1
|
Osvath M, Johansson M. A short natural history of mental time travels: a journey still travelled? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230402. [PMID: 39278257 PMCID: PMC11496716 DOI: 10.1098/rstb.2023.0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 09/18/2024] Open
Abstract
Tulving's introduction of episodic memory and the metaphor of mental time travel has immensely enriched our understanding of human cognition. However, his focus on human psychology, with limited consideration of evolutionary perspectives, led to the entrenched notion that mental time travel is uniquely human. We contend that adopting a phylogenetic perspective offers a deeper insight into cognition, revealing it as a continuous evolutionary process. Adherence to the uniqueness of pre-defined psychological concepts obstructs a more complete understanding. We offer a concise natural history to elucidate how events that occurred hundreds of millions of years ago have been pivotal for our ability to mentally time travel. We discuss how the human brain, utilizing parts with ancient origins in a networked manner, enables mental time travel. This underscores that episodic memories and mental time travel are not isolated mental constructs but integral to our perception and representation of the world. We conclude by examining recent evidence of neuroanatomical correlates found only in great apes, which show great variability, indicating the ongoing evolution of mental time travel in humans.This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
|
2
|
Barrett JM, Martin ME, Gao M, Druzinsky RE, Miri A, Shepherd GMG. Hand-Jaw Coordination as Mice Handle Food Is Organized around Intrinsic Structure-Function Relationships. J Neurosci 2024; 44:e0856242024. [PMID: 39251351 PMCID: PMC11484547 DOI: 10.1523/jneurosci.0856-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
Rodent jaws evolved structurally to support dual functionality, for either biting or chewing food. Rodent hands also function dually during food handling, for actively manipulating or statically holding food. How are these oral and manual functions coordinated? We combined electrophysiological recording of muscle activity and kilohertz kinematic tracking to analyze masseter and hand actions as mice of both sexes handled food. Masseter activity was organized into two modes synchronized to hand movement modes. In holding/chewing mode, mastication occurred as rhythmic (∼5 Hz) masseter activity while the hands held food below the mouth. In oromanual/ingestion mode, bites occurred as lower-amplitude aperiodic masseter events that were precisely timed to follow regrips (by ∼200 ms). Thus, jaw and hand movements are flexibly coordinated during food handling: uncoupled in holding/chewing mode and tightly coordinated in oromanual/ingestion mode as regrip-bite sequences. Key features of this coordination were captured in a simple model of hierarchically orchestrated mode-switching and intramode action sequencing. We serendipitously detected an additional masseter-related action, tooth sharpening, identified as bouts of higher-frequency (∼13 Hz) rhythmic masseter activity, which was accompanied by eye displacement, including rhythmic proptosis, attributable to masseter contractions. Collectively, the findings demonstrate how a natural, complex, and goal-oriented activity is organized as an assemblage of distinct modes and complex actions, adapted for the divisions of function arising from anatomical structure. These results reveal intricate, high-speed coordination of disparate effectors and show how natural forms of dexterity can serve as a model for understanding the behavioral neurobiology of multi-body-part coordination.
Collapse
Affiliation(s)
- John M Barrett
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Megan E Martin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Mang Gao
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Robert E Druzinsky
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, 60612
| | - Andrew Miri
- Department of Neurobiology, Northwestern University, Evanston, Illinois, 60208
| | - Gordon M G Shepherd
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| |
Collapse
|
3
|
Lacal I, Das A, Logiaco L, Molano-Mazón M, Schwaner MJ, Trach JE. Emerging perspectives for the study of the neural basis of motor behaviour. Eur J Neurosci 2024. [PMID: 39364639 DOI: 10.1111/ejn.16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
The 33rd Annual Meeting of the Society for the Neural Control of Movement (NCM) brought together over 500 experts to discuss recent advancements in motor control. This article highlights key topics from the conference, including the foundational mechanisms of motor control, the ongoing debate over the context-dependency of feedforward and feedback processes, and the interplay between motor and cognitive functions in learning, memory, and decision-making. It also presents innovative methods for studying movement in complex, real-world environments.
Collapse
Affiliation(s)
- Irene Lacal
- Sensorimotor Group, German Primate Center, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Anwesha Das
- Faculty of Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Laureline Logiaco
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | | | - M Janneke Schwaner
- Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Juliana E Trach
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Wright J, Bourke P. Cortical development in the structural model and free energy minimization. Cereb Cortex 2024; 34:bhae416. [PMID: 39470397 PMCID: PMC11520235 DOI: 10.1093/cercor/bhae416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
A model of neocortical development invoking Friston's Free Energy Principle is applied within the Structural Model of Barbas et al. and the associated functional interpretation advanced by Tucker and Luu. Evolution of a neural field with Hebbian and anti-Hebbian plasticity, maximizing synchrony and minimizing axonal length by apoptotic selection, leads to paired connection systems with mirror symmetry, interacting via Markov blankets along their line of reflection. Applied to development along the radial lines of development in the Structural Model, a primary Markov blanket emerges between the centrifugal synaptic flux in layers 2,3 and 5,6, versus the centripetal flow in layer 4, and axonal orientations in layer 4 give rise to the differing shape and movement sensitivities characteristic of neurons of dorsal and ventral neocortex. Prediction error minimization along the primary blanket integrates limbic and subcortical networks with the neocortex. Synaptic flux bypassing the blanket triggers the arousal response to surprising stimuli, enabling subsequent adaptation. As development progresses ubiquitous mirror systems separated by Markov blankets and enclosed blankets-within-blankets arise throughout neocortex, creating the typical order and response characteristics of columnar and noncolumnar cortex.
