1
|
Phaniraj N, Brügger RK, Burkart JM. Marmosets mutually compensate for differences in rhythms when coordinating vigilance. PLoS Comput Biol 2024; 20:e1012104. [PMID: 38748738 PMCID: PMC11132515 DOI: 10.1371/journal.pcbi.1012104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/28/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Synchronization is widespread in animals, and studies have often emphasized how this seemingly complex phenomenon can emerge from very simple rules. However, the amount of flexibility and control that animals might have over synchronization properties, such as the strength of coupling, remains underexplored. Here, we studied how pairs of marmoset monkeys coordinated vigilance while feeding. By modeling them as coupled oscillators, we noted that (1) individual marmosets do not show perfect periodicity in vigilance behaviors, (2) nevertheless, marmoset pairs started to take turns being vigilant over time, a case of anti-phase synchrony, (3) marmosets could couple flexibly; the coupling strength varied with every new joint feeding bout, and (4) marmosets could control the coupling strength; dyads showed increased coupling if they began in a more desynchronized state. Such flexibility and control over synchronization require more than simple interaction rules. Minimally, animals must estimate the current degree of asynchrony and adjust their behavior accordingly. Moreover, the fact that each marmoset is inherently non-periodic adds to the cognitive demand. Overall, our study provides a mathematical framework to investigate the cognitive demands involved in coordinating behaviors in animals, regardless of whether individual behaviors are rhythmic or not.
Collapse
Affiliation(s)
- Nikhil Phaniraj
- Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Rahel K. Brügger
- Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Judith M. Burkart
- Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Háden GP, Bouwer FL, Honing H, Winkler I. Beat processing in newborn infants cannot be explained by statistical learning based on transition probabilities. Cognition 2024; 243:105670. [PMID: 38016227 DOI: 10.1016/j.cognition.2023.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Newborn infants have been shown to extract temporal regularities from sound sequences, both in the form of learning regular sequential properties, and extracting periodicity in the input, commonly referred to as a regular pulse or the 'beat'. However, these two types of regularities are often indistinguishable in isochronous sequences, as both statistical learning and beat perception can be elicited by the regular alternation of accented and unaccented sounds. Here, we manipulated the isochrony of sound sequences in order to disentangle statistical learning from beat perception in sleeping newborn infants in an EEG experiment, as previously done in adults and macaque monkeys. We used a binary accented sequence that induces a beat when presented with isochronous timing, but not when presented with randomly jittered timing. We compared mismatch responses to infrequent deviants falling on either accented or unaccented (i.e., odd and even) positions. Results showed a clear difference between metrical positions in the isochronous sequence, but not in the equivalent jittered sequence. This suggests that beat processing is present in newborns. Despite previous evidence for statistical learning in newborns the effects of this ability were not detected in the jittered condition. These results show that statistical learning by itself does not fully explain beat processing in newborn infants.
Collapse
Affiliation(s)
- Gábor P Háden
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Magyar tudósok körútja 2, 1117 Budapest, Hungary.
| | - Fleur L Bouwer
- Music Cognition Group, Institute for Logic, Language, and Computation, University of Amsterdam, P.O. Box 94242, 1090 GE Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, P.O. Box 15900, 1001 NK Amsterdam, the Netherlands; Department of Psychology, Brain & Cognition, University of Amsterdam, P.O. Box 15900, 1001 NK Amsterdam, the Netherlands; Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, 2333 AK Leiden, the Netherlands.
| | - Henkjan Honing
- Music Cognition Group, Institute for Logic, Language, and Computation, University of Amsterdam, P.O. Box 94242, 1090 GE Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, P.O. Box 15900, 1001 NK Amsterdam, the Netherlands.
| | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| |
Collapse
|
3
|
Bouwer FL, Háden GP, Honing H. Probing Beat Perception with Event-Related Potentials (ERPs) in Human Adults, Newborns, and Nonhuman Primates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:227-256. [PMID: 38918355 DOI: 10.1007/978-3-031-60183-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The aim of this chapter is to give an overview of how the perception of rhythmic temporal regularity such as a regular beat in music can be studied in human adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). First, we discuss different aspects of temporal structure in general, and musical rhythm in particular, and we discuss the possible mechanisms underlying the perception of regularity (e.g., a beat) in rhythm. Additionally, we highlight the importance of dissociating beat perception from the perception of other types of structure in rhythm, such as predictable sequences of temporal intervals, ordinal structure, and rhythmic grouping. In the second section of the chapter, we start with a discussion of auditory ERPs elicited by infrequent and frequent sounds: ERP responses to regularity violations, such as mismatch negativity (MMN), N2b, and P3, as well as early sensory responses to sounds, such as P1 and N1, have been shown to be instrumental in probing beat perception. Subsequently, we discuss how beat perception can be probed by comparing ERP responses to sounds in regular and irregular sequences, and by comparing ERP responses to sounds in different metrical positions in a rhythm, such as on and off the beat or on strong and weak beats. Finally, we will discuss previous research that has used the aforementioned ERPs and paradigms to study beat perception in human adults, human newborns, and nonhuman primates. In doing so, we consider the possible pitfalls and prospects of the technique, as well as future perspectives.
Collapse
Affiliation(s)
- Fleur L Bouwer
- Cognitive Psychology Unit, Institute of Psychology, Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
- Department of Psychology, Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands.
| | - Gábor P Háden
- Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Henkjan Honing
- Music Cognition group (MCG), Institute for Logic, Language and Computation (ILLC), Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Greenfield MD, Merker B. Coordinated rhythms in animal species, including humans: Entrainment from bushcricket chorusing to the philharmonic orchestra. Neurosci Biobehav Rev 2023; 153:105382. [PMID: 37673282 DOI: 10.1016/j.neubiorev.2023.105382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Coordinated group displays featuring precise entrainment of rhythmic behavior between neighbors occur not only in human music, dance and drill, but in the acoustic or optical signaling of a number of species of arthropods and anurans. In this review we describe the mechanisms of phase resetting and phase and tempo adjustments that allow the periodic output of signaling individuals to be aligned in synchronized rhythmic group displays. These mechanisms are well described in some of the synchronizing arthropod species, in which conspecific signals reset an individual's endogenous output oscillators in such a way that the joint rhythmic signals are locked in phase. Some of these species are capable of mutually adjusting both the phase and tempo of their rhythmic signaling, thereby achieving what is called perfect synchrony, a capacity which otherwise is found only in humans. We discuss this disjoint phylogenetic distribution of inter-individual rhythmic entrainment in the context of the functions such entrainment might perform in the various species concerned, and the adaptive circumstances in which it might evolve.
Collapse
Affiliation(s)
- Michael D Greenfield
- ENES Bioacoustics Research Lab, CRNL, University of Saint-Etienne, CNRS, Inserm, Saint-Etienne, France; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | - Bjorn Merker
- Independent Scholar, SE-29194 Kristianstad, Sweden
| |
Collapse
|
5
|
Rouse AA, Patel AD, Wainapel S, Kao MH. Sex differences in vocal learning ability in songbirds are linked with differences in flexible rhythm pattern perception. Anim Behav 2023; 203:193-206. [PMID: 37842009 PMCID: PMC10569135 DOI: 10.1016/j.anbehav.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Humans readily recognize familiar rhythmic patterns, such as isochrony (equal timing between events) across a wide range of rates. This reflects a facility with perceiving the relative timing of events, not just absolute interval durations. Several lines of evidence suggest this ability is supported by precise temporal predictions arising from forebrain auditory-motor interactions. We have shown previously that male zebra finches, Taeniopygia guttata, which possess specialized auditory-motor networks and communicate with rhythmically patterned sequences, share our ability to flexibly recognize isochrony across rates. To test the hypothesis that flexible rhythm pattern perception is linked to vocal learning, we ask whether female zebra finches, which do not learn to sing, can also recognize global temporal patterns. We find that females can flexibly recognize isochrony across a wide range of rates but perform slightly worse than males on average. These findings are consistent with recent work showing that while females have reduced forebrain song regions, the overall network connectivity of vocal premotor regions is similar to males and may support predictions of upcoming events. Comparative studies of male and female songbirds thus offer an opportunity to study how individual differences in auditory-motor connectivity influence perception of relative timing, a hallmark of human music perception.
