1
|
Ghodhbane-Gtari F, Fattouch S, Gtari M. Is Pseudofrankia, the non-nitrogen-fixing and/or non-nodulating actinorhizal nodule dweller, mutualistic or parasitic? Insights from genome-predictive analysis. Int Microbiol 2024:10.1007/s10123-024-00624-5. [PMID: 39707115 DOI: 10.1007/s10123-024-00624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
This study re-evaluates Pseudofrankia strains, traditionally regarded as parasitic dwellers of actinorhizal root nodules due to their inability to fix nitrogen (Fix -) and/or nodulate (Nod -), as potential plant growth-promoting bacteria (PGPB). We compared plant growth-promoting traits (PGPTs) between Pseudofrankia strains, including one newly sequenced strain BMG5.37 in this study and typical (Fix + /Nod +) Frankia, Protofrankia, and Parafrankia, as well as non-frankia actinorhizal species Nocardia and Micromonospora, and the phytopathogenic Streptomyces. Although lacking nitrogen-fixing genes typically found in mutualistic Frankiaceae strains, Pseudofrankia may compensate through predicted pathways for denitrification and nitrate utilization. Functional profiling suggests potential for phosphorus solubilization, gibberellin production, and vitamin metabolism, as well as bioremediation of pollutants. Pseudofrankia strains are predicted to show moderate resistance to heavy metals, with a stronger tolerance to arsenic and tellurium compared to Frankia. Furthermore, they are anticipated to exhibit significant biotic and abiotic stress resistance, including oxidative and osmotic stress. Predictive data also indicate that Pseudofrankia strains may have root colonization abilities and may play a role in plant signaling and phytohormone production, particularly in auxin and gibberellin pathways. Secretion systems, especially CE-Type VI, are predicted to be highly developed in Pseudofrankia, suggesting potential for effective plant interactions. These findings position Pseudofrankia strains as promising candidates for plant growth promotion, although experimental validation and the integration of transcriptomic or proteomic data are needed to confirm these predictions.
Collapse
Affiliation(s)
- Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Science and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
- Department of Fundamental Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of La Manouba, Manouba, Tunisia
| | - Sami Fattouch
- Department of Biological and Chemical Engineering, LR EcoChemistry, National Institute of Applied Science and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Science and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia.
| |
Collapse
|
2
|
Urquhart A, Vogan AA, Gluck-Thaler E. Starships: a new frontier for fungal biology. Trends Genet 2024; 40:1060-1073. [PMID: 39299886 DOI: 10.1016/j.tig.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Transposable elements (TEs) are semiautonomous genetic entities that proliferate in genomes. We recently discovered the Starships, a previously hidden superfamily of giant TEs found in a diverse subphylum of filamentous fungi, the Pezizomycotina. Starships are unlike other eukaryotic TEs because they have evolved mechanisms for both mobilizing entire genes, including those encoding conditionally beneficial phenotypes, and for horizontally transferring between individuals. We argue that Starships have unrivaled capacity to engage their fungal hosts as genetic parasites and mutualists, revealing unexplored terrain for investigating the ecoevolutionary dynamics of TE-eukaryote interactions. We build on existing models of fungal genome evolution by conceptualizing Starships as a distinct genomic compartment whose dynamics profoundly shape fungal biology.
Collapse
Affiliation(s)
- Andrew Urquhart
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| | - Emile Gluck-Thaler
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Chen Y, Khan MZ, Wang X, Liang H, Ren W, Kou X, Liu X, Chen W, Peng Y, Wang C. Structural variations in livestock genomes and their associations with phenotypic traits: a review. Front Vet Sci 2024; 11:1416220. [PMID: 39600883 PMCID: PMC11588642 DOI: 10.3389/fvets.2024.1416220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Genomic structural variation (SV) refers to differences in gene sequences between individuals on a genomic scale. It is widely distributed in the genome, primarily in the form of insertions, deletions, duplications, inversions, and translocations. Due to its characterization by long segments and large coverage, SVs significantly impact the genetic characteristics and production performance of livestock, playing a crucial role in studying breed diversity, biological evolution, and disease correlation. Research on SVs contributes to an enhanced understanding of chromosome function and genetic characteristics and is important for understanding hereditary diseases mechanisms. In this article, we review the concept, classification, main formation mechanisms, detection methods, and advancement of research on SVs in the genomes of cattle, buffalo, equine, sheep, and goats, aiming to reveal the genetic basis of differences in phenotypic traits and adaptive genetic mechanisms through genomic research, which will provide a theoretical basis for better understanding and utilizing the genetic resources of herbivorous livestock.