Collapse
Affiliation(s)
- James Wright
- Centre for Brain Research and Department of Psychological Medicine, School of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Paul Bourke
- Centre for Brain Research, School of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
5
|
Schwartz PJ. Freud's 1926 conjecture is confirmed: evidence from the dorsal periaqueductal gray in mice that human psychological defense against internal instinctual threat evolved from animal motor defense against external predatory threat. Front Psychol 2024; 15:1427816. [PMID: 39380762 PMCID: PMC11458385 DOI: 10.3389/fpsyg.2024.1427816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
In 1926, Freud famously conjectured that the human ego defense of repression against an internal instinctual threat evolved from the animal motor defense of flight from an external predatory threat. Studies over the past 50 years mainly in rodents have investigated the neurobiology of the fight-or-flight reflex to external threats, which activates the emergency alarm system in the dorsal periaqueductal gray (dPAG), the malfunction of which appears likely in panic and post-traumatic stress disorders, but perhaps also in some "non-emergent" conditions like social anxiety and "hysterical" conversion disorder. Computational neuroscience studies in mice by Reis and colleagues have revealed unprecedented insights into the dPAG-related neural mechanisms underlying these evolutionarily honed emergency vertebrate defensive functions (e.g., explore, risk assessment, escape, freeze). A psychoanalytic interpretation of the Reis studies demonstrates that Freud's 1926 conjecture is confirmed, and that internal instinctual threats alone can also set off the dPAG emergency alarm system, which is regulated by 5-HT1A and CRF-1 receptors. Consistent with current psychoanalytic and neurobiologic theories of panic, several other of the primitive components of the dPAG alarm system may also have relevance for understanding of the unconscious determinants of impaired object relationships (e.g., avoidance distance). These dPAG findings reveal (1) a process of "evolution in situ," whereby a more sophisticated dPAG ego defense is seen evolving out of a more primitive dPAG motor defense, (2) a dPAG location for the phylogenetically ancient kernel of Freud's Ego and Id, and (3) a Conscious Id theory that has been conclusively invalidated.
Collapse
Affiliation(s)
- Paul J. Schwartz
- Section on Ego Mechanics, Cincinnati Psychoanalytic Institute, Cincinnati, OH, United States
| |
Collapse
|
6
|
Soylu F. A new ontology for numerical cognition: Integrating evolutionary, embodied, and data informatics approaches. Acta Psychol (Amst) 2024; 249:104416. [PMID: 39121614 DOI: 10.1016/j.actpsy.2024.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Numerical cognition is a field that investigates the sociocultural, developmental, cognitive, and biological aspects of mathematical abilities. Recent findings in cognitive neuroscience suggest that cognitive skills are facilitated by distributed, transient, and dynamic networks in the brain, rather than isolated functional modules. Further, research on the bodily and evolutionary bases of cognition reveals that our cognitive skills harness capacities originally evolved for action and that cognition is best understood in conjunction with perceptuomotor capacities. Despite these insights, neural models of numerical cognition struggle to capture the relation between mathematical skills and perceptuomotor systems. One front to addressing this issue is to identify building block sensorimotor processes (BBPs) in the brain that support numerical skills and develop a new ontology connecting the sensorimotor system with mathematical cognition. BBPs here are identified as sensorimotor functions, associated with distributed networks in the brain, and are consistently identified as supporting different cognitive abilities. BBPs can be identified with new approaches to neuroimaging; by examining an array of sensorimotor and cognitive tasks in experimental designs, employing data-driven informatics approaches to identify sensorimotor networks supporting cognitive processes, and interpreting the results considering the evolutionary and bodily foundations of mathematical abilities. New empirical insights on the BBPs can eventually lead to a revamped embodied cognitive ontology in numerical cognition. Among other mathematical skills, numerical magnitude processing and its sensorimotor origins are discussed to substantiate the arguments presented. Additionally, an fMRI study design is provided to illustrate the application of the arguments presented in empirical research.
Collapse
Affiliation(s)
- Firat Soylu
- Educational Psychology Program, The University of Alabama, Tuscaloosa, AL, United States.
| |
Collapse
|
7
|
Bosulu J, Pezzulo G, Hétu S. Needing: An Active Inference Process for Physiological Motivation. J Cogn Neurosci 2024; 36:2011-2028. [PMID: 38940737 DOI: 10.1162/jocn_a_02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Need states are internal states that arise from deprivation of crucial biological stimuli. They direct motivation, independently of external learning. Despite their separate origin, they interact with reward processing systems that respond to external stimuli. This article aims to illuminate the functioning of the needing system through the lens of active inference, a framework for understanding brain and cognition. We propose that need states exert a pervasive influence on the organism, which in active inference terms translates to a "pervasive surprise"-a measure of the distance from the organism's preferred state. Crucially, we define needing as an active inference process that seeks to reduce this pervasive surprise. Through a series of simulations, we demonstrate that our proposal successfully captures key aspects of the phenomenology and neurobiology of needing. We show that as need states increase, the tendency to occupy preferred states strengthens, independently of external reward prediction. Furthermore, need states increase the precision of states (stimuli and actions) leading to preferred states, suggesting their ability to amplify the value of reward cues and rewards themselves. Collectively, our model and simulations provide valuable insights into the directional and underlying influence of need states, revealing how this influence amplifies the wanting or liking associated with relevant stimuli.
