1
|
Hetem RS, Haylock KA, Boyers M, Parrini F, Owen-Smith N, Beytell P, Strauss WM. Integrating physiology into movement ecology of large terrestrial mammals. J Exp Biol 2025; 228:JEB248112. [PMID: 39973194 DOI: 10.1242/jeb.248112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Movement paths are influenced by external factors and depend on an individual's navigation capacity (Where to move?), motion capacity (How to move?) and are ultimately driven by internal physiological state (Why move?). Despite physiology underlying most aspects of this movement ecology framework, the physiology-movement nexus remains understudied in large terrestrial mammals. Within this Commentary, we highlight the physiological processes that underpin the movement ecology framework and how integrating physiological measurements can provide mechanistic insights that may enhance our understanding of the drivers of animal movement. We focus on large terrestrial mammals, which are well represented within the movement ecology literature but are under-represented in movement studies that integrate physiological state. Recent advances in biologging technology allow for physiological variables, such as heart rate and body movements, to be recorded remotely and continuously in free-living animals. Biologging of body temperature may provide additional insights into the physiological states driving movement. Body temperature not only provides a measure of thermal stress, but also an index of animal wellbeing through quantification of nutrition, hydration, reproductive and disease states that may drive animal movements. Integrating measures of body temperature with fine-scale GPS locations may provide insights into causality and improve our mechanistic understanding of animal movement, which is crucial for understanding population performance and monitoring reintroduction success. We recommend that baseline studies are undertaken, linking animal movement to the underlying physiological mechanisms, to allow for the development of realistic predictive models to improve conservation efforts in the Anthropocene.
Collapse
Affiliation(s)
- Robyn S Hetem
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Kiara A Haylock
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Melinda Boyers
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Francesca Parrini
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Norman Owen-Smith
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Piet Beytell
- Namibian Ministry of Environment, Forestry and Tourism, Windhoek 10005, Namibia
| | - W Maartin Strauss
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- ABEERU, Department of Environmental Science, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
2
|
Liao JC. Towards the yin and yang of fish locomotion: linking energetics, ecology and mechanics through field and lab approaches. J Exp Biol 2025; 228:JEB248011. [PMID: 39973203 DOI: 10.1242/jeb.248011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Most of our understanding of fish locomotion has focused on elementary behaviors such as steady swimming and escape responses in simple environments. As the field matures, increasing attention is being paid to transient and unsteady behaviors that characterize more complex interactions with the environment. This Commentary advocates for an ecologically relevant approach to lab studies. Specific examples have brought new understanding to the energetic consequences of fish swimming, such as (1) station holding around bluff bodies, which departs drastically from steady swimming in almost all aspects of kinematics, muscle activity and energetics, and (2) transient behaviors such as acceleration and feeding, which are critical to survival but often neglected because of challenges in measuring costs. Beyond the lab, a far richer diversity of behaviors is available when fish are given enough space and time to move. Mesocosm studies are poised to reveal new insights into fish swimming that are inaccessible in laboratory settings. Next-generation biologgers that incorporate neural recordings will usher in a new era for understanding biomechanics in the wild and open the door for a more mechanistic understanding of how changing environments affect animal movement. These advances promise to allow insights into animal locomotion in ways that will mutually complement and accelerate laboratory and field studies in the years to come.