Collapse
Affiliation(s)
| | - Muhammad Zahoor Khan
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | | | | | | | | | | | | | - Yongdong Peng
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Duchin Rapp Y, Lipsman V, Yuda L, Kublanov IV, Matsliyah D, Segev E. Algal exudates promote conjugation in marine Roseobacters. mBio 2024; 15:e0106224. [PMID: 39189747 PMCID: PMC11481893 DOI: 10.1128/mbio.01062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Horizontal gene transfer (HGT) is a pivotal mechanism driving bacterial evolution, conferring adaptability within dynamic marine ecosystems. Among HGT mechanisms, conjugation mediated by type IV secretion systems (T4SSs) plays a central role in the ecological success of marine bacteria. However, the conditions promoting conjugation events in the marine environment are not well-understood. Roseobacters, abundant marine bacteria commonly associated with algae, possess a multitude of T4SSs. Many Roseobacters are heterotrophic bacteria that rely on algal secreted compounds to support their growth. These compounds attract bacteria, facilitating colonization and attachment to algal cells. Algae and their metabolites bring bacteria into close proximity, potentially promoting bacterial HGT. Investigation across various Roseobacters revealed that algal exudates indeed enhance plasmid transfer through conjugation. While algal exudates do not influence the transcription of bacterial conjugative machinery genes, they promote bacterial attachment, potentially stabilizing proximity and facilitating HGT. Notably, under conditions where attachment is less advantageous, the impact of algal exudates on conjugation is reduced. These findings suggest that algae enhance bacterial conjugation primarily by fostering attachment and highlight the importance of studying bacterial HGT within the context of algal-bacterial interactions. IMPORTANCE This study explores how algal-bacterial interactions influence horizontal gene transfer (HGT) among marine bacteria. HGT, a key driver of bacterial evolution, is facilitated by conjugation mediated by type IV secretion systems (T4SSs). Through investigating Roseobacters, abundant marine bacteria often found to be associated with algae, the study reveals that algal exudates enhance plasmid transfer via conjugation. This enhancement is attributed to the promotion of bacterial attachment by algal compounds, emphasizing the role of algal-bacterial interactions in shaping genetic exchange within dynamic marine ecosystems. Understanding these mechanisms is crucial for elucidating bacterial adaptability and evolution in the marine environment.
Collapse
Affiliation(s)
- Yemima Duchin Rapp
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Valeria Lipsman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Yuda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilya V. Kublanov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dor Matsliyah
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Segev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Mogro EG, Draghi WO, Lagares A, Lozano MJ. Identification and functional analysis of recent IS transposition events in rhizobia. Mob DNA 2024; 15:17. [PMID: 39237951 PMCID: PMC11375893 DOI: 10.1186/s13100-024-00327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Rhizobia are alpha- and beta- Proteobacteria that, through the establishment of symbiotic interactions with leguminous plants, are able to fix atmospheric nitrogen as ammonium. The successful establishment of a symbiotic interaction is highly dependent on the availability of nitrogen sources in the soil, and on the specific rhizobia strain. Insertion sequences (ISs) are simple transposable genetic elements that can move to different locations within the host genome and are known to play an important evolutionary role, contributing to genome plasticity by acting as recombination hot-spots, and disrupting coding and regulatory sequences. Disruption of coding sequences may have occurred either in a common ancestor of the species or more recently. By means of ISComapare, we identified Differentially Located ISs (DLISs) in nearly related rhizobial strains of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium. Our results revealed that recent IS transposition could have a role in adaptation by enabling the activation and inactivation of genes that could dynamically affect the competition and survival of rhizobia in the rhizosphere.
Collapse
Affiliation(s)
- Ezequiel G Mogro
- Instituto de Biotecnología y Biología Molecular (IBBM), Dep. Ciencias Biológicas - Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET CCT-LaPlata. La Plata, Buenos Aires, Argentina
| | - Walter O Draghi
- Instituto de Biotecnología y Biología Molecular (IBBM), Dep. Ciencias Biológicas - Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET CCT-LaPlata. La Plata, Buenos Aires, Argentina
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular (IBBM), Dep. Ciencias Biológicas - Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET CCT-LaPlata. La Plata, Buenos Aires, Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM), Dep. Ciencias Biológicas - Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET CCT-LaPlata. La Plata, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Gluck-Thaler E, Vogan A. Systematic identification of cargo-mobilizing genetic elements reveals new dimensions of eukaryotic diversity. Nucleic Acids Res 2024; 52:5496-5513. [PMID: 38686785 PMCID: PMC11162782 DOI: 10.1093/nar/gkae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Cargo-mobilizing mobile elements (CMEs) are genetic entities that faithfully transpose diverse protein coding sequences. Although common in bacteria, we know little about eukaryotic CMEs because no appropriate tools exist for their annotation. For example, Starships are giant fungal CMEs whose functions are largely unknown because they require time-intensive manual curation. To address this knowledge gap, we developed starfish, a computational workflow for high-throughput eukaryotic CME annotation. We applied starfish to 2 899 genomes of 1 649 fungal species and found that starfish recovers known Starships with 95% combined precision and recall while expanding the number of annotated elements ten-fold. Extant Starship diversity is partitioned into 11 families that differ in their enrichment patterns across fungal classes. Starship cargo changes rapidly such that elements from the same family differ substantially in their functional repertoires, which are predicted to contribute to diverse biological processes such as metabolism. Many elements have convergently evolved to insert into 5S rDNA and AT-rich sequence while others integrate into random locations, revealing both specialist and generalist strategies for persistence. Our work establishes a framework for advancing mobile element biology and provides the means to investigate an emerging dimension of eukaryotic genetic diversity, that of genomes within genomes.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Neuchâtel 2000, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, Madison, WI 53706, USA