Collapse
Affiliation(s)
- Juvenal Bosulu
- Université de Montréal
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies (ISTC-CNR), Rome, Italy
| | - Sébastien Hétu
- Université de Montréal
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| |
Collapse
|
8
|
Abstract
The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions-both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.
Collapse
Affiliation(s)
- Linda H Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| | - Detlef H Heck
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, Minnesota, USA
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Roy V Sillitoe
- Departments of Neuroscience and Pediatrics, Program in Developmental Biology, and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
9
|
Cardenas MA, Le RP, Champ TM, O’Neill D, Fuglevand AJ, Gothard KM. Interoceptive Signals Bias Decision Making in Rhesus Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602563. [PMID: 39026888 PMCID: PMC11257560 DOI: 10.1101/2024.07.08.602563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Several influential theories have proposed that interoceptive signals, sent from the body to the brain, contribute to neural processes that coordinate complex behaviors. Using pharmacological agents that do not cross the blood-brain barrier, we altered interoceptive states and evaluated their effect on decision-making in rhesus monkeys. We used glycopyrrolate, a non-specific muscarinic (parasympathetic) antagonist, and isoproterenol, a beta-1/2 (sympathetic) agonist, to create a sympathetic-dominated physiological state indexed by increased heart rate. Rhesus monkeys were trained on two variants of an approach-avoidance conflict task, where they chose between enduring mildly aversive stimuli in exchange for a steady flow of rewards, or cancelling the aversive stimuli, forgoing the rewards. The delay to interrupt the aversive stimuli and the reward were used as a measure of the cost-benefit estimation that drove the monkeys' decisions. Both drugs altered approach-avoidance decisions, substantially reducing the delay to interrupt the aversive stimuli. To determine whether this autonomic state lowered tolerance to aversive stimuli or reduced the subjective value of the reward, we tested the effects of glycopyrrolate on a food preference task. Food preference was unaltered, suggesting that the sympathetic dominated state selectively reduces tolerance for aversive stimuli without altering reward-seeking behaviors. As these drugs have no direct effect on brain physiology, interoceptive afferents are the most likely mechanism by which decision making was biased toward avoidance.
Collapse
Affiliation(s)
- Michael A. Cardenas
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, USA
- Graduate Interdisciplinary Program in Neuroscience, College of Science, The University of Arizona, Tucson, AZ, USA
| | - Ryan P. Le
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Tess M. Champ
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Derek O’Neill
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Andrew J. Fuglevand
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, USA
- Graduate Interdisciplinary Program in Neuroscience, College of Science, The University of Arizona, Tucson, AZ, USA
| | - Katalin M. Gothard
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, USA
- Graduate Interdisciplinary Program in Neuroscience, College of Science, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Cisek P, Green AM. Toward a neuroscience of natural behavior. Curr Opin Neurobiol 2024; 86:102859. [PMID: 38583263 DOI: 10.1016/j.conb.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
One of the most exciting new developments in systems neuroscience is the progress being made toward neurophysiological experiments that move beyond simplified laboratory settings and address the richness of natural behavior. This is enabled by technological advances such as wireless recording in freely moving animals, automated quantification of behavior, and new methods for analyzing large data sets. Beyond new empirical methods and data, however, there is also a need for new theories and concepts to interpret that data. Such theories need to address the particular challenges of natural behavior, which often differ significantly from the scenarios studied in traditional laboratory settings. Here, we discuss some strategies for developing such novel theories and concepts and some example hypotheses being proposed.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada.
| | - Andrea M Green
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Pernu TK. Proxy failure as a feature of adaptive control systems. Behav Brain Sci 2024; 47:e80. [PMID: 38738365 DOI: 10.1017/s0140525x23002844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The analysis of John et al. is lacking a fully general account of proxy failure. It is here proposed that proxy failure can be understood as a feature of all adaptive control systems. Whether proxies "fail" or "succeed" depends on the more encompassing view one can adopt for observing such systems.
Collapse
Affiliation(s)
- Tuomas K Pernu
- Department of Social Sciences, University of Eastern Finland, Joensuu, Finlandhttp://www.tuomaspernu.london
| |
Collapse
|
12
|
Kuroda KO, Fukumitsu K, Kurachi T, Ohmura N, Shiraishi Y, Yoshihara C. Parental brain through time: The origin and development of the neural circuit of mammalian parenting. Ann N Y Acad Sci 2024; 1534:24-44. [PMID: 38426943 DOI: 10.1111/nyas.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This review consolidates current knowledge on mammalian parental care, focusing on its neural mechanisms, evolutionary origins, and derivatives. Neurobiological studies have identified specific neurons in the medial preoptic area as crucial for parental care. Unexpectedly, these neurons are characterized by the expression of molecules signaling satiety, such as calcitonin receptor and BRS3, and overlap with neurons involved in the reproductive behaviors of males but not females. A synthesis of comparative ecology and paleontology suggests an evolutionary scenario for mammalian parental care, possibly stemming from male-biased guarding of offspring in basal vertebrates. The terrestrial transition of tetrapods led to prolonged egg retention in females and the emergence of amniotes, skewing care toward females. The nocturnal adaptation of Mesozoic mammalian ancestors reinforced maternal care for lactation and thermal regulation via endothermy, potentially introducing metabolic gate control in parenting neurons. The established maternal care may have served as the precursor for paternal and cooperative care in mammals and also fostered the development of group living, which may have further contributed to the emergence of empathy and altruism. These evolution-informed working hypotheses require empirical validation, yet they offer promising avenues to investigate the neural underpinnings of mammalian social behaviors.