Collapse
Affiliation(s)
- Andrew A. Rouse
- Department of Psychology, Tufts University, Medford, MA, U.S.A
| | - Aniruddh D. Patel
- Department of Psychology, Tufts University, Medford, MA, U.S.A
- Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | | | - Mimi H. Kao
- Department of Biology, Tufts University, Medford, MA, U.S.A
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, U.S.A
| |
Collapse
|
6
|
Szorkovszky A, Veenstra F, Glette K. Central pattern generators evolved for real-time adaptation to rhythmic stimuli. BIOINSPIRATION & BIOMIMETICS 2023; 18:046020. [PMID: 37339660 DOI: 10.1088/1748-3190/ace017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
For a robot to be both autonomous and collaborative requires the ability to adapt its movement to a variety of external stimuli, whether these come from humans or other robots. Typically, legged robots have oscillation periods explicitly defined as a control parameter, limiting the adaptability of walking gaits. Here we demonstrate a virtual quadruped robot employing a bio-inspired central pattern generator (CPG) that can spontaneously synchronize its movement to a range of rhythmic stimuli. Multi-objective evolutionary algorithms were used to optimize the variation of movement speed and direction as a function of the brain stem drive and the centre of mass control respectively. This was followed by optimization of an additional layer of neurons that filters fluctuating inputs. As a result, a range of CPGs were able to adjust their gait pattern and/or frequency to match the input period. We show how this can be used to facilitate coordinated movement despite differences in morphology, as well as to learn new movement patterns.
Collapse
Affiliation(s)
- Alex Szorkovszky
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Frank Veenstra
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Kyrre Glette
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Fiveash A, Ferreri L, Bouwer FL, Kösem A, Moghimi S, Ravignani A, Keller PE, Tillmann B. Can rhythm-mediated reward boost learning, memory, and social connection? Perspectives for future research. Neurosci Biobehav Rev 2023; 149:105153. [PMID: 37019245 DOI: 10.1016/j.neubiorev.2023.105153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Studies of rhythm processing and of reward have progressed separately, with little connection between the two. However, consistent links between rhythm and reward are beginning to surface, with research suggesting that synchronization to rhythm is rewarding, and that this rewarding element may in turn also boost this synchronization. The current mini review shows that the combined study of rhythm and reward can be beneficial to better understand their independent and combined roles across two central aspects of cognition: 1) learning and memory, and 2) social connection and interpersonal synchronization; which have so far been studied largely independently. From this basis, it is discussed how connections between rhythm and reward can be applied to learning and memory and social connection across different populations, taking into account individual differences, clinical populations, human development, and animal research. Future research will need to consider the rewarding nature of rhythm, and that rhythm can in turn boost reward, potentially enhancing other cognitive and social processes.
Collapse
Affiliation(s)
- A Fiveash
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000 Lyon, France; University of Lyon 1, Lyon, France; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia.