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
7
|
Ghaly TM, Gillings MR, Rajabal V, Paulsen IT, Tetu SG. Horizontal gene transfer in plant microbiomes: integrons as hotspots for cross-species gene exchange. Front Microbiol 2024; 15:1338026. [PMID: 38741746 PMCID: PMC11089894 DOI: 10.3389/fmicb.2024.1338026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Plant microbiomes play important roles in plant health and fitness. Bacterial horizontal gene transfer (HGT) can influence plant health outcomes, driving the spread of both plant growth-promoting and phytopathogenic traits. However, community dynamics, including the range of genetic elements and bacteria involved in this process are still poorly understood. Integrons are genetic elements recently shown to be abundant in plant microbiomes, and are associated with HGT across broad phylogenetic boundaries. They facilitate the spread of gene cassettes, small mobile elements that collectively confer a diverse suite of adaptive functions. Here, we analysed 5,565 plant-associated bacterial genomes to investigate the prevalence and functional diversity of integrons in this niche. We found that integrons are particularly abundant in the genomes of Pseudomonadales, Burkholderiales, and Xanthomonadales. In total, we detected nearly 9,000 gene cassettes, and found that many could be involved in plant growth promotion or phytopathogenicity, suggesting that integrons might play a role in bacterial mutualistic or pathogenic lifestyles. The rhizosphere was enriched in cassettes involved in the transport and metabolism of diverse substrates, suggesting that they may aid in adaptation to this environment, which is rich in root exudates. We also found that integrons facilitate cross-species HGT, which is particularly enhanced in the phyllosphere. This finding may provide an ideal opportunity to promote plant growth by fostering the spread of genes cassettes relevant to leaf health. Together, our findings suggest that integrons are important elements in plant microbiomes that drive HGT, and have the potential to facilitate plant host adaptation.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| |
Collapse
|
8
|
Bustos-Diaz ED, Cruz-Perez A, Garfias-Gallegos D, D'Agostino PM, Gehringer MM, Cibrian-Jaramillo A, Barona-Gomez F. Phylometagenomics of cycad coralloid roots reveals shared symbiotic signals. Microb Genom 2024; 10:001207. [PMID: 38451250 PMCID: PMC10999742 DOI: 10.1099/mgen.0.001207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Cycads are known to host symbiotic cyanobacteria, including Nostocales species, as well as other sympatric bacterial taxa within their specialized coralloid roots. Yet, it is unknown if these bacteria share a phylogenetic origin and/or common genomic functions that allow them to engage in facultative symbiosis with cycad roots. To address this, we obtained metagenomic sequences from 39 coralloid roots sampled from diverse cycad species and origins in Australia and Mexico. Culture-independent shotgun metagenomic sequencing was used to validate sub-community co-cultures as an efficient approach for functional and taxonomic analysis. Our metanalysis shows a host-independent microbiome core consisting of seven bacterial orders with high species diversity within the identified taxa. Moreover, we recovered 43 cyanobacterial metagenome-assembled genomes, and in addition to Nostoc spp., symbiotic cyanobacteria of the genus Aulosira were identified for the first time. Using this robust dataset, we used phylometagenomic analysis to reveal three monophyletic cyanobiont clades, two host-generalist and one cycad-specific that includes Aulosira spp. Although the symbiotic clades have independently arisen, they are enriched in certain functional genes, such as those related to secondary metabolism. Furthermore, the taxonomic composition of associated sympatric bacterial taxa remained constant. Our research quadruples the number of cycad cyanobiont genomes and provides a robust framework to decipher cyanobacterial symbioses, with the potential of improving our understanding of symbiotic communities. This study lays a solid foundation to harness cyanobionts for agriculture and bioprospection, and assist in conservation of critically endangered cycads.
Collapse
Affiliation(s)
- Edder D. Bustos-Diaz
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Netherlands, 2333 BE, Leiden
| | - Arely Cruz-Perez
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Diego Garfias-Gallegos
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Paul M. D'Agostino
- Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Michelle M. Gehringer
- Department of Microbiology, University of Kaiserslautern-Landau (RPTU), 67663 Kaiserslautern, Germany
| | - Angelica Cibrian-Jaramillo
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Naturalis Biodiversity Center, Leiden 2333 CR, Netherlands
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Netherlands, 2333 BE, Leiden
| |
Collapse
|
9
|
Cui Y, Zhao H, Zhang C. Zinc oxide nanoparticles enhance plasmid transfer among growth-promoting endophytes in Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169682. [PMID: 38163607 DOI: 10.1016/j.scitotenv.2023.169682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Nanoparticles (NPs) hold great promise for agricultural applications, yet their potential impact on exogenous gene transfer within plant remains poorly understood. In this study, we utilized the non-conjugative plasmid pCAMBIA1300, harboring the bialaphos resistance (bar) gene expressed in plant and the kanamycin resistance (kanR) gene as selectable marker in bacteria. Our results revealed a significant increase in the transfer of plasmid (via carrier Escherichia coli DH5α), both intra- and inter-species within the endophyte, when Arabidopsis thaliana was exposed to environmentally relevant level of zinc oxide (ZnO) NPs at a concentration of 0.7 μg/mL throughout its lifespan. Intriguingly, the plasmid exhibited selective transfer to growth-promoting endophytes, such as Enterobacter, Serratia, and Achromobacter, with the presence of ZnO NPs expanding the pool of potential recipients. This result is due to the facilitation of an endophytic and mutualistic lifestyle of invasive E. coli DH5α and the enrichment of beneficial bacteria aided by ZnO NPs. The plant's descendant generations did not express the bar gene, and the endophytes carrying the exogenous plasmid did not transmit it to sub sequent generation. This research provides crucial insights for assessing the potential risks associated with gene contamination and ensuring the safe and sustainable use of NPs in agriculture.