Collapse
Affiliation(s)
- Kumi O Kuroda
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| | - Kansai Fukumitsu
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takuma Kurachi
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nami Ohmura
- RIKEN Center for Brain Science, Saitama, Japan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Yuko Shiraishi
- RIKEN Center for Brain Science, Saitama, Japan
- Kawamura Gakuen Woman's University, Chiba, Japan
| | - Chihiro Yoshihara
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
13
|
Gmaz JM, Keller JA, Dudman JT, Gallego JA. Integrating across behaviors and timescales to understand the neural control of movement. Curr Opin Neurobiol 2024; 85:102843. [PMID: 38354477 DOI: 10.1016/j.conb.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/03/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
The nervous system evolved to enable navigation throughout the environment in the pursuit of resources. Evolutionarily newer structures allowed increasingly complex adaptations but necessarily added redundancy. A dominant view of movement neuroscientists is that there is a one-to-one mapping between brain region and function. However, recent experimental data is hard to reconcile with the most conservative interpretation of this framework, suggesting a degree of functional redundancy during the performance of well-learned, constrained behaviors. This apparent redundancy likely stems from the bidirectional interactions between the various cortical and subcortical structures involved in motor control. We posit that these bidirectional connections enable flexible interactions across structures that change depending upon behavioral demands, such as during acquisition, execution or adaptation of a skill. Observing the system across both multiple actions and behavioral timescales can help isolate the functional contributions of individual structures, leading to an integrated understanding of the neural control of movement.
Collapse
Affiliation(s)
- Jimmie M Gmaz
- Department of Bioengineering, Imperial College London, London, UK. https://twitter.com/j_gmaz
| | - Jason A Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA. https://twitter.com/jakNeurd
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA.
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
14
|
Huber E, Sauppe S, Isasi-Isasmendi A, Bornkessel-Schlesewsky I, Merlo P, Bickel B. Surprisal From Language Models Can Predict ERPs in Processing Predicate-Argument Structures Only if Enriched by an Agent Preference Principle. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:167-200. [PMID: 38645615 PMCID: PMC11025647 DOI: 10.1162/nol_a_00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/30/2023] [Indexed: 04/23/2024]
Abstract
Language models based on artificial neural networks increasingly capture key aspects of how humans process sentences. Most notably, model-based surprisals predict event-related potentials such as N400 amplitudes during parsing. Assuming that these models represent realistic estimates of human linguistic experience, their success in modeling language processing raises the possibility that the human processing system relies on no other principles than the general architecture of language models and on sufficient linguistic input. Here, we test this hypothesis on N400 effects observed during the processing of verb-final sentences in German, Basque, and Hindi. By stacking Bayesian generalised additive models, we show that, in each language, N400 amplitudes and topographies in the region of the verb are best predicted when model-based surprisals are complemented by an Agent Preference principle that transiently interprets initial role-ambiguous noun phrases as agents, leading to reanalysis when this interpretation fails. Our findings demonstrate the need for this principle independently of usage frequencies and structural differences between languages. The principle has an unequal force, however. Compared to surprisal, its effect is weakest in German, stronger in Hindi, and still stronger in Basque. This gradient is correlated with the extent to which grammars allow unmarked NPs to be patients, a structural feature that boosts reanalysis effects. We conclude that language models gain more neurobiological plausibility by incorporating an Agent Preference. Conversely, theories of human processing profit from incorporating surprisal estimates in addition to principles like the Agent Preference, which arguably have distinct evolutionary roots.
Collapse
Affiliation(s)
- Eva Huber
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland
| | - Sebastian Sauppe
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Arrate Isasi-Isasmendi
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| | - Paola Merlo
- Department of Linguistics, University of Geneva, Geneva, Switzerland
- University Center for Computer Science, University of Geneva, Geneva, Switzerland
| | - Balthasar Bickel
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Levitas DJ, James TW. Dynamic threat-reward neural processing under semi-naturalistic ecologically relevant scenarios. Hum Brain Mapp 2024; 45:e26648. [PMID: 38445552 PMCID: PMC10915741 DOI: 10.1002/hbm.26648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Studies of affective neuroscience have typically employed highly controlled, static experimental paradigms to investigate the neural underpinnings of threat and reward processing in the brain. Yet our knowledge of affective processing in more naturalistic settings remains limited. Specifically, affective studies generally examine threat and reward features separately and under brief time periods, despite the fact that in nature organisms are often exposed to the simultaneous presence of threat and reward features for extended periods. To study the neural mechanisms of threat and reward processing under distinct temporal profiles, we created a modified version of the PACMAN game that included these environmental features. We also conducted two automated meta-analyses to compare the findings from our semi-naturalistic paradigm to those from more constrained experiments. Overall, our results revealed a distributed system of regions sensitive to threat imminence and a less distributed system related to reward imminence, both of which exhibited overlap yet neither of which involved the amygdala. Additionally, these systems broadly overlapped with corresponding meta-analyses, with the notable absence of the amygdala in our findings. Together, these findings suggest a shared system for salience processing that reveals a heightened sensitivity toward environmental threats compared to rewards when both are simultaneously present in an environment. The broad correspondence of our findings to meta-analyses, consisting of more tightly controlled paradigms, illustrates how semi-naturalistic studies can corroborate previous findings in the literature while also potentially uncovering novel mechanisms resulting from the nuances and contexts that manifest in such dynamic environments.