Collapse
Affiliation(s)
- James C Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| |
Collapse
|
3
|
Hermanson VR, Cutter GR, Hinke JT, Dawkins M, Watters GM. A method to estimate prey density from single-camera images: A case study with chinstrap penguins and Antarctic krill. PLoS One 2024; 19:e0303633. [PMID: 38980882 PMCID: PMC11232977 DOI: 10.1371/journal.pone.0303633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/29/2024] [Indexed: 07/11/2024] Open
Abstract
Estimating the densities of marine prey observed in animal-borne video loggers when encountered by foraging predators represents an important challenge for understanding predator-prey interactions in the marine environment. We used video images collected during the foraging trip of one chinstrap penguin (Pygoscelis antarcticus) from Cape Shirreff, Livingston Island, Antarctica to develop a novel approach for estimating the density of Antarctic krill (Euphausia superba) encountered during foraging activities. Using the open-source Video and Image Analytics for a Marine Environment (VIAME), we trained a neural network model to identify video frames containing krill. Our image classifier has an overall accuracy of 73%, with a positive predictive value of 83% for prediction of frames containing krill. We then developed a method to estimate the volume of water imaged, thus the density (N·m-3) of krill, in the 2-dimensional images. The method is based on the maximum range from the camera where krill remain visibly resolvable and assumes that mean krill length is known, and that the distribution of orientation angles of krill is uniform. From 1,932 images identified as containing krill, we manually identified a subset of 124 images from across the video record that contained resolvable and unresolvable krill necessary to estimate the resolvable range and imaged volume for the video sensor. Krill swarm density encountered by the penguins ranged from 2 to 307 krill·m-3 and mean density of krill was 48 krill·m-3 (sd = 61 krill·m-3). Mean krill biomass density was 25 g·m-3. Our frame-level image classifier model and krill density estimation method provide a new approach to efficiently process video-logger data and estimate krill density from 2D imagery, providing key information on prey aggregations that may affect predator foraging performance. The approach should be directly applicable to other marine predators feeding on aggregations of prey.
Collapse
Affiliation(s)
- Victoria R. Hermanson
- Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States of America
| | - George R. Cutter
- Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States of America
| | - Jefferson T. Hinke
- Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States of America
| | | | - George M. Watters
- Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States of America
| |
Collapse
|
4
|
Costa DP, Favilla AB. Field physiology in the aquatic realm: ecological energetics and diving behavior provide context for elucidating patterns and deviations. J Exp Biol 2023; 226:jeb245832. [PMID: 37843467 DOI: 10.1242/jeb.245832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Comparative physiology has developed a rich understanding of the physiological adaptations of organisms, from microbes to megafauna. Despite extreme differences in size and a diversity of habitats, general patterns are observed in their physiological adaptations. Yet, many organisms deviate from the general patterns, providing an opportunity to understand the importance of ecology in determining the evolution of unusual adaptations. Aquatic air-breathing vertebrates provide unique study systems in which the interplay between ecology, physiology and behavior is most evident. They must perform breath-hold dives to obtain food underwater, which imposes a physiological constraint on their foraging time as they must resurface to breathe. This separation of two critical resources has led researchers to investigate these organisms' physiological adaptations and trade-offs. Addressing such questions on large marine animals is best done in the field, given the difficulty of replicating the environment of these animals in the lab. This Review examines the long history of research on diving physiology and behavior. We show how innovative technology and the careful selection of research animals have provided a holistic understanding of diving mammals' physiology, behavior and ecology. We explore the role of the aerobic diving limit, body size, oxygen stores, prey distribution and metabolism. We then identify gaps in our knowledge and suggest areas for future research, pointing out how this research will help conserve these unique animals.