Collapse
Affiliation(s)
- Yueting Cui
- School of Environment, Beijing Normal University, Beijing 100857, China
| | - Huiru Zhao
- School of Environment, Beijing Normal University, Beijing 100857, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100857, China.
| |
Collapse
|
10
|
Wójcik M, Koper P, Żebracki K, Marczak M, Mazur A. Genomic and Metabolic Characterization of Plant Growth-Promoting Rhizobacteria Isolated from Nodules of Clovers Grown in Non-Farmed Soil. Int J Mol Sci 2023; 24:16679. [PMID: 38069003 PMCID: PMC10706249 DOI: 10.3390/ijms242316679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The rhizosphere microbiota, which includes plant growth-promoting rhizobacteria (PGPR), is essential for nutrient acquisition, protection against pathogens, and abiotic stress tolerance in plants. However, agricultural practices affect the composition and functions of microbiota, reducing their beneficial effects on plant growth and health. Among PGPR, rhizobia form mutually beneficial symbiosis with legumes. In this study, we characterized 16 clover nodule isolates from non-farmed soil to explore their plant growth-promoting (PGP) potential, hypothesizing that these bacteria may possess unique, unaltered PGP traits, compared to those affected by common agricultural practices. Biolog profiling revealed their versatile metabolic capabilities, enabling them to utilize a wide range of carbon and energy sources. All isolates were effective phosphate solubilizers, and individual strains exhibited 1-aminocyclopropane-1-carboxylate deaminase and metal ion chelation activities. Metabolically active strains showed improved performance in symbiotic interactions with plants. Comparative genomics revealed that the genomes of five nodule isolates contained a significantly enriched fraction of unique genes associated with quorum sensing and aromatic compound degradation. As the potential of PGPR in agriculture grows, we emphasize the importance of the molecular and metabolic characterization of PGP traits as a fundamental step towards their subsequent application in the field as an alternative to chemical fertilizers and supplements.
Collapse
Affiliation(s)
| | | | | | | | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (P.K.); (K.Ż.); (M.M.)
| |
Collapse
|
11
|
Zhang J, Feng Y, Wang J, Wang E, Andrews M. Diverse Bradyrhizobium spp. with Similar Symbiosis Genes Nodulate Peanut in Different Regions of China: Characterization of Symbiovar sv. Arachis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3776. [PMID: 37960132 PMCID: PMC10647606 DOI: 10.3390/plants12213776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
A total of 219 rhizobial strains isolated from peanut grown in soils from six peanut croplands in Zhengyang county, Henan Province, were typed by PCR-RFLP of IGS sequences. Their phylogenetic relationships were refined on representative strains using sequence analyses of 16S rRNA genes, housekeeping genes (atpD, recA, glnII) and symbiosis genes (nodA, nodC and nifH). The 219 rhizobial isolates were classified into 13 IGS types, and twenty representatives were defined within eight Bradyrhizobium genospecies: B. guangdongense covering 5 IGS types (75.2% of total isolates), B. guangzhouense (2 IGS types, 2.7% total isolates), B. zhengyangense (1 IGS type, 11.3% total isolates) and five novel genospecies (5 IGS types, 0.9 to 3.2% total isolates). All representative strains had identical nodA, nodC and nifH sequences except for one nifH sequence. With this one exception, these sequences were identical to those of the type strains of Bradyrhizobium species and several Bradyrhizobium genospecies isolated from peanut in different regions of China. The nodC sequences of all strains showed < 67% similarity to the closest strains on the Genbank database indicating that they are representative of a novel Bradyrhiobium symbiovar. This study has shown that (1) diverse Bradyrhizobium spp. with similar symbiosis genes nodulate peanut in different regions of China. (2) Horizontal transfer of genes involved in nodulating peanut is common between Bradyrhizobium species in soils used to grow the crop in China. (3) The strains studied here are representative of a novel Bradyrhizobium symbiovar that nodulates peanut in China. We propose the name sv. arachis for this novel symbiovar indicating that the strains were isolated from Arachis hypogaea. Results here have practical implications in relation to the selection of rhizobial inoculants for peanut in China.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.F.); (J.W.)
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
| | - Yufeng Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.F.); (J.W.)
| | - Jingqi Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.F.); (J.W.)
