through the co-option of deeply conserved genes and (ii) longevity may be tied to oxidative damage mitigation capacity. To date, however, these hypotheses have been examined primarily among only obligately eusocial corbiculate bees. We present brain transcriptomic data from a Japanese small carpenter bee, Ceratina japonica (Apidae: Xylocopinae), which demonstrates both solitary and eusocial nesting in sympatry and lives 2 or more years in the wild. Our dataset captures gene expression patterns underlying first- and second-year solitary females, queens and workers, providing an unprecedented opportunity to explore the molecular mechanisms underlying caste-antecedent phenotypes in a long-lived and facultatively eusocial bee. We find that C. japonica's queens and workers are underpinned by divergent gene regulatory pathways, involving many differentially expressed genes well-conserved among other primitively eusocial bee lineages. We also find support for oxidative damage reduction as a proximate mechanism of longevity in C. japonica.
Collapse
Affiliation(s)
- Wyatt A. Shell
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - Sandra M. Rehan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
6
|
Hakala SM, Meurville MP, Stumpe M, LeBoeuf AC. Biomarkers in a socially exchanged /fluid reflect colony maturity, behavior, and distributed metabolism. eLife 2021; 10:74005. [PMID: 34725037 PMCID: PMC8608388 DOI: 10.7554/elife.74005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
In cooperative systems exhibiting division of labor, such as microbial communities, multicellular organisms, and social insect colonies, individual units share costs and benefits through both task specialization and exchanged materials. Socially exchanged fluids, like seminal fluid and milk, allow individuals to molecularly influence conspecifics. Many social insects have a social circulatory system, where food and endogenously produced molecules are transferred mouth-to-mouth (stomodeal trophallaxis), connecting all the individuals in the society. To understand how these endogenous molecules relate to colony life, we used quantitative proteomics to investigate the trophallactic fluid within colonies of the carpenter ant Camponotus floridanus. We show that different stages of the colony life cycle circulate different types of proteins: young colonies prioritize direct carbohydrate processing; mature colonies prioritize accumulation and transmission of stored resources. Further, colonies circulate proteins implicated in oxidative stress, ageing, and social insect caste determination, potentially acting as superorganismal hormones. Brood-caring individuals that are also closer to the queen in the social network (nurses) showed higher abundance of oxidative stress-related proteins. Thus, trophallaxis behavior could provide a mechanism for distributed metabolism in social insect societies. The ability to thoroughly analyze the materials exchanged between cooperative units makes social insect colonies useful models to understand the evolution and consequences of metabolic division of labor at other scales. Division of labor is essential for cooperation, because groups can achieve more when individuals specialize in different tasks. This happens across the natural world, from different cells in organisms performing specific roles, to the individuals in an ant colony carrying out diverse duties. In both of these systems, individuals work together to ensure the survival of the collective unit – the body or the colony – instead of competing against each other. One of the main ways division of labor is evident within these two systems is regarding reproduction. Both in the body and in an ant colony, only one or a few individual units can reproduce, while the rest provide support. In the case of ant colonies, only queens and males reproduce, while the young workers nurse the brood and older workers forage for food. This intense cooperation requires close communication between individual units – in the case of some species of ants, by sharing fluids mouth-to-mouth. These fluids contain food but also many molecules produced by the ants themselves, including proteins. Given that both individuals and the colony as a whole change as they age – with workers acquiring new roles, and new queens and males only reared once the colony is mature – it is likely that the proteins transmitted in the fluid also change. To better understand whether the lifecycles of individuals and the age of the colony affect the fluids shared by carpenter ants Camponotus floridanus, Hakala et al. examined the ant-produced proteins in these fluids. This revealed differences in the proteins shared by young and mature colonies, and young nurse ants and older forager ants. In young colonies, the fluids contained proteins involved in fast sugar processing; while in mature colonies, the fluids contained more proteins to store nutrients, which help insect larvae grow into larger individuals, like queens. Young worker ants, who spend their time nursing the brood, produced more anti-aging proteins. This may be because these ants are in close contact with the queen, who lives much longer than the rest of the ants in the colony. Taken together, these observations suggest that ants divide the labor of metabolism, as well as work and reproduction. Dividing the labor of metabolism among individuals is one more similarity between ants and the cells of a multicellular organism, like a fly or a human. Division of labor allows the sharing of burden, with some individuals lightening the load of others. Understanding how ants achieve this by sharing fluids could shed new light on this complex exchange at other scales or in other organisms. By matching proteins to life stages, researchers have a starting point to examine individual molecules in more detail.
Collapse
Affiliation(s)
- Sanja M Hakala
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Michael Stumpe
- Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Adria C LeBoeuf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Korb J, Heinze J. Ageing and sociality: why, when and how does sociality change ageing patterns? Philos Trans R Soc Lond B Biol Sci 2021; 376:20190727. [PMID: 33678019 PMCID: PMC7938171 DOI: 10.1098/rstb.2019.0727] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Individual lifespans vary tremendously between and also within species, but the proximate and ultimate causes of different ageing speeds are still not well understood. Sociality appears to be associated with the evolution of greater longevity and probably also with a larger plasticity of the shape and pace of ageing. For example, reproductives of several termites and ants reach lifespans that surpass those of their non-reproductive nestmates by one or two decades. In this issue, 15 papers explore the interrelations between sociality and individual longevity in both, group-living vertebrates and social insects. Here, we briefly give an overview of the contents of the various contributions, including theoretical and comparative studies, and we explore the similarities and dissimilarities in proximate mechanisms underlying ageing among taxa, with particular emphasis on nutrient-sensing pathways and, in insects, juvenile hormone. These studies point to an underestimated role of more downstream processes. We highlight the need for reliable transcriptomic markers of ageing and a comprehensive ageing theory of social animals, which includes the reproductive potential of workers, and considers the fact that social insect queens reach maturity only after a prolonged period of producing non-reproductive workers. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Judith Korb
- Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
| | - Jürgen Heinze
- Department of Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße, 93040 Regensburg, Germany
| |
Collapse
|