Collapse
Affiliation(s)
- Daniel P Costa
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Arina B Favilla
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
5
|
Grunst ML, Grunst AS, Grémillet D, Kato A, Gentès S, Fort J. Keystone seabird may face thermoregulatory challenges in a warming Arctic. Sci Rep 2023; 13:16733. [PMID: 37794049 PMCID: PMC10550970 DOI: 10.1038/s41598-023-43650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Climate change affects the Arctic more than any other region, resulting in evolving weather, vanishing sea ice and altered biochemical cycling, which may increase biotic exposure to chemical pollution. We tested thermoregulatory impacts of these changes on the most abundant Arctic seabird, the little auk (Alle alle). This small diving species uses sea ice-habitats for foraging on zooplankton and resting. We equipped eight little auks with 3D accelerometers to monitor behavior, and ingested temperature recorders to measure body temperature (Tb). We also recorded weather conditions, and collected blood to assess mercury (Hg) contamination. There were nonlinear relationships between time engaged in different behaviors and Tb. Tb increased on sea ice, following declines while foraging in polar waters, but changed little when birds were resting on water. Tb also increased when birds were flying, and decreased at the colony after being elevated during flight. Weather conditions, but not Hg contamination, also affected Tb. However, given our small sample size, further research regarding thermoregulatory effects of Hg is warranted. Results suggest that little auk Tb varies with behavior and weather conditions, and that loss of sea ice due to global warming may cause thermoregulatory and energic challenges during foraging trips at sea.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, CEBC, UMR 7372 CNRS-La Rochelle Université, La Rochelle, France
| | - Sophie Gentès
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
6
|
Fuxjager MJ, Ryder TB, Moody NM, Alfonso C, Balakrishnan CN, Barske J, Bosholn M, Boyle WA, Braun EL, Chiver I, Dakin R, Day LB, Driver R, Fusani L, Horton BM, Kimball RT, Lipshutz S, Mello CV, Miller ET, Webster MS, Wirthlin M, Wollman R, Moore IT, Schlinger BA. Systems biology as a framework to understand the physiological and endocrine bases of behavior and its evolution-From concepts to a case study in birds. Horm Behav 2023; 151:105340. [PMID: 36933440 DOI: 10.1016/j.yhbeh.2023.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Organismal behavior, with its tremendous complexity and diversity, is generated by numerous physiological systems acting in coordination. Understanding how these systems evolve to support differences in behavior within and among species is a longstanding goal in biology that has captured the imagination of researchers who work on a multitude of taxa, including humans. Of particular importance are the physiological determinants of behavioral evolution, which are sometimes overlooked because we lack a robust conceptual framework to study mechanisms underlying adaptation and diversification of behavior. Here, we discuss a framework for such an analysis that applies a "systems view" to our understanding of behavioral control. This approach involves linking separate models that consider behavior and physiology as their own networks into a singular vertically integrated behavioral control system. In doing so, hormones commonly stand out as the links, or edges, among nodes within this system. To ground our discussion, we focus on studies of manakins (Pipridae), a family of Neotropical birds. These species have numerous physiological and endocrine specializations that support their elaborate reproductive displays. As a result, manakins provide a useful example to help imagine and visualize the way systems concepts can inform our appreciation of behavioral evolution. In particular, manakins help clarify how connectedness among physiological systems-which is maintained through endocrine signaling-potentiate and/or constrain the evolution of complex behavior to yield behavioral differences across taxa. Ultimately, we hope this review will continue to stimulate thought, discussion, and the emergence of research focused on integrated phenotypes in behavioral ecology and endocrinology.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA.
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Nicole M Moody
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA
| | - Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Julia Barske
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Mariane Bosholn
- Animal Behavior Lab, Ecology Department, National Institute for Amazon Research, Manaus, Amazonas, Brazil
| | - W Alice Boyle
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ioana Chiver
- GIGA Neurosciences, University of Liège, Liege, Belgium
| | - Roslyn Dakin
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Lainy B Day
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Robert Driver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Leonida Fusani
- Department of Behavioral and Cognitive Biology, University of Vienna, and Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna
| | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA 17551, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Sara Lipshutz