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
12
|
Granada Agudelo M, Ruiz B, Capela D, Remigi P. The role of microbial interactions on rhizobial fitness. FRONTIERS IN PLANT SCIENCE 2023; 14:1277262. [PMID: 37877089 PMCID: PMC10591227 DOI: 10.3389/fpls.2023.1277262] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Rhizobia are soil bacteria that can establish a nitrogen-fixing symbiosis with legume plants. As horizontally transmitted symbionts, the life cycle of rhizobia includes a free-living phase in the soil and a plant-associated symbiotic phase. Throughout this life cycle, rhizobia are exposed to a myriad of other microorganisms that interact with them, modulating their fitness and symbiotic performance. In this review, we describe the diversity of interactions between rhizobia and other microorganisms that can occur in the rhizosphere, during the initiation of nodulation, and within nodules. Some of these rhizobia-microbe interactions are indirect, and occur when the presence of some microbes modifies plant physiology in a way that feeds back on rhizobial fitness. We further describe how these interactions can impose significant selective pressures on rhizobia and modify their evolutionary trajectories. More extensive investigations on the eco-evolutionary dynamics of rhizobia in complex biotic environments will likely reveal fascinating new aspects of this well-studied symbiotic interaction and provide critical knowledge for future agronomical applications.
Collapse
Affiliation(s)
- Margarita Granada Agudelo
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Bryan Ruiz
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Delphine Capela
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Philippe Remigi
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
13
|
Carscadden KA, Batstone RT, Hauser FE. Origins and evolution of biological novelty. Biol Rev Camb Philos Soc 2023; 98:1472-1491. [PMID: 37056155 DOI: 10.1111/brv.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Understanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species). Our perspective is based on the fundamental idea that the emergence of a novelty, at any biological scale, depends on its environmental and genetic context. Through this lens, we outline a broad array of generative mechanisms underlying novelty and highlight how genomic tools are transforming our understanding of the origins of novelty. Lastly, we present several case studies to illustrate how novelties across biological scales and systems can be understood based on common mechanisms of change and their environmental and genetic contexts. Specifically, we highlight how gene duplication contributes to the evolution of new complex structures in visual systems; how genetic exchange in symbiosis alters functions of both host and symbiont, resulting in a novel organism; and how hybridisation between species can generate new species with new niches.
Collapse
Affiliation(s)
- Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St, Boulder, CO, 80309, USA
| | - Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
14
|
Kohlmeier MG, Farquharson EA, Ballard RA, O’Hara GW, Terpolilli JJ. Complete genome sequence of Rhizobium leguminosarum bv. viciae SRDI969, an acid-tolerant, efficient N 2-fixing microsymbiont of Vicia faba. Microbiol Resour Announc 2023; 12:e0048923. [PMID: 37526441 PMCID: PMC10508120 DOI: 10.1128/mra.00489-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/01/2023] [Indexed: 08/02/2023] Open
Abstract
We report the complete genome sequence of Rhizobium leguminosarum bv. viciae SRDI969, an acid-tolerant, efficient nitrogen-fixing microorganism of Vicia faba. The 6.8 Mbp genome consists of a chromosome and four plasmids, with the symbiosis and nitrogen fixation genes encoded on the chromosome.
Collapse
Affiliation(s)
- MacLean G. Kohlmeier
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Elizabeth A. Farquharson
- South Australian Research and Development Institute, Urrbrae, South Australia, Australia
- University of Adelaide, School of Agriculture, Food and Wine, Adelaide, South Australia, Australia
| | - Ross A. Ballard
- South Australian Research and Development Institute, Urrbrae, South Australia, Australia
- University of Adelaide, School of Agriculture, Food and Wine, Adelaide, South Australia, Australia
| | - Graham W. O’Hara
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Jason J. Terpolilli
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
15
|
Sørensen MES, Zlatogursky VV, Onuţ-Brännström I, Walraven A, Foster RA, Burki F. A novel kleptoplastidic symbiosis revealed in the marine centrohelid Meringosphaera with evidence of genetic integration. Curr Biol 2023; 33:3571-3584.e6. [PMID: 37536342 PMCID: PMC7615077 DOI: 10.1016/j.cub.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
Plastid symbioses between heterotrophic hosts and algae are widespread and abundant in surface oceans. They are critically important both for extant ecological systems and for understanding the evolution of plastids. Kleptoplastidy, where the plastids of prey are temporarily retained and continuously re-acquired, provides opportunities to study the transitional states of plastid establishment. Here, we investigated the poorly studied marine centrohelid Meringosphaera and its previously unidentified symbionts using culture-independent methods from environmental samples. Investigations of the 18S rDNA from single-cell assembled genomes (SAGs) revealed uncharacterized genetic diversity within Meringosphaera that likely represents multiple species. We found that Meringosphaera harbors plastids of Dictyochophyceae origin (stramenopiles), for which we recovered six full plastid genomes and found evidence of two distinct subgroups that are congruent with host identity. Environmental monitoring by qPCR and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) revealed seasonal dynamics of both host and plastid. In particular, we did not detect the plastids for 6 months of the year, which, combined with the lack of plastids in some SAGs, suggests that the plastids are temporary and the relationship is kleptoplastidic. Importantly, we found evidence of genetic integration of the kleptoplasts as we identified host-encoded plastid-associated genes, with evolutionary origins likely from the plastid source as well as from other alga sources. This is only the second case where host-encoded kleptoplast-targeted genes have been predicted in an ancestrally plastid-lacking group. Our results provide evidence for gene transfers and protein re-targeting as relatively early events in the evolution of plastid symbioses.