Collapse
Affiliation(s)
- Daniel J. Levitas
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Thomas W. James
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
16
|
Lavoie E, Hebert JS, Chapman CS. Comparing eye-hand coordination between controller-mediated virtual reality, and a real-world object interaction task. J Vis 2024; 24:9. [PMID: 38393742 PMCID: PMC10905649 DOI: 10.1167/jov.24.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/30/2023] [Indexed: 02/25/2024] Open
Abstract
Virtual reality (VR) technology has advanced significantly in recent years, with many potential applications. However, it is unclear how well VR simulations mimic real-world experiences, particularly in terms of eye-hand coordination. This study compares eye-hand coordination from a previously validated real-world object interaction task to the same task re-created in controller-mediated VR. We recorded eye and body movements and segmented participants' gaze data using the movement data. In the real-world condition, participants wore a head-mounted eye tracker and motion capture markers and moved a pasta box into and out of a set of shelves. In the VR condition, participants wore a VR headset and moved a virtual box using handheld controllers. Unsurprisingly, VR participants took longer to complete the task. Before picking up or dropping off the box, participants in the real world visually fixated the box about half a second before their hand arrived at the area of action. This 500-ms minimum fixation time before the hand arrived was preserved in VR. Real-world participants disengaged their eyes from the box almost immediately after their hand initiated or terminated the interaction, but VR participants stayed fixated on the box for much longer after it was picked up or dropped off. We speculate that the limited haptic feedback during object interactions in VR forces users to maintain visual fixation on objects longer than in the real world, altering eye-hand coordination. These findings suggest that current VR technology does not replicate real-world experience in terms of eye-hand coordination.
Collapse
Affiliation(s)
- Ewen Lavoie
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Jacqueline S Hebert
- Division of Physical Medicine and Rehabilitation, Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Glenrose Rehabiliation Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Craig S Chapman
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Luu P, Tucker DM, Friston K. From active affordance to active inference: vertical integration of cognition in the cerebral cortex through dual subcortical control systems. Cereb Cortex 2024; 34:bhad458. [PMID: 38044461 DOI: 10.1093/cercor/bhad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
In previous papers, we proposed that the dorsal attention system's top-down control is regulated by the dorsal division of the limbic system, providing a feedforward or impulsive form of control generating expectancies during active inference. In contrast, we proposed that the ventral attention system is regulated by the ventral limbic division, regulating feedback constraints and error-correction for active inference within the neocortical hierarchy. Here, we propose that these forms of cognitive control reflect vertical integration of subcortical arousal control systems that evolved for specific forms of behavior control. The feedforward impetus to action is regulated by phasic arousal, mediated by lemnothalamic projections from the reticular activating system of the lower brainstem, and then elaborated by the hippocampus and dorsal limbic division. In contrast, feedback constraint-based on environmental requirements-is regulated by the tonic activation furnished by collothalamic projections from the midbrain arousal control centers, and then sustained and elaborated by the amygdala, basal ganglia, and ventral limbic division. In an evolutionary-developmental analysis, understanding these differing forms of active affordance-for arousal and motor control within the subcortical vertebrate neuraxis-may help explain the evolution of active inference regulating the cognition of expectancy and error-correction within the mammalian 6-layered neocortex.
Collapse
Affiliation(s)
- Phan Luu
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3AR, United Kingdom
- VERSES AI Research Lab, Los Angeles, CA 90016, USA
| |
Collapse
|
18
|
Love K, Cao D, Chang JC, Dal'Bello LR, Ma X, O'Shea DJ, Schone HR, Shahbazi M, Smoulder A. Highlights from the 32nd Annual Meeting of the Society for the Neural Control of Movement. J Neurophysiol 2024; 131:75-87. [PMID: 38057264 DOI: 10.1152/jn.00428.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- Kassia Love
- Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Di Cao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Joanna C Chang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Lucas R Dal'Bello
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Xuan Ma
- Department of Neuroscience, Northwestern University, Chicago, Illinois, United States
| | - Daniel J O'Shea
- Department of Bioengineering, Stanford University, Stanford, California, United States
| | - Hunter R Schone
- Rehabilitation and Neural Engineering Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Mahdiyar Shahbazi
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Adam Smoulder
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
19
|
Bramson B, Roelofs K. Perceptual control or action-selection? Comment on: a perceptual control theory of emotional action. Cogn Emot 2023; 37:1193-1198. [PMID: 37990890 DOI: 10.1080/02699931.2023.2269830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/03/2023] [Indexed: 11/23/2023]
Abstract
The Perceptual Control Theory of Emotional Action provides a compelling view of the synergy between action and perception in the context of emotion. In this invited response, we outline three suggestions to further clarify and concretesise the theory in the hope that it can provide a solid basis for the theoretical, empirical, and clinical fields of emotion and emotion regulation. First, we emphasise the importance of concretesising these ideas in a way that is biologically plausible and testable in terms of its neuronal implementation, which has not been addressed in the main manuscript. Secondly, we highlight the challenges for this account to effectively describe core symptoms in emotional disorders, an essential step if the theory aims to foster the development of better-tuned neurocognitively grounded interventions. Finally, we take a leap on what action-oriented accounts of emotion can mean for the field of emotion regulation.