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Michael S Webster
- Cornell Lab of Ornithology, Ithaca, NY 14853, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Morgan Wirthlin
- Computational Biology Department, Carnegie Melon University, Pittsburgh, PA 15213, USA
| | - Roy Wollman
- Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Barney A Schlinger
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA; Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
7
|
Booth CG, Guilpin M, Darias-O’Hara AK, Ransijn JM, Ryder M, Rosen D, Pirotta E, Smout S, McHuron EA, Nabe-Nielsen J, Costa DP. Estimating energetic intake for marine mammal bioenergetic models. CONSERVATION PHYSIOLOGY 2023; 11:coac083. [PMID: 36756464 PMCID: PMC9900471 DOI: 10.1093/conphys/coac083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Bioenergetics is the study of how animals achieve energetic balance. Energetic balance results from the energetic expenditure of an individual and the energy they extract from their environment. Ingested energy depends on several extrinsic (e.g prey species, nutritional value and composition, prey density and availability) and intrinsic factors (e.g. foraging effort, success at catching prey, digestive processes and associated energy losses, and digestive capacity). While the focus in bioenergetic modelling is often on the energetic costs an animal incurs, the robust estimation of an individual's energy intake is equally critical for producing meaningful predictions. Here, we review the components and processes that affect energy intake from ingested gross energy to biologically useful net energy (NE). The current state of knowledge of each parameter is reviewed, shedding light on research gaps to advance this field. The review highlighted that the foraging behaviour of many marine mammals is relatively well studied via biologging tags, with estimates of success rate typically assumed for most species. However, actual prey capture success rates are often only assumed, although we note studies that provide approaches for its estimation using current techniques. A comprehensive collation of the nutritional content of marine mammal prey species revealed a robust foundation from which prey quality (comprising prey species, size and energy density) can be assessed, though data remain unavailable for many prey species. Empirical information on various energy losses following ingestion of prey was unbalanced among marine mammal species, with considerably more literature available for pinnipeds. An increased understanding and accurate estimate of each of the components that comprise a species NE intake are an integral part of bioenergetics. Such models provide a key tool to investigate the effects of disturbance on marine mammals at an individual and population level and to support effective conservation and management.
Collapse
Affiliation(s)
- Cormac G Booth
- Corresponding author: SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK.
| | | | - Aimee-Kate Darias-O’Hara
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK
| | - Janneke M Ransijn
- Sea Mammal Research Unit, Scottish Oceans Institute, East Sands, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Megan Ryder
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK
| | - Dave Rosen
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall,
Vancouver, BC V6T 1Z4, Canada
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling,
The Observatory, Buchanan
Gardens, University of St. Andrews, St. Andrews,
KY16 9LZ, UK
| | - Sophie Smout
- Sea Mammal Research Unit, Scottish Oceans Institute, East Sands, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 3737 Brooklyn Ave NE, Seattle, WA, 98105, USA
| | - Jacob Nabe-Nielsen
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Aarhus, DK-4000
Roskilde, Denmark
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, 130
McAlister Way, Santa Cruz, CA, 95064, USA
| |
Collapse
|
8
|
Ruesch A, McKnight JC, Fahlman A, Shinn-Cunningham BG, Kainerstorfer JM. Near-Infrared Spectroscopy as a Tool for Marine Mammal Research and Care. Front Physiol 2022; 12:816701. [PMID: 35111080 PMCID: PMC8801602 DOI: 10.3389/fphys.2021.816701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Developments in wearable human medical and sports health trackers has offered new solutions to challenges encountered by eco-physiologists attempting to measure physiological attributes in freely moving animals. Near-infrared spectroscopy (NIRS) is one such solution that has potential as a powerful physio-logging tool to assess physiology in freely moving animals. NIRS is a non-invasive optics-based technology, that uses non-ionizing radiation to illuminate biological tissue and measures changes in oxygenated and deoxygenated hemoglobin concentrations inside tissues such as skin, muscle, and the brain. The overall footprint of the device is small enough to be deployed in wearable physio-logging devices. We show that changes in hemoglobin concentration can be recorded from bottlenose dolphins and gray seals with signal quality comparable to that achieved in human recordings. We further discuss functionality, benefits, and limitations of NIRS as a standard tool for animal care and wildlife tracking for the marine mammal research community.