Collapse
Affiliation(s)
- Megan E S Sørensen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden; Institute of Microbial Cell Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Vasily V Zlatogursky
- Department of Botany, University of British Columbia, V6T 1Z4 Vancouver, BC, Canada; Department of Organismal Biology, Program in Systematic Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Ioana Onuţ-Brännström
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, 752 36 Uppsala, Sweden; Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden; Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | - Anne Walraven
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, 752 36 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden.
| |
Collapse
|
16
|
Claassens R, Venter SN, Beukes CW, Stępkowski T, Chan WY, Steenkamp ET. Bradyrhizobium xenonodulans sp. nov. isolated from nodules of Australian Acacia species invasive to South Africa. Syst Appl Microbiol 2023; 46:126452. [PMID: 37634485 DOI: 10.1016/j.syapm.2023.126452] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
A genealogical concordance approach was used to delineate strains isolated from Acacia dealbata and Acacia mearnsii root nodules in South Africa. These isolates form part of Bradyrhizobium based on 16S rRNA sequence similarity. Phylogenetic analysis of six housekeeping genes (atpD, dnaK, glnII, gyrB, recA and rpoB) confirmed that these isolates represent a novel species, while pairwise average nucleotide identity (ANIb) calculations with the closest type strains (B. cosmicum 58S1T, B. betae PL7HG1T, B. ganzhouense CCBAU 51670 T, B. cytisi CTAW11T and B. rifense CTAW71T) resulted in values well below 95-96%. We further performed phenotypic tests which revealed that there are high levels of intraspecies variation, while an additional analysis of the nodA and nifD loci indicated that the symbiotic loci of the strains are closely related to those of Bradyrhizobium isolates with an Australian origin. Strain 14ABT (=LMG 31415 T = SARCC-753 T) is designated as the type strain of the novel species for which we propose the name Bradyrhizobium xenonodulans sp. nov.
Collapse
Affiliation(s)
- Ricu Claassens
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa
| | | | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Poland
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa; Right to Care, Centurion, Gauteng, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa.
| |
Collapse
|
17
|
Dewan I, Uecker H. A mathematician's guide to plasmids: an introduction to plasmid biology for modellers. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001362. [PMID: 37505810 PMCID: PMC10433428 DOI: 10.1099/mic.0.001362] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Plasmids, extrachromosomal DNA molecules commonly found in bacterial and archaeal cells, play an important role in bacterial genetics and evolution. Our understanding of plasmid biology has been furthered greatly by the development of mathematical models, and there are many questions about plasmids that models would be useful in answering. In this review, we present an introductory, yet comprehensive, overview of the biology of plasmids suitable for modellers unfamiliar with plasmids who want to get up to speed and to begin working on plasmid-related models. In addition to reviewing the diversity of plasmids and the genes they carry, their key physiological functions, and interactions between plasmid and host, we also highlight selected plasmid topics that may be of particular interest to modellers and areas where there is a particular need for theoretical development. The world of plasmids holds a great variety of subjects that will interest mathematical biologists, and introducing new modellers to the subject will help to expand the existing body of plasmid theory.
Collapse
Affiliation(s)
- Ian Dewan
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hildegard Uecker
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
18
|
Bromfield ESP, Cloutier S, Hynes MF. Ensifer canadensis sp. nov. strain T173 T isolated from Melilotus albus (sweet clover) in Canada possesses recombinant plasmid pT173b harbouring symbiosis and type IV secretion system genes apparently acquired from Ensifer medicae. Front Microbiol 2023; 14:1195755. [PMID: 37389331 PMCID: PMC10306167 DOI: 10.3389/fmicb.2023.1195755] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
A bacterial strain, designated T173T, was previously isolated from a root-nodule of a Melilotus albus plant growing in Canada and identified as a novel Ensifer lineage that shared a clade with the non-symbiotic species, Ensifer adhaerens. Strain T173T was also previously found to harbour a symbiosis plasmid and to elicit root-nodules on Medicago and Melilotus species but not fix nitrogen. Here we present data for the genomic and taxonomic description of strain T173T. Phylogenetic analyses including the analysis of whole genome sequences and multiple locus sequence analysis (MLSA) of 53 concatenated ribosome protein subunit (rps) gene sequences confirmed placement of strain T173T in a highly supported lineage distinct from named Ensifer species with E. morelensis Lc04T as the closest relative. The highest digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of genome sequences of strain T173T compared with closest relatives (35.7 and 87.9%, respectively) are well below the respective threshold values of 70% and 95-96% for bacterial species circumscription. The genome of strain T173T has a size of 8,094,229 bp with a DNA G + C content of 61.0 mol%. Six replicons were detected: a chromosome (4,051,102 bp) and five plasmids harbouring plasmid replication and segregation (repABC) genes. These plasmids were also found to possess five apparent conjugation systems based on analysis of TraA (relaxase), TrbE/VirB4 (part of the Type IV secretion system (T4SS)) and TraG/VirD4 (coupling protein). Ribosomal RNA operons encoding 16S, 23S, and 5S rRNAs that are usually restricted to bacterial chromosomes were detected on plasmids pT173d and pT173e (946,878 and 1,913,930 bp, respectively) as well as on the chromosome of strain T173T. Moreover, plasmid pT173b (204,278 bp) was found to harbour T4SS and symbiosis genes, including nodulation (nod, noe, nol) and nitrogen fixation (nif, fix) genes that were apparently acquired from E. medicae by horizontal transfer. Data for morphological, physiological and symbiotic characteristics complement the sequence-based characterization of strain T173T. The data presented support the description of a new species for which the name Ensifer canadensis sp. nov. is proposed with strain T173T (= LMG 32374T = HAMBI 3766T) as the species type strain.