Collapse
Affiliation(s)
- Bob Bramson
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
- Behavioral Science Institute (BSI), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
- Behavioral Science Institute (BSI), Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Teichroeb JA, Smeltzer EA, Mathur V, Anderson KA, Fowler EJ, Adams FV, Vasey EN, Tamara Kumpan L, Stead SM, Arseneau-Robar TJM. How can we apply decision-making theories to wild animal behavior? Predictions arising from dual process theory and Bayesian decision theory. Am J Primatol 2023:e23565. [PMID: 37839050 DOI: 10.1002/ajp.23565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Our understanding of decision-making processes and cognitive biases is ever increasing, thanks to an accumulation of testable models and a large body of research over the last several decades. The vast majority of this work has been done in humans and laboratory animals because these study subjects and situations allow for tightly controlled experiments. However, it raises questions about how this knowledge can be applied to wild animals in their complex environments. Here, we review two prominent decision-making theories, dual process theory and Bayesian decision theory, to assess the similarities in these approaches and consider how they may apply to wild animals living in heterogenous environments within complicated social groupings. In particular, we wanted to assess when wild animals are likely to respond to a situation with a quick heuristic decision and when they are likely to spend more time and energy on the decision-making process. Based on the literature and evidence from our multi-destination routing experiments on primates, we find that individuals are likely to make quick, heuristic decisions when they encounter routine situations, or signals/cues that accurately predict a certain outcome, or easy problems that experience or evolutionary history has prepared them for. Conversely, effortful decision-making is likely in novel or surprising situations, when signals and cues have unpredictable or uncertain relationships to an outcome, and when problems are computationally complex. Though if problems are overly complex, satisficing via heuristics is likely, to avoid costly mental effort. We present hypotheses for how animals with different socio-ecologies may have to distribute their cognitive effort. Finally, we examine the conservation implications and potential cognitive overload for animals experiencing increasingly novel situations caused by current human-induced rapid environmental change.
Collapse
Affiliation(s)
- Julie A Teichroeb
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Eve A Smeltzer
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Virendra Mathur
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Karyn A Anderson
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Erica J Fowler
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Frances V Adams
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Eric N Vasey
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Ludmila Tamara Kumpan
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Samantha M Stead
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - T Jean M Arseneau-Robar
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| |
Collapse
|
21
|
Bramson B, Toni I, Roelofs K. Emotion regulation from an action-control perspective. Neurosci Biobehav Rev 2023; 153:105397. [PMID: 37739325 DOI: 10.1016/j.neubiorev.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Despite increasing interest in emotional processes in cognitive science, theories on emotion regulation have remained rather isolated, predominantly focused on cognitive regulation strategies such as reappraisal. However, recent neurocognitive evidence suggests that early emotion regulation may involve sensorimotor control in addition to other emotion-regulation processes. We propose an action-oriented view of emotion regulation, in which feedforward predictions develop from action-selection mechanisms. Those can account for acute emotional-action control as well as more abstract instances of emotion regulation such as cognitive reappraisal. We argue the latter occurs in absence of overt motor output, yet in the presence of full-blown autonomic, visceral, and subjective changes. This provides an integrated framework with testable neuro-computational predictions and concrete starting points for intervention to improve emotion control in affective disorders.
Collapse
Affiliation(s)
- Bob Bramson
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands.
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands
| |
Collapse
|
22
|
Zeppilli S, Gurrola AO, Demetci P, Brann DH, Attey R, Zilkha N, Kimchi T, Datta SR, Singh R, Tosches MA, Crombach A, Fleischmann A. Mammalian olfactory cortex neurons retain molecular signatures of ancestral cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553130. [PMID: 37645751 PMCID: PMC10461972 DOI: 10.1101/2023.08.13.553130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cerebral cortex diversified extensively during vertebrate evolution. Intriguingly, the three-layered mammalian olfactory cortex resembles the cortical cytoarchitecture of non-mammals yet evolved alongside the six-layered neocortex, enabling unique comparisons for investigating cortical neuron diversification. We performed single-nucleus multiome sequencing across mouse three- to six-layered cortices and compared neuron types across mice, reptiles and salamander. We identified neurons that are olfactory cortex-specific or conserved across mouse cortical areas. However, transcriptomically similar neurons exhibited area-specific epigenetic states. Additionally, the olfactory cortex showed transcriptomic divergence between lab and wild-derived mice, suggesting enhanced circuit plasticity through adult immature neurons. Finally, olfactory cortex neurons displayed marked transcriptomic similarities to reptile and salamander neurons. Together, these data indicate that the mammalian olfactory cortex retains molecular signatures representative of ancestral cortical traits.