Collapse
Affiliation(s)
- Alexander Ruesch
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - J. Chris McKnight
- Sea Mammal Research Unit, University of St Andrews, St Andrews, United Kingdom
| | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain
- Kolmården Wildlife Park, Kolmården, Sweden
| | - Barbara G. Shinn-Cunningham
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jana M. Kainerstorfer
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Ponganis PJ. A Physio-Logging Journey: Heart Rates of the Emperor Penguin and Blue Whale. Front Physiol 2021; 12:721381. [PMID: 34413792 PMCID: PMC8369151 DOI: 10.3389/fphys.2021.721381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Physio-logging has the potential to explore the processes that underlie the dive behavior and ecology of marine mammals and seabirds, as well as evaluate their adaptability to environmental change and other stressors. Regulation of heart rate lies at the core of the physiological processes that determine dive capacity and performance. The bio-logging of heart rate in unrestrained animals diving at sea was infeasible, even unimaginable in the mid-1970s. To provide a historical perspective, I review my 40-year experience in the development of heart rate physio-loggers and the evolution of a digital electrocardiogram (ECG) recorder that is still in use today. I highlight documentation of the ECG and the interpretation of heart rate profiles in the largest of avian and mammalian divers, the emperor penguin and blue whale.
Collapse
Affiliation(s)
- Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
10
|
Trondrud LM, Pigeon G, Albon S, Arnold W, Evans AL, Irvine RJ, Król E, Ropstad E, Stien A, Veiberg V, Speakman JR, Loe LE. Determinants of heart rate in Svalbard reindeer reveal mechanisms of seasonal energy management. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200215. [PMID: 34176322 PMCID: PMC8237166 DOI: 10.1098/rstb.2020.0215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/02/2023] Open
Abstract
Seasonal energetic challenges may constrain an animal's ability to respond to changing individual and environmental conditions. Here, we investigated variation in heart rate, a well-established proxy for metabolic rate, in Svalbard reindeer (Rangifer tarandus platyrhynchus), a species with strong seasonal changes in foraging and metabolic activity. In 19 adult females, we recorded heart rate, subcutaneous temperature and activity using biologgers. Mean heart rate more than doubled from winter to summer. Typical drivers of energy expenditure, such as reproduction and activity, explained a relatively limited amount of variation (2-6% in winter and 16-24% in summer) compared to seasonality, which explained 75% of annual variation in heart rate. The relationship between heart rate and subcutaneous temperature depended on individual state via body mass, age and reproductive status, and the results suggested that peripheral heterothermy is an important pathway of energy management in both winter and summer. While the seasonal plasticity in energetics makes Svalbard reindeer well-adapted to their highly seasonal environment, intraseasonal constraints on modulation of their heart rate may limit their ability to respond to severe environmental change. This study emphasizes the importance of encompassing individual state and seasonal context when studying energetics in free-living animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- L. Monica Trondrud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Gabriel Pigeon
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, Canada, J1 K 2R1
| | - Steve Albon
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Walter Arnold
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstr. 1, 1160 Vienna, Austria
| | - Alina L. Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2418 Elverum, Norway
| | - R. Justin Irvine
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
- Frankfurt Zoological Society, PO Box 100003, South Africa Street, Addis Ababa, Ethiopia
| | - Elżbieta Król
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Erik Ropstad
- Faculty of Veterinary Science, Norwegian University of Life Sciences, PO Box 8146, NO-0033 Oslo, Norway
| | - Audun Stien
- Department of Arctic and Marine Biology, The Arctic University of Norway, PO Box 6050 Langnes, NO-9037 Tromsø, Norway
| | - Vebjørn Veiberg
- Norwegian Institute for Nature Research, PO Box 5685 Torgarden, NO-7485 Trondheim, Norway
| | - John R. Speakman
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming 650223, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Leif Egil Loe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| |
Collapse
|
11
|
Williams HJ, Shipley JR, Rutz C, Wikelski M, Wilkes M, Hawkes LA. Future trends in measuring physiology in free-living animals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200230. [PMID: 34176330 PMCID: PMC8237165 DOI: 10.1098/rstb.2020.0230] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of 'physiologging' in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- H. J. Williams
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - J. Ryan Shipley
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - C. Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - M. Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - M. Wilkes