Collapse
Affiliation(s)
- Eden S. P. Bromfield
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Riley AB, Grillo MA, Epstein B, Tiffin P, Heath KD. Discordant population structure among rhizobium divided genomes and their legume hosts. Mol Ecol 2023; 32:2646-2659. [PMID: 36161739 DOI: 10.1111/mec.16704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within-site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.
Collapse
Affiliation(s)
- Alex B Riley
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
20
|
Nodulation and Growth Promotion of Chickpea by Mesorhizobium Isolates from Diverse Sources. Microorganisms 2022; 10:microorganisms10122467. [PMID: 36557720 PMCID: PMC9783758 DOI: 10.3390/microorganisms10122467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The cultivation of chickpea (Cicer arietinum L.) in South Africa is dependent on the application of suitable Mesorhizobium inoculants. Therefore, we evaluated the symbiotic effectiveness of several Mesorhizobium strains with different chickpea genotypes under controlled conditions. The tested parameters included shoot dry weight (SDW), nodule fresh weight (NFW), plant height, relative symbiotic effectiveness (RSE) on the plant as well as indole acetic acid (IAA) production and phosphate solubilization on the rhizobia. Twenty-one Mesorhizobium strains and six desi chickpea genotypes were laid out in a completely randomized design (CRD) with three replicates in a glasshouse pot experiment. The factors, chickpea genotype and Mesorhizobium strain, had significant effects on the measured parameters (p < 0.001) but lacked significant interactions based on the analysis of variance (ANOVA). The light variety desi genotype outperformed the other chickpea genotypes on all tested parameters. In general, inoculation with strains LMG15046, CC1192, XAP4, XAP10, and LMG14989 performed best for all the tested parameters. All the strains were able to produce IAA and solubilize phosphate except the South African field isolates, which could not solubilize phosphate. Taken together, inoculation with compatible Mesorhizobium promoted chickpea growth. This is the first study to report on chickpea-compatible Mesorhizobium strains isolated from uninoculated South African soils with no history of chickpea production; although, their plant growth promotion ability was poorer compared to some of the globally sourced strains. Since this study was conducted under controlled conditions, we recommend field studies to assess the performance of the five highlighted strains under environmental conditions in South Africa.
Collapse
|
21
|
Castellani LG, Luchetti A, Nilsson JF, Pérez-Giménez J, Struck B, Schlüter A, Pühler A, Niehaus K, Romero D, Pistorio M, Torres Tejerizo G. RcgA and RcgR, Two Novel Proteins Involved in the Conjugative Transfer of Rhizobial Plasmids. mBio 2022; 13:e0194922. [PMID: 36073816 PMCID: PMC9601222 DOI: 10.1128/mbio.01949-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Rhizobia are Gram-negative bacteria that are able to establish a nitrogen-fixing symbiotic interaction with leguminous plants. Rhizobia genomes usually harbor several plasmids which can be transferred to other organisms by conjugation. Two main mechanisms of the regulation of rhizobial plasmid transfer have been described: quorum sensing (QS) and the rctA/rctB system. Nevertheless, new genes and molecules that modulate conjugative transfer have recently been described, demonstrating that new actors can tightly regulate the process. In this work, by means of bioinformatics tools and molecular biology approaches, two hypothetical genes are identified as playing key roles in conjugative transfer. These genes are located between conjugative genes of plasmid pRfaLPU83a from Rhizobium favelukesii LPU83, a plasmid that shows a conjugative transfer behavior depending on the genomic background. One of the two mentioned genes, rcgA, is essential for conjugation, while the other, rcgR, acts as an inhibitor of the process. In addition to introducing this new regulatory system, we show evidence of the functions of these genes in different genomic backgrounds and confirm that homologous proteins from non-closely related organisms have the same functions. These findings set up the basis for a new regulatory circuit of the conjugative transfer of plasmids. IMPORTANCE Extrachromosomal DNA elements, such as plasmids, allow for the adaptation of bacteria to new environments by conferring new determinants. Via conjugation, plasmids can be transferred between members of the same bacterial species, different species, or even to organisms belonging to a different kingdom. Knowledge about the regulatory systems of plasmid conjugative transfer is key in understanding the dynamics of their dissemination in the environment. As the increasing availability of genomes raises the number of predicted proteins with unknown functions, deeper experimental procedures help to elucidate the roles of these determinants. In this work, two uncharacterized proteins that constitute a new regulatory circuit with a key role in the conjugative transfer of rhizobial plasmids were discovered.