Collapse
|
23
|
Hanssen R, Rigoux L, Kuzmanovic B, Iglesias S, Kretschmer AC, Schlamann M, Albus K, Edwin Thanarajah S, Sitnikow T, Melzer C, Cornely OA, Brüning JC, Tittgemeyer M. Liraglutide restores impaired associative learning in individuals with obesity. Nat Metab 2023; 5:1352-1363. [PMID: 37592007 PMCID: PMC10447249 DOI: 10.1038/s42255-023-00859-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
Survival under selective pressure is driven by the ability of our brain to use sensory information to our advantage to control physiological needs. To that end, neural circuits receive and integrate external environmental cues and internal metabolic signals to form learned sensory associations, consequently motivating and adapting our behaviour. The dopaminergic midbrain plays a crucial role in learning adaptive behaviour and is particularly sensitive to peripheral metabolic signals, including intestinal peptides, such as glucagon-like peptide 1 (GLP-1). In a single-blinded, randomized, controlled, crossover basic human functional magnetic resonance imaging study relying on a computational model of the adaptive learning process underlying behavioural responses, we show that adaptive learning is reduced when metabolic sensing is impaired in obesity, as indexed by reduced insulin sensitivity (participants: N = 30 with normal insulin sensitivity; N = 24 with impaired insulin sensitivity). Treatment with the GLP-1 receptor agonist liraglutide normalizes impaired learning of sensory associations in men and women with obesity. Collectively, our findings reveal that GLP-1 receptor activation modulates associative learning in people with obesity via its central effects within the mesoaccumbens pathway. These findings provide evidence for how metabolic signals can act as neuromodulators to adapt our behaviour to our body's internal state and how GLP-1 receptor agonists work in clinics.
Collapse
Affiliation(s)
- Ruth Hanssen
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | | | - Sandra Iglesias
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Alina C Kretschmer
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Marc Schlamann
- Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Kerstin Albus
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sharmili Edwin Thanarajah
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tamara Sitnikow
- Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Cologne, Germany
| | - Corina Melzer
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
24
|
Sands LP, Jiang A, Jones RE, Trattner JD, Kishida KT. Valence-partitioned learning signals drive choice behavior and phenomenal subjective experience in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533213. [PMID: 36993384 PMCID: PMC10055186 DOI: 10.1101/2023.03.17.533213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
How the human brain generates conscious phenomenal experience is a fundamental problem. In particular, it is unknown how variable and dynamic changes in subjective affect are driven by interactions with objective phenomena. We hypothesize a neurocomputational mechanism that generates valence-specific learning signals associated with 'what it is like' to be rewarded or punished. Our hypothesized model maintains a partition between appetitive and aversive information while generating independent and parallel reward and punishment learning signals. This valence-partitioned reinforcement learning (VPRL) model and its associated learning signals are shown to predict dynamic changes in 1) human choice behavior, 2) phenomenal subjective experience, and 3) BOLD-imaging responses that implicate a network of regions that process appetitive and aversive information that converge on the ventral striatum and ventromedial prefrontal cortex during moments of introspection. Our results demonstrate the utility of valence-partitioned reinforcement learning as a neurocomputational basis for investigating mechanisms that may drive conscious experience.
Collapse
Affiliation(s)
- L. Paul Sands
- Dept. of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem NC, 27101, US
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem NC, 27101, US
| | - Angela Jiang
- Dept. of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem NC, 27101, US
| | - Rachel E. Jones
- Dept. of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem NC, 27101, US
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem NC, 27101, US
| | - Jonathan D. Trattner
- Dept. of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem NC, 27101, US
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem NC, 27101, US
| | - Kenneth T. Kishida
- Dept. of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem NC, 27101, US
- Neuroscience Graduate Program, Wake Forest School of Medicine, Winston-Salem NC, 27101, US
- Dept. of Neurosurgery, Wake Forest School of Medicine, Winston-Salem NC, 27101, US
| |
Collapse
|
25
|
Abstract
The Entangled Brain (Pessoa, L., 2002. MIT Press) promotes the idea that we need to understand the brain as a complex, entangled system. Why does the complex systems perspective, one that entails emergent properties, matter for brain science? In fact, many neuroscientists consider these ideas a distraction. We discuss three principles of brain organization that inform the question of the interactional complexity of the brain: (1) massive combinatorial anatomical connectivity; (2) highly distributed functional coordination; and (3) networks/circuits as functional units. To motivate the challenges of mapping structure and function, we discuss neural circuits illustrating the high anatomical and functional interactional complexity typical in the brain. We discuss potential avenues for testing for network-level properties, including those relying on distributed computations across multiple regions. We discuss implications for brain science, including the need to characterize decentralized and heterarchical anatomical-functional organization. The view advocated has important implications for causation, too, because traditional accounts of causality provide poor candidates for explanation in interactionally complex systems like the brain given the distributed, mutual, and reciprocal nature of the interactions. Ultimately, to make progress understanding how the brain supports complex mental functions, we need to dissolve boundaries within the brain-those suggested to be associated with perception, cognition, action, emotion, motivation-as well as outside the brain, as we bring down the walls between biology, psychology, mathematics, computer science, philosophy, and so on.
Collapse
|
26
|
Prilutski Y, Livneh Y. Physiological Needs: Sensations and Predictions in the Insular Cortex. Physiology (Bethesda) 2023; 38:0. [PMID: 36040864 DOI: 10.1152/physiol.00019.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Physiological needs create powerful motivations (e.g., thirst and hunger). Studies in humans and animal models have implicated the insular cortex in the neural regulation of physiological needs and need-driven behavior. We review prominent mechanistic models of how the insular cortex might achieve this regulation and present a conceptual and analytical framework for testing these models in healthy and pathological conditions.