- Extreme Environments Research Group, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth PO1 2EF, UK
| | - L. A. Hawkes
- Hatherly Laboratories, University of Exeter, College of Life and Environmental Sciences, Exeter EX4 4PS, UK
| |
Collapse
|
12
|
Wascher CAF. Heart rate as a measure of emotional arousal in evolutionary biology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200479. [PMID: 34176323 PMCID: PMC8237168 DOI: 10.1098/rstb.2020.0479] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
How individuals interact with their environment and respond to changes is a key area of research in evolutionary biology. A physiological parameter that provides an instant proxy for the activation of the automatic nervous system, and can be measured relatively easily, is modulation of heart rate. Over the past four decades, heart rate has been used to assess emotional arousal in non-human animals in a variety of contexts, including social behaviour, animal cognition, animal welfare and animal personality. In this review, I summarize how measuring heart rate has provided new insights into how social animals cope with challenges in their environment. I assess the advantages and limitations of different technologies used to measure heart rate in this context, including wearable heart rate belts and implantable transmitters, and provide an overview of prospective research avenues using established and new technologies, with a special focus on implications for applied research on animal welfare. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- Claudia A. F. Wascher
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, East Road, Cambridge CB1 1PT, United Kingdom
| |
Collapse
|
13
|
Hawkes LA, Fahlman A, Sato K. What is physiologging? Introduction to the theme issue, part 2. Philos Trans R Soc Lond B Biol Sci 2021; 376:20210028. [PMID: 34176329 PMCID: PMC8237167 DOI: 10.1098/rstb.2021.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 01/05/2023] Open
Abstract
The physiological mechanisms by which animals regulate energy expenditure, respond to stimuli and stressors, and maintain homeostasis at the tissue, organ and whole organism levels can be described by 'physiologging'-that is, the use of onboard miniature electronic devices to record physiological metrics of animals in captivity or free-living in the wild. Despite its origins in the 1960s, physiologging has evolved more slowly than its umbrella field of biologging. However, the recording of physiological metrics in free-living animals will be key to solving some of the greatest challenges in biodiversity conservation, issues pertaining to animal health and welfare, and for inspiring future therapeutic strategies for human health. Current physiologging technologies encompass the measurement of physiological variables such as heart rate, brain activity, body temperature, muscle stimulation and dynamic movement, yet future developments will allow for onboard logging of metrics relating to organelle, molecular and genetic function. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- L. A. Hawkes
- University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - A. Fahlman
- Global Diving Research Inc. Ottawa ON K2J 5E8, USA
| | - K. Sato
- Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8564, Japan
| |
Collapse
|
14
|
Hawkes LA, Fahlman A, Sato K. Introduction to the theme issue: Measuring physiology in free-living animals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200210. [PMID: 34121463 PMCID: PMC8200652 DOI: 10.1098/rstb.2020.0210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
By describing where animals go, biologging technologies (i.e. animal attached logging of biological variables with small electronic devices) have been used to document the remarkable athletic feats of wild animals since the 1940s. The rapid development and miniaturization of physiologging (i.e. logging of physiological variables such as heart rate, blood oxygen content, lactate, breathing frequency and tidal volume on devices attached to animals) technologies in recent times (e.g. devices that weigh less than 2 g mass that can measure electrical biopotentials for days to weeks) has provided astonishing insights into the physiology of free-living animals to document how and why wild animals undertake these extreme feats. Now, physiologging, which was traditionally hindered by technological limitations, device size, ethics and logistics, is poised to benefit enormously from the on-going developments in biomedical and sports wearables technologies. Such technologies are already improving animal welfare and yield in agriculture and aquaculture, but may also reveal future pathways for therapeutic interventions in human health by shedding light on the physiological mechanisms with which free-living animals undertake some of the most extreme and impressive performances on earth. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- L. A. Hawkes
- Hatherly Laboratories, University of Exeter, Prince of Wales Road Exeter EX4 4PS, UK
| | - A. Fahlman
- Global Diving Research Inc, Ottawa, Ontario, Canada
- Fundación Oceanogràfic de la Comunitat Valencia, Valencia, 46005 Spain
| | - K. Sato
- Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8564, Japan
| |
Collapse
|