Collapse
Affiliation(s)
- Lucas G. Castellani
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Abril Luchetti
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juliet F. Nilsson
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ben Struck
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
22
|
Heath KD, Batstone RT, Cerón Romero M, McMullen JG. MGEs as the MVPs of Partner Quality Variation in Legume-Rhizobium Symbiosis. mBio 2022; 13:e0088822. [PMID: 35758609 PMCID: PMC9426554 DOI: 10.1128/mbio.00888-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite decades of research, we are only just beginning to understand the forces maintaining variation in the nitrogen-fixing symbiosis between rhizobial bacteria and leguminous plants. In their recent work, Alexandra Weisberg and colleagues use genomics to document the breadth of mobile element diversity that carries the symbiosis genes of Bradyrhizobium in natural populations. Studying rhizobia from the perspective of their mobile genetic elements, which have their own transmission modes and fitness interests, reveals novel mechanisms for the generation and maintenance of diversity in natural populations of these ecologically and economically important mutualisms.
Collapse
Affiliation(s)
- Katy D. Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
| | - Rebecca T. Batstone
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
| | - Mario Cerón Romero
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
| | | |
Collapse
|
23
|
Zaayman M, Wheatley RM. Fitness costs of CRISPR-Cas systems in bacteria. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35849532 DOI: 10.1099/mic.0.001209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CRISPR-Cas systems provide bacteria with both specificity and adaptability in defence against invading genetic elements. From a theoretical perspective, CRISPR-Cas systems confer many benefits. However, they are observed at an unexpectedly low prevalence across the bacterial domain. While these defence systems can be gained horizontally, fitness costs may lead to selection against their carriage. Understanding the source of CRISPR-related fitness costs will help us to understand the evolutionary dynamics of CRISPR-Cas systems and their role in shaping bacterial genome evolution. Here, we review our current understanding of the potential fitness costs associated with CRISPR-Cas systems. In addition to potentially restricting the acquisition of genetic material that could confer fitness benefits, we explore five alternative biological factors that from a theoretical perspective may influence the fitness costs associated with CRISPR-Cas system carriage: (1) the repertoire of defence mechanisms a bacterium has available to it, (2) the potential for a metabolic burden, (3) larger-scale population and environmental factors, (4) the phenomenon of self-targeting spacers, and (5) alternative non-defence roles for CRISPR-Cas.
Collapse
|
24
|
Khairnar M, Hagir A, Parmar K, Sayyed RZ, James EK, Rahi P. Phylogenetic diversity and plant growth-promoting activities of rhizobia nodulating fenugreek (Trigonella foenum-graecum Linn.) cultivated in different agroclimatic regions of India. FEMS Microbiol Ecol 2022; 98:6526309. [PMID: 35142840 DOI: 10.1093/femsec/fiac014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022] Open
Abstract
Fenugreek (Trigonella foenum-graecum Linn.), is an extensively cultivated legume crop used as a herb, spice, and traditional medicine in India. The symbiotic efficiency and plant growth-promoting potential of fenugreek rhizobia depend on the symbiont strain and environmental factors. We isolated 176 root-nodulating bacteria from fenugreek cultivated in different agroclimatic regions of India. MALDI-TOF MS-based identification and phylogenetic analyses based on 16S rRNA and five housekeeping genes classified the fenugreek-rhizobia as Ensifer (Sinorhizobium) meliloti. However, the strains represent separate sub-lineages of E. meliloti, distinct from all reported sub-lineages across the globe. We also observed the spatial distribution of fenugreek rhizobia, as the three sub-lineages of E. meliloti recorded during this study were specific to their respective agroclimatic regions. According to the symbiotic gene (nodC and nifH) phylogenies, all three sub-lineages of E. meliloti harboured symbiotic genes similar to symbiovar meliloti; as with the housekeeping genes, these also revealed a spatial distribution for different clades of sv. meliloti. The strains could nodulate fenugreek plants and they showed plant growth-promoting potential. Significant differences were found in the plant growth parameters in response to inoculation with the various strains, suggesting strain-level differences. This study demonstrates that fenugreek rhizobia in India are diverse and spatially distributed in different agro-climatic regions.
Collapse
Affiliation(s)
- Mitesh Khairnar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| | - Ashwini Hagir
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| | - Krupa Parmar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| | - Riyazali Zafarali Sayyed
- Department of Microbiology, PSGVP Mandal's, Arts, Science, and Commerce College, Shahada 425409, India
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| |
Collapse
|
25
|
Hall JPJ, Harrison E, Baltrus DA. Introduction: the secret lives of microbial mobile genetic elements. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200460. [PMID: 34839706 PMCID: PMC8628069 DOI: 10.1098/rstb.2020.0460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Ellie Harrison
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| | - David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721‐0036, USA
| |
Collapse
|