Collapse
Affiliation(s)
- Yael Prilutski
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Kanaev IA. Entropy and Cross-Level Orderliness in Light of the Interconnection between the Neural System and Consciousness. ENTROPY (BASEL, SWITZERLAND) 2023; 25:418. [PMID: 36981307 PMCID: PMC10047885 DOI: 10.3390/e25030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Despite recent advances, the origin and utility of consciousness remains under debate. Using an evolutionary perspective on the origin of consciousness, this review elaborates on the promising theoretical background suggested in the temporospatial theory of consciousness, which outlines world-brain alignment as a critical predisposition for controlling behavior and adaptation. Such a system can be evolutionarily effective only if it can provide instant cohesion between the subsystems, which is possible only if it performs an intrinsic activity modified in light of the incoming stimulation. One can assume that the world-brain interaction results in a particular interference pattern predetermined by connectome complexity. This is what organisms experience as their exclusive subjective state, allowing the anticipation of regularities in the environment. Thus, an anticipative system can emerge only in a regular environment, which guides natural selection by reinforcing corresponding reactions and decreasing the system entropy. Subsequent evolution requires complicated, layered structures and can be traced from simple organisms to human consciousness and society. This allows us to consider the mode of entropy as a subject of natural evolution rather than an individual entity.
Collapse
Affiliation(s)
- Ilya A Kanaev
- Department of Philosophy, Sun Yat-sen University, 135 Xingang Xi Rd, Guangzhou 510275, China
| |
Collapse
|
28
|
Abstract
Neural mechanisms of perceptual decision making have been extensively studied in experimental settings that mimic stable environments with repeating stimuli, fixed rules, and payoffs. In contrast, we live in an ever-changing environment and have varying goals and behavioral demands. To accommodate variability, our brain flexibly adjusts decision-making processes depending on context. Here, we review a growing body of research that explores the neural mechanisms underlying this flexibility. We highlight diverse forms of context dependency in decision making implemented through a variety of neural computations. Context-dependent neural activity is observed in a distributed network of brain structures, including posterior parietal, sensory, motor, and subcortical regions, as well as the prefrontal areas classically implicated in cognitive control. We propose that investigating the distributed network underlying flexible decisions is key to advancing our understanding and discuss a path forward for experimental and theoretical investigations.
Collapse
Affiliation(s)
- Gouki Okazawa
- Center for Neural Science, New York University, New York, NY, USA;
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, NY, USA;
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
29
|
Potter HD, Mitchell KJ. Naturalising Agent Causation. ENTROPY 2022; 24:e24040472. [PMID: 35455135 PMCID: PMC9030586 DOI: 10.3390/e24040472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
The idea of agent causation—that a system such as a living organism can be a cause of things in the world—is often seen as mysterious and deemed to be at odds with the physicalist thesis that is now commonly embraced in science and philosophy. Instead, the causal power of organisms is attributed to mechanistic components within the system or derived from the causal activity at the lowest level of physical description. In either case, the ‘agent’ itself (i.e., the system as a whole) is left out of the picture entirely, and agent causation is explained away. We argue that this is not the right way to think about causation in biology or in systems more generally. We present a framework of eight criteria that we argue, collectively, describe a system that overcomes the challenges concerning agent causality in an entirely naturalistic and non-mysterious way. They are: (1) thermodynamic autonomy, (2) persistence, (3) endogenous activity, (4) holistic integration, (5) low-level indeterminacy, (6) multiple realisability, (7) historicity, (8) agent-level normativity. Each criterion is taken to be dimensional rather than categorical, and thus we conclude with a short discussion on how researchers working on quantifying agency may use this multidimensional framework to situate and guide their research.
Collapse
Affiliation(s)
- Henry D. Potter
- Smurfit Institute of Genetics, Trinity College Dublin, D02 VF25 Dublin, Ireland;
- Institute of Neuroscience, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, D02 VF25 Dublin, Ireland;
- Institute of Neuroscience, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence:
| |
Collapse
|
30
|
Abstract
The nervous system is a product of evolution. That is, it was constructed through a long series of modifications, within the strong constraints of heredity, and continuously subjected to intense selection pressures. As a result, the organization and functions of the brain are shaped by its history. We believe that this fact, underappreciated in contemporary systems neuroscience, offers an invaluable aid for helping us resolve the brain's mysteries. Indeed, we think that the consideration of evolutionary history ought to take its place alongside other intellectual tools used to understand the brain, such as behavioural experiments, studies of anatomical structure and functional characterization based on recordings of neural activity. In this introduction, we argue for the importance of evolution by highlighting specific examples of ways that evolutionary theory can enhance neuroscience. The rest of the theme issue elaborates this point, emphasizing the conservative nature of neural evolution, the important consequences of specific transitions that occurred in our history, and the ways in which considerations of evolution can shed light on issues ranging from specific mechanisms to fundamental principles of brain organization. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, 2960 chemin de la tour, local 1107 Montréal, QC H3T 1J4 Canada
| | - Benjamin Y Hayden
- Department of Neuroscience, Department of Biomedical Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|