| | - L Ferreri
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy; Laboratoire d'Étude des Mécanismes Cognitifs, Université Lumière Lyon 2, Lyon, France
| | - F L Bouwer
- Department of Psychology, Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - A Kösem
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000 Lyon, France
| | - S Moghimi
- Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, INSERM U1105, Amiens, France
| | - A Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - P E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - B Tillmann
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000 Lyon, France; University of Lyon 1, Lyon, France; Laboratory for Research on Learning and Development, LEAD - CNRS UMR5022, Université de Bourgogne, Dijon, France
| |
Collapse
|
8
|
Raimondi T, Di Panfilo G, Pasquali M, Zarantonello M, Favaro L, Savini T, Gamba M, Ravignani A. Isochrony and rhythmic interaction in ape duetting. Proc Biol Sci 2023; 290:20222244. [PMID: 36629119 PMCID: PMC9832542 DOI: 10.1098/rspb.2022.2244] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
How did rhythm originate in humans, and other species? One cross-cultural universal, frequently found in human music, is isochrony: when note onsets repeat regularly like the ticking of a clock. Another universal consists in synchrony (e.g. when individuals coordinate their notes so that they are sung at the same time). An approach to biomusicology focuses on similarities and differences across species, trying to build phylogenies of musical traits. Here we test for the presence of, and a link between, isochrony and synchrony in a non-human animal. We focus on the songs of one of the few singing primates, the lar gibbon (Hylobates lar), extracting temporal features from their solo songs and duets. We show that another ape exhibits one rhythmic feature at the core of human musicality: isochrony. We show that an enhanced call rate overall boosts isochrony, suggesting that respiratory physiological constraints play a role in determining the song's rhythmic structure. However, call rate alone cannot explain the flexible isochrony we witness. Isochrony is plastic and modulated depending on the context of emission: gibbons are more isochronous when duetting than singing solo. We present evidence for rhythmic interaction: we find statistical causality between one individual's note onsets and the co-singer's onsets, and a higher than chance degree of synchrony in the duets. Finally, we find a sex-specific trade-off between individual isochrony and synchrony. Gibbon's plasticity for isochrony and rhythmic overlap may suggest a potential shared selective pressure for interactive vocal displays in singing primates. This pressure may have convergently shaped human and gibbon musicality while acting on a common neural primate substrate. Beyond humans, singing primates are promising models to understand how music and, specifically, a sense of rhythm originated in the primate phylogeny.
Collapse
Affiliation(s)
- Teresa Raimondi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giovanni Di Panfilo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Matteo Pasquali
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Martina Zarantonello
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Livio Favaro
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Tommaso Savini
- Conservation Ecology Program, King Mongkut University of Technology Thonburi, School of Bioresources and Technology, Bangkok, Thailand
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Denmark
| |
Collapse
|
9
|
Luo L, Lu L. Studying rhythm processing in speech through the lens of auditory-motor synchronization. Front Neurosci 2023; 17:1146298. [PMID: 36937684 PMCID: PMC10017839 DOI: 10.3389/fnins.2023.1146298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Continuous speech is organized into a hierarchy of rhythms. Accurate processing of this rhythmic hierarchy through the interactions of auditory and motor systems is fundamental to speech perception and production. In this mini-review, we aim to evaluate the implementation of behavioral auditory-motor synchronization paradigms when studying rhythm processing in speech. First, we present an overview of the classic finger-tapping paradigm and its application in revealing differences in auditory-motor synchronization between the typical and clinical populations. Next, we highlight key findings on rhythm hierarchy processing in speech and non-speech stimuli from finger-tapping studies. Following this, we discuss the potential caveats of the finger-tapping paradigm and propose the speech-speech synchronization (SSS) task as a promising tool for future studies. Overall, we seek to raise interest in developing new methods to shed light on the neural mechanisms of speech processing.
Collapse
Affiliation(s)
- Lu Luo
- School of Psychology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing, China
| | - Lingxi Lu
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China
- *Correspondence: Lingxi Lu,
| |
Collapse
|
10
|
Frischen U, Degé F, Schwarzer G. The relation between rhythm processing and cognitive abilities during child development: The role of prediction. Front Psychol 2022; 13:920513. [PMID: 36211925 PMCID: PMC9539453 DOI: 10.3389/fpsyg.2022.920513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Rhythm and meter are central elements of music. From the very beginning, children are responsive to rhythms and acquire increasingly complex rhythmic skills over the course of development. Previous research has shown that the processing of musical rhythm is not only related to children’s music-specific responses but also to their cognitive abilities outside the domain of music. However, despite a lot of research on that topic, the connections and underlying mechanisms involved in such relation are still unclear in some respects. In this article, we aim at analyzing the relation between rhythmic and cognitive-motor abilities during childhood and at providing a new hypothesis about this relation. We consider whether predictive processing may be involved in the relation between rhythmic and various cognitive abilities and hypothesize that prediction as a cross-domain process is a central mechanism building a bridge between rhythm processing and cognitive-motor abilities. Further empirical studies focusing on rhythm processing and cognitive-motor abilities are needed to precisely investigate the links between rhythmic, predictive, and cognitive processes.
Collapse
Affiliation(s)
- Ulrike Frischen
- Department of Music, University of Oldenburg, Oldenburg, Germany
- *Correspondence: Ulrike Frischen,
| | - Franziska Degé
- Music Department, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Gudrun Schwarzer
- Department of Developmental Psychology, Faculty of Psychology and Sports Science, University of Giessen, Giessen, Germany
- Gudrun Schwarzer,
| |
Collapse
|
11
|
Greenfield MD, Honing H, Kotz SA, Ravignani A. Synchrony and rhythm interaction: from the brain to behavioural ecology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200324. [PMID: 34420379 DOI: 10.1098/rstb.2020.0324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This theme issue assembles current studies that ask how and why precise synchronization and related forms of rhythm interaction are expressed in a wide range of behaviour. The studies cover human activity, with an emphasis on music, and social behaviour, reproduction and communication in non-human animals. In most cases, the temporally aligned rhythms have short-from several seconds down to a fraction of a second-periods and are regulated by central nervous system pacemakers, but interactions involving rhythms that are 24 h or longer and originate in biological clocks also occur. Across this spectrum of activities, species and time scales, empirical work and modelling suggest that synchrony arises from a limited number of coupled-oscillator mechanisms with which individuals mutually entrain. Phylogenetic distribution of these common mechanisms points towards convergent evolution. Studies of animal communication indicate that many synchronous interactions between the signals of neighbouring individuals are specifically favoured by selection. However, synchronous displays are often emergent properties of entrainment between signalling individuals, and in some situations, the very signallers who produce a display might not gain any benefit from the collective timing of their production. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Michael D Greenfield
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.,Equipe Neuro-Ethologie Sensorielle, ENES/Neuro-PSI, CNRS UMR 9197, Universtiy Lyon/Saint-Etienne, 42023 Saint Etienne, France
| | - Henkjan Honing
- Music Cognition Group (MCG), Institute for Logic, Language and Computation (ILLC), University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6200 MD Maastricht, The Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds. Proc Natl Acad Sci U S A 2021; 118:2026130118. [PMID: 34272278 PMCID: PMC8307534 DOI: 10.1073/pnas.2026130118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We can recognize the cadence of a friend’s voice or the rhythm of a familiar song across a wide range of tempi. This shows that our perception of temporal patterns relies strongly on the relative timing of events rather than on specific absolute durations. This tendency is foundational to speech and music perception, but to what extent is it shared by other species? We hypothesize that animals that learn their vocalizations are more likely to share this tendency. Here, we show that a vocal learning songbird robustly recognizes a basic rhythmic pattern independent of rate. Our findings pave the way for neurobiological studies to identify how the brain represents and perceives the temporal structure of auditory sequences. Rhythm perception is fundamental to speech and music. Humans readily recognize a rhythmic pattern, such as that of a familiar song, independently of the tempo at which it occurs. This shows that our perception of auditory rhythms is flexible, relying on global relational patterns more than on the absolute durations of specific time intervals. Given that auditory rhythm perception in humans engages a complex auditory–motor cortical network even in the absence of movement and that the evolution of vocal learning is accompanied by strengthening of forebrain auditory–motor pathways, we hypothesize that vocal learning species share our perceptual facility for relational rhythm processing. We test this by asking whether the best-studied animal model for vocal learning, the zebra finch, can recognize a fundamental rhythmic pattern—equal timing between event onsets (isochrony)—based on temporal relations between intervals rather than on absolute durations. Prior work suggests that vocal nonlearners (pigeons and rats) are quite limited in this regard and are biased to attend to absolute durations when listening to rhythmic sequences. In contrast, using naturalistic sounds at multiple stimulus rates, we show that male zebra finches robustly recognize isochrony independent of absolute time intervals, even at rates distant from those used in training. Our findings highlight the importance of comparative studies of rhythmic processing and suggest that vocal learning species are promising animal models for key aspects of human rhythm perception. Such models are needed to understand the neural mechanisms behind the positive effect of rhythm on certain speech and movement disorders.
Collapse
|